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We investigate prospects of employing the linear cross entropy to experimentally access measurement-
induced phase transitions (MIPT) without requiring any postselection of quantum trajectories. For two random
circuits that are identical in the bulk but with different initial states, the linear cross entropy χ between the bulk
measurement outcome distributions in the two circuits acts as an order parameter, and can be used to distin-
guish the volume law from area law phases. In the volume law phase (and in the thermodynamic limit) the
bulk measurements cannot distinguish between the two different initial states, and χ = 1. In the area law phase
χ < 1. For circuits with Clifford gates, we provide numerical evidence that χ can be sampled to accuracy ε
from O(1/ε2) trajectories, by running the first circuit on a quantum simulator without postselection, aided by a
classical simulation of the second. We also find that for weak depolarizing noise the signature of the MIPT is
still present for intermediate system sizes. In our protocol we have the freedom of choosing initial states such
that the “classical” side can be simulated efficiently, while simulating the “quantum” side is still classically hard.

Introduction. — Open quantum dynamics can host a rich
phenomenology, including a family of measurement-induced
phase transitions (MIPT) in the scaling of entanglement along
quantum trajectories in monitored systems [1–7]. The MIPT
is a basic phenomenon in many-body quantum dynamics and
occurs generically in a number of different models [8–26],
yet its experimental observation can be challenging even on
an error-corrected quantum computer, due to the so-called
“postselection problem”. Quantum trajectories are labeled by
the measurement history m, whose length is extensive in the
space-time volume V of the circuit; thus, the number of possi-
ble trajectories m is exponential in V , but they each occur with
roughly the same probability. On the other hand, one needs
multiple copies of the same m in order to verify any quantum
entanglement; and then many different m to perform a proper
statistical average. On a quantum simulator there is no gen-
eral recipe for producing such copies other than running the
quantum circuit many times and waiting until the measure-
ment results coincide (“postselection”). Naively, O(eV ) runs
of the circuit are required, thus severely restricting the scala-
bility of such experiments. Nevertheless, in an impressive re-
cent experiment that carries out postselection [27], the MIPT
is observed on small scale superconducting quantum proces-
sors.

The exponential postselection overhead has previously
been shown to be avoidable in two cases. First, when only
Clifford circuits are considered, the entanglement can be ver-
ified by “decoding” the circuit, either through a full classical
simulation within the stabilizer formalism [28] or via machine
learning [29]. With machine learning the authors claim that
“decoding” is possbile also beyond Clifford circuits, although
this has yet to be explored in detail. Second, when the non-
unitary (monitored) dynamics is a spacetime dual of a unitary
one [30–32], postselection is partially ameliorated, and corre-
spondences between unitary dynamics and monitored dynam-
ics can be made.

Here we propose a resource efficient experimental proto-

col for verifying the MIPT in random circuits, by estimating
the “linear cross entropy” (denoted χ) between the probabil-
ity distribution of (bulk circuit) measurement outcomes m in
two circuits with the same bulk but different initial states, ρ
and σ. Closely related quantities have been discussed pre-
viously [33]. In particular, as we establish both numerically
and analytically, in the thermodynamic limit the linear cross
entropy (when suitably normalized) is 1 in the volume law
phase, and equals a nonuniversal constant smaller than 1 in
the area law phase. Thus, the MIPT can also be viewed as a
phase transition in the distinguishability of two initial states,
when the bulk measurement outcomes are given. In particu-
lar, the two initial states become essentially indistinguishable
when measurements are below a critical density.

The definition of χ includes contributions from all samples
of m, and to estimate χ no postselection is involved. However,
as we discuss below, estimating χ usually requires an expo-
nentially long classical simulation, thus not scalable. Below,
we show that when the classical simulation becomes scalable
in Clifford circuits, χ can be efficiently sampled by running
the ρ-circuit on a quantum simulator, aided by a classical sim-
ulation of the σ-circuit. We provide numerical evidence that
χ is an order parameter for the MIPT (i.e. χ = 1 in the volume
law phase and χ < 1 in the area law phase).

