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Non-interferometric experiments have been successfully employed to constrain models of sponta-
neous wave function collapse, which predict a violation of the quantum superposition principle for
large systems. These experiments are grounded on the fact that, according to these models, the dy-
namics is driven by a noise that, besides collapsing the wave function in space, generates a diffusive
motion with characteristic signatures, which, though small, can be tested. The non-interferometric
approach might seem applicable only to those models which implement the collapse through a noisy
dynamics, not to any model, which collapses the wave function in space. Here we show that this is
not the case: under reasonable assumptions, any collapse dynamics (in space) is diffusive. Specifi-
cally, we prove that any space-translation covariant dynamics which complies with the no-signaling
constraint, if collapsing the wave function in space, must change the average momentum of the
system, and/or its spread.

Introduction. Searching for the potential lim-
its of validity of the quantum superposition
principle is of highest relevance for the founda-
tions of Quantum Mechanics and in general for
our understanding of Nature [1–4], and more
pragmatically also for the scalability of quan-
tum technologies. One further motivation is
provided by models of spontaneous wave func-
tion collapse [5–8], which predict a progressive
breakdown of quantum linearity and the local-
ization in space of physical systems as their size
increases, thus justifying the emergence of a
classical world from quantum constituents.

The most natural way of testing the super-
position principle is via interferometric exper-
iments, and several platforms have been em-
ployed or proposed for this scope, including
atoms [9, 10], molecules [11, 12], optomechani-
cal systems [13], crystals [14], NV centers [15].
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The difficulty in performing such experiments
is that it is hard to generate and maintain
a macroscopic spatial superposition in a (al-
most) decoherence-free environment, and check
whether over time it survives or decays. The
current world record for a matter wave delocal-
ized in space is about 0.5 m, obtained with cold
atoms [10], while the largest mass which inter-
fered with itself weights about 105 amu [12]. We
are still far away from probing the quantum na-
ture of the macroscopic world, but impressive
technological development makes the goal less
far away in the future [16–18].

Meanwhile, a different strategy has been suc-
cessfully employed to test models of sponta-
neous wave function collapse, which consists of
non-interferometric experiments [19]. The ba-
sic principle lies in the observation that in all
these models the collapse of the wave function
is triggered by a noise, which shakes the par-
ticles’ dynamics, whether their wave function
is localized or not. As such, particles undergo
a characteristic diffusion process, which can be
tested through high-precision position measure-
ments; these, although demanding, are easier to
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perform than the interferometric ones. Exam-
ples of these kind of experiments are the pre-
cise monitoring of the motion of cold atoms
[20], cantilevers [21, 22] or gravitational wave
detectors [23, 24]. Another consequence of the
collapse-induced diffusion is that atoms emit
an extra radiation, which is not predicted by
standard quantum mechanics; also this effect
has been used to test collapse models [25–
28]. The bounds on the phenomenological pa-
rameters of the Continuous Spontaneous Lo-
calization (CSL) model [6] resulting from non-
interferometric experiments are six orders of
magnitude stronger than the best bounds set
by interferometric experiments [29]. Moreover,
a recent experiment based on precise measure-
ments of the radiation emitted from Germa-
nium ruled out the parameters free version of
the Diósi-Penrose (DP) model [30].

An apparently weak side of non-
interferometric experiments is that they
seem not to represent a direct test of the
quantum superposition principle, but only of
the models so far proposed, which explicitly
violate it. This leaves the possibility open to
formulate a model where the wave function
does collapse, without inducing diffusion on
the system. Here we show that this is not
possible: any dynamics that localizes the wave
function in space also changes the momentum.
We call this diffusion, because in all current
collapse models it manifests as such, but in
this paper it is meant to signify any change in
the momentum of the system. Since a change
in momentum can be (at least in principle)
detected by non-interferometric experiments,
our result shows that they represent a test
of the quantum superposition principle in a
stronger sense than one might suppose.

