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We develop a first-principles quantum scheme to calculate the phonon magnetic moment in solids.
As a showcase example, we apply our method to study gated bilayer graphene, a material with
strong covalent bonds. According to the classical theory based on the Born effective charge, the
phonon magnetic moment in this system should vanish, yet our quantum mechanical calculations
find significant phonon magnetic moments. Furthermore, the magnetic moment is highly tunable
by changing the gate voltage. Our results firmly establish the necessity of the quantum mechanical
treatment, and identify small-gap covalent materials as a promising platform for studying tunable
phonon magnetic moment.

Chiral phonons, characterized by circular motions of
ions [1], have received intense recent interest due to
their roles in various quantum phenomena, including the
phonon Hall effect [2, 3], the Einstein-de Haas effect [4, 5],
valleytronics [6, 7], exciton-phonon replica [8, 9], and
magnon excitations by pumping optical phonons [10].
An important property of chiral phonons is that they
can carry an orbital magnetic moment, allowing for the
prospect of dynamic generation of magnetization even in
non-magnetic materials [11]. In fact, several experiments
have reported the observation of phonon magnetic mo-
ments [12–15]. On the theory side, Juraschek et al. have
calculated the phonon magnetic moment using the Born
effective charge of ions in circular motion [16]. This clas-
sical theory naturally points to ionic materials as the
most likely material class with large phonon magnetic
moments.

However, the classical theory does not explicitly ac-
count for the quantum nature of electrons and thus will
fail in covalent materials. To this end, Ceresoli and
Tosatti have proposed a quantum theory of rotational
g-factor in terms of the molecular Berry phase [17–19].
More recently, an alternative quantum mechanical treat-
ment based on adiabatic pumping has identified two dis-
tinct contributions to the phonon magnetic moment [20–
23]: the topological contribution, which is the quantum
extension of the classical theory and is related to the
momentum-resolved Born effective charge; and the per-
turbative contribution, which results from the adiabatic
correction to the electronic wave functions induced by
phonons. These theoretical advances raise the question
of whether phonon magnetic moment can be significant
in covalent materials, which would provide a new play-
ground for dynamic magnetization generation.

In this Letter, we develop a first-principles quantum
scheme based on finite-difference and gauge-covariant
techniques to calculate phonon magnetic moment in a
wide range of materials from very ionic to very covalent.
In these materials, we find significant difference between
the classical and the quantum theories. Within the quan-

tum theory, the perturbative contribution is as large as,
and sometimes dominates over, the topological contri-
bution. As a showcase example, we apply our method
to study gated bilayer graphene, a material with strong
covalent bonds. According to the classical theory, the
phonon magnetic moment in this system should vanish,
yet our quantum mechanical calculations find significant
phonon magnetic moments. Furthermore, the phonon
magnetic moment is highly tunable by changing the gate
voltage. Under an external out-of-plane electric field of
25 mV/Å, the magnetic moment of a chiral shear mode
can reach ∼ 0.01 µB, representing the largest phonon
magnetic moment among existing theoretical predictions.
Our results firmly establish the necessity of the quantum
mechanical treatment, and identify small-gap covalent
materials as a promising platform for studying tunable
phonon magnetic moment.
We begin with a brief review of the classical and quan-

tum theories of phonon magnetic moment. The phonon
magnetic moment includes the electron’s and nuclear
contributions. In the classical theory, the material is
treated as a collection of ions each having mass Mi, with
their charge given by the Born effective charge Zeff

i (elec-
tron plus nuclear charge). The circular motion of ions is
illustrated in Fig. 1(a). Then the total magnetic moment
(electron plus nucleus) of a phonon mode ν is written
as [16]

M clas(ν) = iℏ
∑
i

γiξ
(ν)
i × ξ

(ν)∗
i , (1)

where ξ
(ν)
i is the normalized phonon eigenvector compo-

nent of the ith ion in a phonon mode ν (
∑

i |ξ
(ν)
i |2 = 1),

and γi ≡ eZeff
i /(2Mi) is the gyromagnetic ratio. In

ionic materials, the cations and the anions have differ-
ent masses. Although they contribute opposite moments,
the net magnetic moment is nonzero. On the other hand,
small phonon magnetic moment in covalent materials is
expected according to Eq. (1).

