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We study flat bands and their topology in 2D materials with quadratic band crossing points
(QBCPs) under periodic strain. In contrast to Dirac points in graphene, where strain acts as a
vector potential, strain for QBCPs serves as a director potential with angular momentum ℓ = 2.
We prove that when the strengths of the strain fields hit certain “magic" values, exact flat bands
with C = ±1 emerge at charge neutrality point in the chiral limit, in strong analogy to magic
angle twisted bilayer graphene. These flat bands have ideal quantum geometry for the realization of
fractional Chern insulators, and they are always fragile topological. The number of flat bands can
be doubled for certain point group, and the interacting Hamiltonian is exactly solvable at integer
fillings. We further demonstrate the stability of these flat bands against deviations from the chiral
limit, and discuss possible realization in 2D materials.

Introduction.– Electronic band structures of 2D materials
can be controlled and designed by manipulating super-
lattice structures. One well-known example is twisted
bilayer graphene (TBG), where interference between the
two layers makes the band structure angle dependent.
Remarkably, at some “magic angles”, isolated nearly flat
topological bands arise [1–3], which become exactly flat
in the chiral limit [4], and similar flat bands may arise in
other twisted-bilayer systems as well, such as quadratic
band crossing point (QBCP) bilayers [5, 6]. This prop-
erty of twisted bilayers makes them an exciting plat-
form for studying strongly correlated phenomena such
as unconventional superconductivity and correlated in-
sulators [7–31]. In single layer moiré systems, exciting
progress towards similar interference has been achieved
via spatially varying electrostatic field, magnetic field,
and elastic strain field [32–43]. However, for these sys-
tems, it was recently argued [41] that (without a constant
background magnetic field) exact flat bands cannot be
achieved even in the chiral limit.

In this Letter, we study single layer systems with
QBCPs under periodic strains. In contrast to Dirac
points in graphene, where strain serves as a vector poten-
tial via minimal coupling i∂ → i∂ + A [44], for QBCPs
at time-reversal invariant momenta, such gauge-field-like
couplings are prohibited by the time-reversal symmetry.
Because i∂ and strain fields have opposite parity un-
der time reversal, the couplings allowed by symmetry for
QBCPs take the form of ∂∂ → ∂∂ + A, where A is pro-
portional to the strain field. In other words, the strain
fields here provide a director potential with angular mo-
mentum ℓ = 2, instead of a vector with ℓ = 1.

Remarkably, we find that this strain-field coupling in-
duces exact flat bands, in strong analogy to TBG. Here,
instead of controlling the twisting angle, we vary the
strength of the strain field. In the chiral limit, exact flat
bands are obtained as the strength of the strain field hits
certain “magic" values, and the flat bands carry Chern

numbers C = ±1. Away from the chiral limit, these
magic flat bands survive in a wide range of phase space,
although their bandwidth is no longer exactly zero. We
prove analytically that these exact flat bands are pro-
tected by the same mathematical principles as magic flat
bands in TBG, and thus in analogy to TBG, they are
fragile topological bands and their quantum metric sat-
isfy the trace condition. In addition, we find that their
Berry curvature distributions are more uniform than the
TBG flat bands, making them ideal for the realization of
fractional Chern insulators [45–51].

Despite these similarities, it is also worth highlighting
that these strain-induced flat bands are due to a very dif-
ferent physical mechanism, and thus they exhibit some
unique physical properties, sharply distinct from TBG.
For example, these strain-induced flat bands can arise at
the Γ valley and only need a single layer, while twisted-
bilayer magic flat bands require a finite wave vector away
from Γ [52] and interference between two layers. Sec-
ondly, twisted bilayer magic flat bands arise for various
dispersion, e.g., Dirac and QBCP [5], while the strain-
induced magic flat bands can only emerge from QBCPs.
QBCP, strain field and director potential.– Without re-
quiring fine tuning, a stable QBCP can only arise at
time-reversal (T ) invariant momenta (Tk = −k) with
proper rotational symmetry [53], where T and rotational
symmetries protect the QBCP from being gapped out or
splitting into Dirac points [53–55]. Here we will focus on
a QBCP with T and 3- or 6-fold rotational symmetry,
e.g., the Γ point of a kagome metal. Up to a change of
basis, the Hamiltonian near Γ takes the following form