By choosing the circuit bulk to be composed of Clifford op-
erations and σ to be a stabilizer state, the protocol is scalable
on both the quantum and the classical sides. Nevertheless,
unless ρ is also a stabilizer state, the ρ-circuit output state is
still highly nontrivial and hard to represent classically. More
broadly, our protocol represents a general – although not al-
ways scalable – approach for experimental observations of
measurement-induced physics that does not reduce the quan-
tum simulation to a mere confirmation of a classical computa-
tion, see recent examples in Refs. [34–37].

In [38] we consider one nontrivial aspect of the output state
in the volume law phase when the ρ-circuit is not efficiently
classically simulable, namely the bistring distribution when
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FIG. 1. The layout of the hybrid circuit considered in this paper.
Different from the usual setup [9], we have an additional “encoding”
stage before the hybrid evolution for time tencoding = 2L, following
Ref. [5]. We call the evolution after the encoding stage the “circuit
bulk”, which lasts for another tbulk = 2L. The total circuit time is
T = tencoding + tbulk = 4L. We will compare two different initial states
ρ andσ (left unspecified for the moment) undergoing the same circuit
evolution.

all qubits are measured, and found qualitative differences from
the Porter-Thomas distribution.

Linear cross entropy and order parameter. — We con-
sider the “hybrid” circuit shown in Fig. 1, composed of uni-
tary gates on nearest-neighbor qubits arranged in a brickwall
structure, and single-site measurements in the bulk, performed
with probability p at each qubit within each time step. By con-
vention, each time step contains L/2 unitary gates. Different
from the usual setup [9], we have an additional “encoding”
stage before the hybrid evolution for time tencoding = 2L, fol-
lowing Refs. [5, 39]. The reason for this somewhat unusual
choice is practical, to get a clearer experimental signal of the
MIPT [38]. We call the evolution after the encoding stage the
“circuit bulk”, which lasts for another tbulk = 2L. The total
circuit time is T = tencoding + tbulk = 4L.

For concreteness, we take all the measurements to be in the
Pauli Z basis. Given a circuit layout (as determined by the
brickwork structure and the location of measurements) and
the unitary gates in the bulk – which we denote collectively
as C – the unnormalized output state is defined by C and the
measurement record m = {m1,m2, . . . ,mN} as

ρm = CmρC†m, (1)

where ρ is the initial state of the circuit, and Cm is the time-
ordered product of all the unitaries and projectors in the cir-
cuit, written schematically as

Cm = PmN PmN−1 . . . PmN−NT +1 · UT

· PmN−NT
. . . PmN−NT −NT−1+1 · UT−1

· PmN−NT −NT−1
. . . PmN−NT −NT−1−NT−2+1 · UT−2

. . . (2)

Here each line contains all quantum operations in one circuit
time step, and N is the total number of measurements, which

is proportional to the spacetime volume of the circuit, N ∝
pV = pLT . The corresponding probability of obtaining m is
given by

pρm = tr ρm. (3)

We define similar quantities for a different initial state σ,

σm = CmσC†m, (4)
pσm = trσm. (5)

With these, we define the (normalized) linear cross entropy of
the circuit between the two initial states as

χC =

∑
m pρm pσm∑
m (pσm)2 . (6)

Here, for fixed choices of ρ and σ, after averaging over m,
χC only depends on the circuit C, and we have explicitly in-
cluded this dependence in our notation (while keeping the de-
pendence on ρ and σ implicit). Finally, we take its average
over C,

χ B ECχC = EC

∑
m pρm pσm∑
m (pσm)2 . (7)

It was previously pointed out [7] that a quantity closely re-
lated to − ln χ corresponds to the free energy cost after fixing a
boundary condition in a (replicated) spin model [6, 7, 40, 41];
in [38], we provide a similar calculation for our circuit. From
this derivation we expect 1 − χ = e−O(L) for large L in the vol-
ume law phase (p < pc), and 1 − χ > 0 in the area law phase
(p > pc), even as L→ ∞.