In the quantum theory, the nuclear contribution has
the same form as the classical theory, while the electron’s
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FIG. 1. The physical pictures of phonon magnetic moments
from (a) the classical theory, and the quantum theory which
includes (b) the topological part and (c) the perturbative part.
Zeff and Zc denote the Born effective charge (electron plus
nuclear charge) and the nuclear charge, respectively. In the
classical picture, the motion of the electron and nucleus is
described by a circulating Born effective charge. In the quan-
tum picture, the motion of nuclei is classical while the motion
of electrons is described by a wave packet. In (b), the wave
packet has center-of-mass orbital motion driven by circular
motions of the nucleus. In (c), the wave packet has a self-
rotation due to a time-dependent anisotropic potential.

contribution to the phonon magnetic moment is derived
under the adiabatic condition, i.e., the phonon frequency
must be smaller than the band gap. As we mentioned
earlier, there are two contributions to the phonon mag-
netic moment. The topological contribution, denoted by
M top, can be expressed as a Chern-Simons integral in the
parameter space spanned by k and time [21]. In the limit
of small phonon displacement, one can expand M top and
write it as an integral of a second Chern form [23]. This
expression has the advantage that the integrand contains
only gauge-invariant quantities, and is therefore more
suitable for numerical implementation. For a phonon
mode ν at the Γ point, M top is given by

M top
z (ν) =

eℏ
4Nk

∑
k

∑
iδ,jγ

[
−iξ

(ν)
iδ ξ

(ν)∗
jγ + iξ

(ν)∗
iδ ξ

(ν)
jγ

]
× 1√

MiMj

TrΩ
kkujui

xyγδ

∣∣∣
R0

,

(2)

where

Ω
kkujui

xyγδ ≡ Ωkk
xyΩ

ujui

γδ +Ωkuj
yγ Ωkui

xδ − Ωkuj
xγ Ωkui

yδ (3)

is the second Chern form. In the above equations, Nk

is the number of k-grid points in the Brillouin zone,
i and j label the atoms in the unit cell, γ and δ are
Cartesian components, and the whole expression is eval-
uated with respect to the equilibrium position R0 of ions.
The central quantities are the non-Abelian Berry curva-

tures, Ωkk
xy, Ω

ujui

γδ and Ω
kuj
xγ , defined in the parameter

space of momentum k and displacement ui. For exam-

ple, Ω
kuj

xδ ≡ ∂kx
Aujδ

− ∂ujδ
Akx

− i[Akx
, Aujδ

], where Akx

is the Berry connection with its matrix element given
by Akx,mn ≡ ⟨ϕmk|i∂kx |ϕnk⟩ and |ϕnk⟩ is the periodic
part of the Bloch function of the nth band. The trace is
taken over occupied bands. The definition of other Berry
connections can be found in the Supplementary Materi-

als [24]. According to Ref. [23], the topological contri-
bution originates from the center-of-mass motion of the
electron wave packet and therefore can be regarded as a
quantum extension of the classical theory [Fig. 1(b)].
Indeed, as we show later, in the extreme ionic case M top

coincides with the value obtained from the classical the-
ory.
In addition to the topological contribution, phonons

also cause an adiabatic correction to the electronic wave
function, giving rise to a perturbative contribution,
Mpert, to the phonon magnetic moment. According to
Ref. [21]

Mpert
z (ν) =

eℏ
4
ℜ
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[
iξ
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where

F (uiδ) =
1

Nk
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k

occ∑
n
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∂uiδ
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(5)

Here, vmnk is the velocity matrix element, and “occ” and
“unocc” denote occupied and unoccupied bands, respec-
tively. Mpert originates from the self-rotation of the elec-
tron wave packet forced by the rotation of the anisotropic
potential due to chiral phonons, as schematically shown
in Fig. 1(c) [21]. Mpert has no classical counterpart.
To implement the quantum theory in first-principles

calculations, we adopt the technique of gauge-covariant
derivatives, which has proven to be robust against band
crossing [25–27]. As a result, we can use an efficient
finite-difference formula to calculate various derivatives
and matrix elements in Eq. (2) - Eq. (5). In our calcu-
lations, the Quantum Espresso package [28] is employed,
and the ionic potential is treated by the optimized norm-
conserving Vanderbilt pseudopotential (ONCVPSP) [29].
Our method can be implemented in other DFT software
packages as well, as it only needs wave functions, band
energies, and velocity matrix elements from the DFT.
Details of our numerical implementation can be found in
the Supplementary Material [24]. As a first benchmark,
we have calculated the rotational g factor of H2 molecule.
Our result (g = 0.8989) agrees well with the experimental
value (g = 0.8787) [30].
Having established the validity of our method, next we