We consider a general situation: we assume
that physical systems are associated with a wave
function ψ, which is subject to a generic norm-
preserving (possibly, non linear) dynamics. The
requirements on the dynamics are: i) it does not
allow for superluminal signaling; ii) it is space-
translation covariant, at least at the statistical
level. The first assumption implies that the dy-
namics for the wave function ψ also provides

a well-defined dynamics for the density matrix
ρ̂, which in general is not true for a nonlinear
evolution [31]. Then, by construction, the dy-
namics for ρ̂ is linear, completely positive and
trace preserving (see Supplementary Material
[32]). The second assumption amounts to re-
quiring that the map for ρ̂ is space-translation
covariant and has the same physical motivation
on which all physical fundamental theories are
based. We will prove our result for a single par-
ticle, where with particle we also (and mostly)
mean the center of mass of a composite system.

To fix the notation, we will consider a par-
ticle in a box of size L, with periodic bound-
ary conditions; this choice will avoid potential
problems when dealing with plane waves. Let
p̂i be the momentum operator along direction
i (= x, y, z), and (2π~/L)ni its eigenvalues,
with ni ∈ Z; let n = (nx, ny, nz). The aver-
age value of the momentum operator for a given
state ρ̂ is denoted as pi,ρ̂ = Tr(p̂iρ̂) and its vari-

ance as ∆pi,ρ̂ = Tr(p̂2i ρ̂) − [Tr(p̂iρ̂)]
2. Last, let

n̂ = |n〉〈n| be the state of definite momentum
(2π~/L)n.

We will prove the following theorem: Con-
sider a particle in a box of size L with periodic
boundary conditions for its wave function. Con-
sider a dynamical map for the wave function
satisfying the conditions i) and ii), and let Φ be
the associated map for the density matrix ρ̂ [33].
Assume that the average momentum is con-
served along the three directions: pi,Φ[ρ̂] = pi,ρ̂
for any ρ̂. Then ∆pi,Φ[n̂] = ∆pi,n̂ ∀n if an only
if Φ is a function of the momentum operator
only, in which case plane waves do not collapse
in space. Moreover, if ∆pi,Φ[n̂] 6= 0 for some
n, then ∆pi,Φ[ρ̂] > ∆pi,ρ̂ for any ρ̂ such that
〈n|ρ̂|n〉 6= 0.

Before proceeding with the proof, some com-
ments are at order. We assume that the aver-
age momentum pi is conserved for all states be-
cause, if this is not true for a certain ρ̂, then a
non-interferometric experiment is immediately
available, namely to measure the change of pi
induced by Φ on the ρ̂. Most collapse models in
the literature conserve the average momentum.
An exception are the dissipative models, as for
example the dissipative CSL [34]; however, also
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in this case, for generic states ∆pi,ρ̂ changes due
to the collapse i.e. there is diffusion. This is dis-
cussed in detail in the Supplementary Material
C [32].

Plane waves are the most delocalized states,
and a sensible collapse model is expected to col-
lapse them in space. In that case, ∆pi changes
for all of them (it is 0 before the collapse, and
not 0 after); then the theorem tells that ∆pi
will increase for any ρ̂. This means that any
sensible collapse model must induce an increase
of ∆pi of the system, for any state (delocalized
or not). When the map acts repeatedly over
time, the increase of ∆pi amounts to some form
of diffusion.

Our proof is valid for free particles as well as
for particles interacting with an external poten-
tial. In the second case, in general, the change
in ∆pi cannot be easily separated into the con-
tribution coming from the interaction potential
and that coming from the collapse. However,
all experiments are such that this separation is
possible, either because the particle is free or
because the effect of the interaction potential
can be estimated.

The theorem might seem a manifestation of
Heisenberg’s uncertainty principle: a collapse
in position must increase the spread in momen-
tum; this is true for plane waves, but it is not
necessary when the state is not a minimum un-
certainty state (the vast majority of them are
not). Yet the theorem says that also in that
case the spread in momentum increases [35].

Proof. As discussed in the supplementary ma-
terial [32], the map Φ is linear, trace preserving
and completely positive. Then Kraus’ theorem
[36] states that it is of the form:

Φ[ρ̂] =
∑

k

Âkρ̂Â
†
k (1)

where the operators Âk satisfy the condition
∑

k Â
†
kÂk = 1.