HΓ = −t0a2
(
c0k

2
1− (k2x − k2y)σx − 2kxkyσy

)
, (1)

where 1, σx, σy represent the 2 × 2 identity and Pauli
matrices respectively, and k = |k|. Without loss of gen-
erality, we set t0 = 1 and a = 1. Here, c0 determines
the average effective mass of the two bands. At c0 = 0,
a chiral symmetry emerges, {H,σz} = 0, and thus the
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FIG. 1. Exact flat bands from a QBCP under periodic
strain. (a) Schematic of a kagome lattice, which has a
QBCP at Γ. (b) The band structure of a QBCP [Eq. (1)]
at c0 = 0, 0.5, 1, 1.5, where c0 = 0 is the chiral limit. (c-e)
Band structures in the chiral limit under strain Ã [Eq. 3 at
ϕ = 0] at different critical values of α̃ = α/(|Gm|a) along the
high symmetry path in the Moiré Brillouin zone shown in (f).
There are two exact flat bands at E = 0 in each case. (g,h)
Bandwidth Ew and bandgap Eg as a function of α̃, respec-
tively. The bandwidth is exactly zero at the critical values of
α̃. The minima of the bandwidth occur at the same values of
α̃ as the maxima of the bandgap. (i) Table of the values of
∆α̃ = α̃i+1 − α̃i.

dispersion of the two bands is symmetric around E = 0.
A nonzero c0 breaks the chiral symmetry with disper-
sion similar to a kagome metal (Fig. 1(b)). The special
case of c0 = ±1 generates a flat band, as in the nearest-
neighbor-hopping kagome lattice [Fig. 1(a), also Supple-
mental material (SM) [56]].

Under a slowly varying strain field uij(r), the Hamil-
tonian becomes

H(r) = HΓ +AI(r)1+Ax(r)σx +Ay(r)σy,

=

(
4c0∂z∂z̄ +AI 4∂2z + Ã

4∂2z̄ + Ã∗ 4c0∂z∂z̄ +AI

)
, (2)

where AI ∝ uxx + uyy describes bulk deformation, and
Ax ∝ uxx − uyy and Ay ∝ uxy describe shear defor-
mations. Here we introduce complex coordinates and
strains z = x + iy and Ã = Ax − iAy. Here, Ã couples
to (kx − iky)

2, which is a director with angular momen-
tum ℓ = 2. This director potential is the key reason why
periodic strain can induce magic flat bands for QBCPs.
In SM [56], we demonstrate a specific example using a
kagome lattice tight-binding model to explicitly derive
this Hamiltonian and the director potential coupling.
C3v symmetric and the chiral limit.– We start from the
chiral limit c0 = AI = 0 and show that periodic strains
lead to exact flat bands. A real physical system in gen-
eral deviates from this ideal limit, but as is shown below,
as long as such deviation is not too severe, magic flat
bands still remain. Before studying this chiral limit, it
is worth commenting on how to achieve this limit. To
make c0 close to zero, we need to use materials where
the two bands near a QBCP have opposite effective mass
(e.g., GaCu3(OH)6Cl2 [57]). To make AI << Ax or Ay,
it simply requires to use 2D materials with a bulk modu-
lus (B) larger than the shear modulus (G), so that shear
deformations (Ax and Ay) have lower energy cost than
bulk deformation (AI). In typical materials, this condi-
tion B > G is naturally satisfied, unless the material is
auxetic, i.e., has negative Poisson ratio.

In the chiral limit, we apply a periodic strain with C3v

symmetry. Such strain fields can be categorized into two
classes depending on whether the mirror plane is paral-
lel or perpendicular to the reciprocal lattice vector Gm.
The first category (parallel) includes space groups p3m1
and p6mm, while the latter (perpendicular) gives p31m.
Here we will focus on the first category. Within the first
harmonic approximation, the strain can be written as

Ã(r) = t0
α2

2

3∑
n=1

ωn−1 cos (Gm
n · r+ ϕ) , (3)

where α2 > 0 is the strength of the strain, ϕ is an ar-
bitrary phase and ω = exp(2πi/3). Gm

1 = 4π√
3am

(0, 1),
Gm

2,3 = 4π√
3am

(∓
√
3/2,−1/2) are the reciprocal lattice

vectors. The second category has similar exact flat bands
(see SM [56]) and its strain field is