The physical meaning of χ is clear: it quantifies the differ-
ence between the probability distributions over measurement
histories for the two initial states. In the volume law phase,
χ = 1 implies the impossibility of distinguishing different ini-
tial states from bulk measurements, due to the “coding” prop-
erties of this phase (i.e. the dynamics in the volume law phase
generates a “dynamical quantum memory” [4, 5, 42–45]). In-
tuitively, in the volume law phase, local measurements are
so infrequent that it extracts little information about the ini-
tal state, as the information is sufficiently scrambled by the
random unitaries. The code breaks down when p is increased
past the transition, and χ saturates to a finite, nonuniversal
constant strictly smaller than 1. In this phase, information
about the initial state leaks into the measurement outcomes.

We now outline a protocol for estimating χ, which is simi-
lar to the linear cross entropy benchmark (“linear XEB”) for
random unitary circuits [46, 47]. Then we discuss its limita-
tions when applied to the MIPT and how to overcome them in
case of a stabilizer circuit.

General setup.— Consider running the circuit with initial
state ρ (“the ρ-circuit”) on a quantum simulator. From the
simulation we obtain a measurement record m, an event that
occurs with probability pρm. Given m we can perform a clas-
sical simulation with the initial state σ, and calculate the cor-
responding probablity pσm. Repeating this M times, we obtain
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FIG. 2. (a) Numerical results for χC when averaged over 300 Clifford circuits in the bulk (denoted by EC), with the initial states ρ = 1
2L 1 and

σ = (|0⟩ ⟨0|)⊗L. Here, for each C, the calculation is exact, and M can be thought of as infinity in Eq. (11). (Inset) Collapsing the data to a scaling
form, with parameters pc and ν close to those found near the MIPT in entanglement entropy [3, 9]. (b,c) The bahavior of χ when depolarizing
noise is present in the ρ-circuit. As we see, at noise rate q = 0.1% (b), there is still evidence for a phase transition, although the location of
the transition has shifted from pc ≈ 0.16 to pc ≈ 0.14. At noise rate 1% (c), there is no crossing, and any signature of the phase transition is
completely washed out. (d, e) The convergence of the sample average µMC = (MC)−1∑MC

j=1 χC j to χ = ECχC with increasing number of circuit

samples MC . For each of L ∈ {64, 128}, we plot σ2
MC
= E
[(
µMC − χ

)2]
for MC ≤ 500, whereas χ is estimated using MC = 2000 circuits. The

results are consistent with the central limit theorem, see Eq. (12). From this plot we see that sample variance is suppressed by large L when
p < pc, and is independent of L when p ≥ pc. This justifies our choice of a relatively small MC that is independent of the system size.

a sequence of probabilities {pσm1
, pσm2
, . . . pσmM

}. Their mean
converges to the numerator of Eq. (6),

lim
M→∞

〈
pσmM

j=1

〉
ρ
B lim

M→∞

1
M

M∑
j=1

pσm j
=
∑

m
pρm pσm. (8)

The denominator of Eq. (6) can be estimated similarly with
a separate classical simulation, by running the σ-circuit M′

times, and computing the mean of probabilities {pσm j
}. This

way we get

lim
M′→∞

〈
pσmM′

j=1

〉
σ
B lim

M′→∞

1
M′

M′∑
j=1

pσm j
=
∑

m

(
pσm
)2 . (9)

Both equations above are well-defined, and in this protocol
each run of the circuit is used, so no postselection is re-
quired. This should lead to a general protocol for experimen-
tally probe MIPTs, although a full classical simulation is still
necessary, and the experimentally accessible system size will
be limited by the power of classical simulation.