The structure of translation covariant maps is
characterized by Holevo’s theorem [37], whose
essence is the following. A map is covariant
under a space translation amounting to a dis-

placement x if, for any ρ̂:

e−
i
~
p̂·x Φ[ρ̂] e

i
~
p̂·x = Φ

[

e−
i
~
p̂·x ρ̂ e

i
~
p̂·x

]

; (2)

by multiplying the two sides of this equation on

the left by e
i
~
p̂·x and on the right by e−

i
~
p̂·x and

using Eq. (1), one finds that:

Φ[ρ̂] =
∑

k

Âk(x)ρ̂Â
†
k(x) (3)

with

Âk(x) = e
i
~
p̂·xÂke

− i
~
p̂·x. (4)

By requiring the covariance in Eq. (2) to
hold for any possible displacement x with xj ∈
[−L/2, L/2], one eventually finds:

Φ[ρ̂] =
1

L3

∫ +L
2

−L
2

dx
∑

k

Ak(x)ρ̂A
†
k(x) (5)

with Ak(x) given by Eq. (4) and

∑

m

∑

k

|〈m|Ak|n〉|
2 = 1 m,n ∈ Z

3 . (6)

Eq. (5) represents the general space translation
covariant Kraus map inside a box.

Since we are assuming that the average mo-
mentum does not change, the change of its
spread is given by

Di,ρ̂ := Tr(p̂2iΦ[ρ̂])− Tr(p̂2i ρ̂), (7)

which, according to Eq. (5), is equal to (see
Supplementary material [32]):

Di,ρ̂ =
∑

m,n

P (m,n)m̃2
i 〈n|ρ̂|n〉, (8)

where m̃i := (2π~/L)mi and

P (m,n) :=
∑

k

|〈m+ n|Ak|n〉|
2. (9)

The requirement that the map Φ does not lead
to diffusion is equivalent to asking that Di,ρ̂ = 0
for any ρ̂. We now prove that a map fulfilling
this condition cannot collapse the wave function
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in space. By assuming that Di,ρ̂ = 0 for any
statistical operator of the form ρ̂ = |n0〉〈n0|,
we conclude that:

∑

m

P (m,n0)m̃
2
i = 0 ∀n0. (10)

At this point, it is convenient to introduce the
marginal distributions of P (m,n0) given by:

Pi(mi,n0) :=
∑

mj 6=i

P (m,n0) , (11)

which allow to rewrite Eq. (10) as:
∑

mi

Pi(mi,n0)m
2
i = 0. (12)

for all n0. Eqs. (6) and (9) imply that P (m,n)
is a probability distribution for the variables m,
for any fixed n. It follows from Eq. (12) that
the marginals Pi(mi,n0) are probability distri-
butions with zero variance, which implies:

Pi(mi,n0) = δmi,0 ∀n0. (13)

Since this is true for all the marginals of
P (m,n0), then:

P (m,n) =
∑

k

|〈m+n|Ak|n〉|
2 = δm,0 ∀n.

(14)
The equation above implies that:

|〈m+ n|Ak|n〉|
2 = ck(n)δm,0 ∀n , (15)

with ck(n) generic non-negative functions such
that

∑

k ck(n) = 1. By writing the ma-

trix element in the form 〈m + n|Âk|n〉 =
Rk(m,n)eiϕk(m,n) one finds that Rk(m,n) =
√

ck(n)δm,0 and therefore

Âk =
∑

m,n

|m+ n〉〈m+ n|Âk|n〉〈n|

=
∑

n

√

ck(n)e
iϕk(0,n)|n〉〈n|= Âk(p̂), (16)

where the last equality signifies that the opera-
tors Âk are functions of the momentum operator
only. As such, the map Φ becomes:

Φ[ρ̂] =
∑

k

Âk(p̂)ρ̂Â
†
k(p̂). (17)

Typical examples of maps of this kind con-
tain only one Kraus operator and are the free
evolution (Â(p̂) ∼ exp[−ip̂2/2m]) and spatial

translations (Â(p̂) ∼ exp[ip̂ · a]), which do not
modify the spread in momentum.

It is trivial to check that a map like (17) does
not change the momentum distribution, and
that plane waves ρ̂ = |n0〉〈n0| are stationary
states, which implies that the map Φ is not ca-
pable of collapsing such fully delocalized states
in position.