focus on Bernal-stacked bilayer graphene, a material with
strong covalent bonds. Since the spin-orbit coupling is
negligible in graphene, there is no spin contribution to the
phonon magnetic moments [31]. An out-of-plane electric
field is applied to open a band gap larger than the phonon
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FIG. 2. (a) Electron’s Kohn-Sham band structure of bilayer graphene under an out-of-plane electric field E = 25 mV/Å.
(b) Upper: the phonon band structure of bilayer graphene without the electric field. Bottom: the vibrational illustrations of
doubly-degenerate phonon modes for the shear, symmetric and anti-symmetric modes at the Γ point (in ascending energy).
The numbers in the bracket denote the phonon frequencies. (c) Momentum resolved electron’s topological and perturbative
contributions to the magnetic moment of the chiral shear mode at E = 25 mV/Å. Mz (k) is defined at each k-point without
being divided by the number of k-points Nk. The topological and perturbative contributions to the magnetic moments in
Table I are calculated by averaging Mz (k) in the BZ. The unit of magnetic moments is µN = eℏ/2MN, where MN is the
mass of proton. (d) The first-principles Kohn-Sham self-consistent potential difference between the distorted and equilibrium
structure at E = 25 mV/Å. The left and right panels correspond to the structures where the two layers are oppositely displaced
by 0.01 Å along the x- and y-directions, respectively. The yellow and blue colors denote the positive and negative values,
respectively. The isosurface level is ± 0.05 V. Atomic positions are labeled by colored dots.

energy such that the adiabatic condition is satisfied. We
find that a dense k-point sampling is needed to converge
the self-consistent calculations and resolve the band dis-
persions near the K and K′ valleys [see Fig. 2(a)]. We
have chosen a k-space grid from 30×30×1 to 120×120×1,
depending on the electric field strength. Computational
details and convergence tests are included in Section II
of the Supplementary Materials [24].

Figure 2(b) shows the phonon spectrum and phonon
modes of bilayer graphene without an external electric
field. At the Γ point, there are three sets of doubly-
degenerate in-plane phonon modes, including the shear
(4.0 meV), the symmetric (199.2 meV), and the anti-
symmetric (199.5 meV) modes. The shear and symmet-
ric modes are Raman-active whereas the antisymmetric
mode is infrared-active. Within each degenerate pair, a
left and a right circularly-polarized phonon modes can be

constructed [32]. We will consider the magnetic moment
of a specific circular polarization. Modes with opposite
circular polarization have opposite magnetic moments.
We find that the electric field has negligible effects on
the phonon frequencies and the eigenvectors of the shear
mode. However, at large electric fields, e.g. E = 0.5
V/Å, there is a slight mixing between the eigenvectors of
the symmetric and antisymmetric modes.

We first consider the shear mode at 4.0 meV. To sat-
isfy the adiabatic condition, a small electric field of 25
mV/Å has been applied to open a band gap of 15 meV as
shown in Fig. 2(a). Figure 2(c) shows the distribution of
the topological and the perturbative contributions to the
magnetic moment along the high-symmetry line in the
Brillouin zone. Both contributions are sharply centered
around the K and K′ point and the double-peak feature is
caused by the Mexican-hat band dispersion. After sum-
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TABLE I. Comparison between phonon magnetic moments
calculated from the classical and quantum theories, Mclas =
MBorn + Mnucl and Mquan = M top + Mpert + Mnucl, where
“Born” denotes the electrons’ contribution in the classical the-
ory and “Nucl.” denotes the nuclear contribution. The unit of
magnetic moments is µN = eℏ/2MN, where MN is the mass of
proton. The numbers in the bracket denote phonon frequen-
cies in meV.

Electron Nucl. Quan. Clas.

Top. Pert. Born

Sheara 0.631 20.714 -0.333 0.333 21.678 ∼10−4

(0.025 V/Å, 4.0)

Sheara -0.286 0.119 -0.333 0.333 0.177 ∼10−4

(0.3 V/Å, 4.0)

Symm.a 0.601 -19.732 0.338 -0.333 -19.464 0.005

(0.5 V/Å, 199.2)

Anti-symm.a 1.974 5.324 0.338 -0.333 6.965 0.005

(0.5 V/Å, 199.5)

Si (63.5) 0.004 -0.022 0.143 -0.142 -0.160 ∼ 10−4

Blue Pb (52.4) 0.016 -0.024 0.169 -0.169 -0.177 ∼ 10−6

MoSb
2 (46.4) 0.171 -0.137 0.168 -0.171 -0.137 -0.002

CsH (43.1) -2.096 0.860 -2.096 0.985 -0.251 -1.111

abilayer graphene; bmonolayer

ming over both contributions over the Brillouin zone, we
obtain the result from the quantum theory as shown in
Table I. The total magnetic moment of the shear mode
is 21.678 µN (∼ 0.012 µB), where µN and µB are nuclear
magneton and Bohr magneton, respectively. This is in
fact the largest value among existing theoretical predic-
tions of phonon magnetic moment. We also note that
the perturbative contribution dominates over the topo-
logical contribution. In comparison, we have also calcu-
lated the phonon magnetic moment using the classical
theory. The Born effective charge becomes finite upon
applying an electric field; however, the classical phonon
magnetic moment still vanishes because the four carbon
atoms have the same radii of the circular motion and the
summation of Born effective charges of the four carbon
atoms is zero.