To obtain a scalable protocol, we first focus on the case
where σ is a stabilizer state, and the circuit bulk Cm is com-
posed of stabilizer operations (Clifford gates and Pauli mea-
surements) [48–50]. At this point we do not put constraint on
ρ. In this special case, the denominator of Eq. (6) can be com-
puted exactly in polynomial time, without doing any sampling
as in Eq. (9) [38]. Thus, we may rewrite Eq. (6) as

χC =
∑

m
pρm

pσm∑
m (pσm)2 , (10)

and in analogy with Eq. (8),

χC = lim
M→∞

〈 pσmM
j=1∑

m (pσm)2

〉
ρ

. (11)

For each run of the ρ-circuit, we obtain the measurement

record m j and compute
pσm j∑

m(pσm)2 in polynomial time, and take
its mean over runs. Since the circuit is Clifford, the new “ob-
servable”

pσm j∑
m(pσm)2 is either 0 or 1 for a given m [38], and this

average converges quickly with increasing M. In particular,
since this is a binary random variable, the variance of the sam-
ples should decay as M−1/2 for a given C. Thus, for a fixed
circuit M scales as 1/ε2, where ε is the error of the estimation
of χC . We also see that χC is always bounded between 0 and
1. This is a property special to Clifford circuits.

Numerical methods and results. — We first take ρ to be a
stabilizer state, while keeping σ another stabilizer state. As
we explain in [38] now χC in Eq. (10) admits a closed form
expression that does not involve any summation over m. This
allows an exact calculation of χC without the need of perform-
ing any sampling, at the cost of introducing N extra qubits
that record the measurement history. These qubits are usually
called “registers”.

A further simplification occurs when ρ is obtainable from
σ via erasure or dephasing channels, so that the N register
qubits can also be dispensed with [38]. We will focus on this
case below, where the numerical simulation is most scalable
so that we can confidently extrapolate the results to more gen-
eral choices of ρ.

In Fig. 2(a), we plot χ = ECχC for ρ = 1
2L 1 and σ =

(|0⟩ ⟨0|)⊗L, which satisfies the condition above. The data
shows a clear “crossing” of χ near the transition, confirming
our expectation that χ is an order parameter for the MIPT. In-
deed, in the large L limit and for p < pc, χ approaches unity,
demonstrating that the distributions of measurement outcomes
become equal, independent of the initial state. Moreover, data
collapse in Fig. 2(d) shows good agreement to a standard scal-
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ing form, with numerical values of the location of the transi-
tion pc and of the critical exponent ν close to previous charac-
terizations of the MIPT [9].

An important practical parameter is the number MC[51] of
circuit samples needed to estimate χ within a given accuracy,
in particular their scaling with the system size. By the central
limit theorem, given independent samples {CMC

j=1}, the sample

average µMC =
1

MC

∑MC
j=1 χC j converges to χ at large MC as

follows,

σ2
MC
= E
[(
µMC − χ

)2]
∝ (MC)−1, (12)

with an overall amplitude that converges to the variance of χC ,
σ2[χC] B EC[χ2

C]−(EC[χC])2. In Fig. 2(d,e) we compute σ2
MC

numerically at two different system sizes L and at different lo-
cations of the phase diagram. Our results confirm Eq. (12),
and by fitting the overall amplitude we find that σ2[χC] is sup-
pressed by large L in the volume law phase p < pc (as consis-
tent with χ → 1), and saturates to an L-independent constant
(≈ 0.1) for p ≥ pc. Together with our previous discussion
on M (number of runs per circuit C), these results justify our
choices of relatively small MC and M that are independent of
system sizes, see Fig. 2 and Fig. 3 (a) below.

We also consider the effect of depolarizing noise, occuring
randomly in the ρ-circuit with probability q per qubit per time
step; whereas the σ-circuit is still taken to be noiseless. The
setup is to mimic an experimental sampling procedure, where
we run the ρ-circuit on a quantum processor subject to noise,
whereas our supplemental classical simulation of the σ-circuit
is noiseless. The depolarizing noise acts as a symmetry-
breaking field in the effective spin model [6, 7, 30, 31, 52–
54],[55] and in its presence the MIPT is no longer sharply
defined. Nevertheless, evidence of the MIPT may still be
observable if the error rate is small compared to the inverse
spacetime volume of the circuit, as we see in Fig. 2(b,c).