Coming to the second part of the theorem,
let us assume that the map changes the spread
in momentum of a given momentum eigenstate
|n0〉; this implies that:

∑

m

P (m,n0)m̃
2
i > 0. (18)

Then from Eq. (8) it is clear that for all states ρ̂
such that 〈n0|ρ̂|n0〉 6= 0 the spread in momen-
tum also increases under the action of the map.
This completes the proof.

The proof presented here is applied to a sin-
gle quantum operation, but clearly holds for a
sequence of them. A proof of the theorem for
Lindblad’s dynamics is given in the Supplemen-
tary Material [32].

Discussion. The no-faster-than-light-
signaling requirement, which implies that
the dynamical map for the density matrix is
uniquely identified and is linear, sets a very
strong constraint on the possible collapse dy-
namics. In particular, it tells that the dynamics
must be such that, at the statistical level (i.e.
Φ), it acts on the density matrix in the same
way whether the underlying mixture is made
of delocalized states (which should collapse) or
of localized states (which are not expected to
further collapse). This excludes the possibility
of having a collapse dynamics that takes place
only when the system is in a superposition, and
is suspended when the system is not; in this
second case the effect might be small or null
for some specific states, but the dynamics as
such is there.

Since the time when a superposition is cre-
ated is not specified a priori, and since Φ is
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“blind” to the states forming a statistical mix-
ture, the dynamics must act repeatedly in time
with a sufficiently high rate, to make sure that
superpositions do not live too long (in the
Markovian limit, one typically has a Lindblad
dynamics).

Note that such dynamics implies a time di-
rectionality (see [38] for further discussion).
At the statistical level this is clear since pure
states evolve into statistical mixtures. At the
wave function level, time directionality arises
because spatial superpositions collapse to lo-
calised states, while the opposite does not occur.
The collapse occuring in position implies energy
non-conservation.

Space translation covariance enters as follows.
Consider (in one dimension) a partition of the

real line into small enough intervals and let Âk

be the projection operators associated to the in-
tervals. The associated Kraus map Φ in Eq. (1)
is not covariant under space translations. When
applied to a generic superposition, it collapses
it and changes the spread in momentum, while
preserving its average; when the map is applied
any other time, the state does not change any-
more (here we are neglecting the Hamiltonian
dynamics). In this case diffusion does not oc-
cur, apart for the change in momentum in the
very first instance. Space translation covari-
ance requires that there are no privileged points
in space, so no privileged partition of space;
therefore no state, however localized (except for
the pathological—and unstable under the free
evolution—case of a Dirac delta), can remain
unaltered by a repeated application of the map,
because there is always the chance that it is fur-
ther localized by the action of an operator Âk

associated to an interval which does not entirely
contain the state when the map acts. This is the
source of diffusion.

We implicitly framed our theorem in a non-
relativistic setting, but we do not see any funda-
mental obstacle in extending it to a relativistic
scenario.

Conclusions. Modifying the quantum dy-
namics provided by the Schrödinger equation
is tricky and easily generates nonphysical sit-

uations. One of the most common problems
is superluminal signaling with arbitrarily high
speed; collapse models are designed to avoid
this problem. Our theorem shows why the
no-signaling constraint, together with space
translation covariance, requires that collapse
in position always comes with diffusion. For
this reason, non-interferometric experiments are
equally good as interferometric ones for testing
these models; as anticipated in the introduction,
the first type of tests are easier to perform and
have already set significantly stronger bounds
on the collapse parameters, ruling out some of
them.

The same logic applies to any open-quantum-
system dynamics: typical environments induce
decoherence in position [39] and the resulting
dynamics is space translational covariant, be-
cause most interactions depend on the rela-
tive distances among particles—all fundamental
ones do; as such they must generate also diffu-
sion. This is reflected by the Lindblad structure
of the most common master equations: when
the Lindblad operators depend on position, the
expectation value of p̂2 is not constant.

This fact has consequences, for example, re-
garding recent proposals for searching for dark
matter signals using matter-wave interferome-
ters [40–42], which are sensitive to the decoher-
ence induced by dark matter particles. Equally
well, one can propose non-interferometric exper-
iments [41], which are sensitive to the diffusion
generated by the particles; the application of
non-interferometric techniques to collapse mod-
els proved that they hold the potential of pro-
viding stronger results.
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