To gain a more intuitive understanding of the mag-
netic moment, in Fig. 2(d) we plot the difference of
the Kohn-Sham self-consistent potential between the dis-
torted (move the first layers by 0.01 Å along the x or y
direction) and the equilibrium structure. It can be seen
that the differential potential becomes highly anisotropic
in response to the displacement. When the two lay-
ers shift against each other in a circular motion as in
the chiral shear mode, the resulting potential variation
has two effects. First, because the potential minimum
changes, the electron wave packet will adjust its center-
of-mass position to follow the ions, which corresponds to
the topological contribution [21, 23]. Second, the poten-

FIG. 3. The electric-field dependence of the perturbative (red
circles, left axis) and the topological (blue squares, right axis)
contributions of the magnetic moment for the shear mode.
Lines are guides to the eye. Inset: the electric-field depen-
dence of band gap from DFT-LDA calculations.

tial distribution is anisotropic as can be seen by com-
paring the potential shapes along the x and y directions.
This will cause a self-rotation of the electron wave packet
and give rise to a magnetic moment [21]. This scenario
corresponds to the perturbative contribution.

The phonon magnetic moment can be tuned by chang-
ing the electric field, although the phonon modes remain
virtually unchanged. Figure 3 shows the field dependence
of the topological and perturbative contributions to the
magnetic moment of the shear mode. In our calculations,
the electric field is in the experimentally accessible range
of 25 to 300 mV/Å, leading to band gaps from 15 meV
to 180 meV (see the inset of Fig. 3). As the electric
field increases, the topological contribution changes sign
due to gate-induced changes of Berry curvature distribu-
tion in the BZ [24]. On the other hand, the perturbative
contribution is, approximately, inversely proportional to
the band gap squared [see Eq. (5)], and therefore con-
tinuously drops to zero at large electric fields. Another
feature of the phonon magnetic moments is that they
are independent of the direction of the out-of-plane elec-
tric field. This is because, under inversion operation, the
electric field flips sign, whereas the phonon modes and
angular momenta are invariant.

In addition to the shear mode, we have also calculated
the phonon magnetic moment of the symmetric (199.2
meV) and the antisymmetric (199.5 meV) modes. To
satisfy the adiabatic condition, we have applied an elec-
tric field of E = 0.5 V/Å, which opens a band gap of 240
meV. We find the magnetic moment of the symmetric
mode is −19.464 µN (∼ −0.011 µB), and the magnetic
moment of the anti-symmetric mode is 6.965 µN (∼0.004
µB) [Table I]. Note that since the DFT-LDA usually
underestimates the band gap, in experiments an electric
field of 0.3 V/Å is sufficient to satisfy the adiabatic con-
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dition [33].

Our newly developed numerical method allows us to
calculate the phonon magnetic moments for a wide range
of materials listed in Table I. We begin with the extreme
covalent materials, namely, bulk silicon and monolayer
blue phosphorus. The Born effective charges in both ma-
terials are zero, but the quantum theory predicts non-
zero phonon magnetic moments [34]. Moving on to mono-
layer MoS2, we see that the topological contribution is
getting closer to the result based on the electron’s Born
effective charge, and nearly cancels the nuclear contribu-
tion. As a result, the total phonon magnetic moment is
mostly given by perturbative contribution. This feature
is entirely missing from the classical theory. Finally, in
the extreme ionic case, e.g., CsH, the topological con-
tribution becomes significant and identical to that from
Born effective charge. However, the perturbative contri-
bution still accounts for a sizable part of the total phonon
magnetic moment. These results clearly demonstrate the
necessity of using the quantum theory to calculate the
phonon magnetic moment.

In summary, we have developed a first-principles
scheme to implement the quantum theory of phonon
magnetic moment for realistic materials. We find that
the phonon magnetic moment can be significant in small-
gap covalent materials, where the classical theory based
on the Born effective charge fails completely. In partic-
ular, bilayer graphene serves as an ideal platform to test
the current adiabatic theory. The shear modes in our
calculation are Raman active, and their magnetic mo-
ments can be detected by Raman scattering under mag-
netic fields [35, 36]. Our findings can also be extended
to trilayer graphene, where the shear modes are infrared
active. Their magnetic moments can be measured by
the adsorption of THz light under magnetic fields [12].
Intense THz light can also be used to generate coher-
ent chiral phonons for the manipulation of the magnetic
properties of trilayer graphene dynamically [15, 37]. The
boundary current from the dynamically induced magne-
tization is detectable by the NV center-based quantum
sensor [38]. Our results predict a new class of materials
to realize tunable phonon magnetic moment and call for
more experimental investigations.
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