Next, we take ρ to be a non-stabilizer state, and σ to be a
stabilizer state. In particular, we choose a state with |0⟩ and
|T ⟩ on alternating sites, ρ =

⊗L/2
i=1 (|0⟩ ⟨0|2i−1⊗|T ⟩ ⟨T |2i),where

|T ⟩ = 1
√

2

(
|0⟩ + eiπ/4 |1⟩

)
is a magic state. We still take the

other initial state to be σ = (|0⟩ ⟨0|)⊗L.
Based on our calculations [38], we expect χC to exhibit sim-

ilar behavior as in Fig. 2. This is confirmed in Fig. 3(a), where
we follow the sampling procedure in Eq. (11). In particular,
for a given C, we take L ∈ {8, 12, 16}, and sample M = 100

measurement trajectories, and compute
〈 pσ

mM
j=1∑

m(pσm)2

〉
ρ

≈ χC .

We then take the average over many different choices of C,

namely EC

〈 pσ
mM

j=1∑
m(pσm)2

〉
ρ

≈ ECχC . We observe a crossing of χ at

roughly the same value of pc in Fig. 2(a). The system sizes
that we accessed are limited by classical simulations of the ρ-
circuit [56], but we hope larger system sizes can be achieved
on near-term quantum processors.

Finally, to test the validity of our approach beyond Clifford
circuits, we calculate χ in circuits with random Haar unitary
gates, for ρ = (|+⟩ ⟨+|)⊗L and σ = (|0⟩ ⟨0|)⊗L. Here we have to

FIG. 3. (a) Numerical results of χ for initial states ρ =⊗L/2
i=1 (|0⟩ ⟨0|2i−1⊗|T ⟩ ⟨T |2i) and σ = (|0⟩ ⟨0|)⊗L obtained from random

Clifford circuits. Here, MC = 300 circuit realizations are taken for
each L, and for each circuit, we use M = 100 runs to estimate χC , fol-
lowing Eq. (11). Compared to Fig. 2(a), the results are qualitatively
similar, despite a different choice of initial state and smaller system
sizes. (b) Numerical results of χ for initial states ρ = (|+⟩ ⟨+|)⊗L and
σ = (|0⟩ ⟨0|)⊗L obtained from random Haar circuits. Here, MC = 150
circuit realizations are taken for each L, and for each circuit we esti-
mate Eq. (8) and Eq. (9) separately, using M = 3200 runs each.

estimate the normalization of χC (see Eqs. (6, 9)) separately.
To obtain plots with comparable accuracy as those from Clif-
ford circuits, the number of runs per circuit needs to be at least
an order of magnitude larger (for system sizes up to L = 16),
due to the additional numerical uncertainty in the normaliza-
tion. Our results are shown in Fig. 3(b), with an overall trend
consistent with a phase transition.

Discussions. — Our protocol requires a simulation of many
instances of the random hybrid circuit with mid-circuit mea-
surements, and for each instance O(1/ε2) trajectories to esti-
mate the cross entropy to accuracy ε. This should be a task of
similar complexity to Google’s simulation of random unitary
circuits [47], except that here we do not make measurements
on the output state but in the bulk. However, different from
that experiment, for observing the MIPT it suffices to focus
on Clifford circuits, for which the classical simulation is not
hard. This protocol is thus as scalable as the quantum proces-
sors. Our protocol does not require extra quantum operations,
and is flexible in the choice of the initial state. The signal for
the phase transition persists at L = 40 for sufficiently weak
(≈ 0.1%) depolarizing noise. Thus, we hope this protocol
might be achievable on existing or near-term devices.

If the circuit is not composed of Clifford gates, our pro-
tocol is expected to require exponential classical resources.
It is presently unclear whether it is in fact possible to
probe the MIPT beyond Clifford circuits with polynomial re-
sources [29].

Although the classical simulation is chosen to be easy for
practical purposes, in our protocol the quantum simulation is
classically hard for a generic choice of the initial state, which
would result in a highly nontrivial output state. Our numerical
results in [38] suggest that sampling measurement outcomes
on the output state of the quantum simulation is classically
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hard in the volume law phase. Whether this can be used in
practice for demonstrating quantum advantage is not known,
due to apparent need of postselection in order to sample from
this distribution.
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