Ã(r) = ±t0α2
3∑

n=1

ωn−1 exp (iGm
n · r) . (4)

Exact flat bands at ϕ = 0.–We start by considering a spe-
cial case with ϕ = 0 in Eq. (3), where the system exhibits
a higher rotational symmetry C6v. As shown in Fig. 1(c-
e), two exactly flat bands with E = 0 arise at critical
values of α (the square root of the strain strength). We
define a dimensionless parameter α̃ = α/(|Gm|a) ,which
fully controls the physics of the system. These critical α̃’s
are roughly equally spaced ∆α̃ ≈ 1.39 [Fig. 1(g, i)], and
they also maximize the band gap that separates these two
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FIG. 2. (a) The plot of ln(1/|ψΓ(r)|) at the critical value
α̃ ≈ 0.79 for Ã in Eq. (3) with ϕ = 0. The spikes imply that
ψΓ(r) has zeros at r = n1a

m
1 + n2a

m
2 , n1, n2 ∈ Z. Here, am

1

and am
2 are the lattice vectors of superlattice. (b) Contour

plot of 2|Ã(r)|
α2 .

flat bands from others [Fig. 1(h)]. In analogy to TBG in
the chiral limit [4, 41], these critical strains and exact
flat bands can be analytically proved, and their Bloch
wavefunctions can be analytically constructed. We start
from the Γ point. Because the strain preserves T and
C3 symmetry, the two-fold degeneracy of the QBCP re-
mains. In the chiral limit, the energy of these two de-
generate states must remain at E = 0, and their wave-
functions can be obtained from the Hamiltonian Eq. (2):
ΨΓ,1(r) = {ψΓ(r), 0} and ΨΓ,2(r) = {0, ψ∗

Γ(r)}, where
ψΓ(r) is a periodic function of the superlattice and obeys
(4∂2z̄ + Ã∗)ψΓ(r) = 0. ΨΓ,1 and ΨΓ,2 are related with
each other via time-reversal, T = σxK, where K is the
complex conjugation.

If there are exact flat bands at E = 0, the eigenfunc-
tions can be written as {ψk(r), 0} and {0, ψ∗

−k(r)} with
(4∂2z̄ + Ã∗)ψk(r) = 0. Since the kinetic part of D†(r) is
antiholomorphic, we can construct a trial wave-function
ψk(r) = fk(z)ψΓ(r). The fk(z) needs to satisfy Bloch
periodicity (translation by a superlattice vector am gives
a phase shift of eik·a

m

). However, from Liouville’s theo-
rem, such fk(z) must have poles, making ψk(r) divergent.
To avoid such singularity, ψΓ(r) needs to have a zero that
cancels the pole of fk(z). As shown in Fig. 2(a), at the
magic values of α̃i, ψΓ(0) = 0. Hence, we have

Ψk,1(r) =

[
ψk(r)
0

]
,Ψk,2(r) =

[
0

ψ∗
−k(r)

]
,

ψk(r) =
ϑ k·am1

2π − 1
2 ,

1
2−

k·am2
2π

( z
a1
, ω)

ϑ− 1
2 ,

1
2
( z
a1
, ω)

ψΓ(r),

(5)

where ϑa,b(z, τ) is the theta function of rational charac-
teristic [58], ami are lattice vectors (am1 = am(1, 0), am2 =
am(−1,

√
3)/2) of the superlattice, ai = (ami )x + i(ami )y.

As shown in the SM [56], these wavefunctions give two
exact flat bands with E = 0.

In analogy to the Chern basis in TBGs [59], because
these two flat bands only involve holomorphic or antiholo-
morphic functions, they have Chern number ±1. Same
as Landau levels, their Fubini-Study metric g(k) satisfies
the trace condition tr(g(k)) = |Fxy(k)| [46–51], where

Fxy(k) is the Berry curvature (see SM. Sec. III [56]). In
SM Fig. S1 [56], the distributions of the Berry curva-
ture in k-space are shown for the first three critical α̃,
which we found to be quite uniform. To quantify the
non-uniformity of Berry curvature, we measure the ratio
between the root-mean-square deviation of the Berry cur-
vature and its average value ∆Fxy/F̄xy [45]. The smallest
value (most uniform distribution) is found at the second
critical α̃ with ∆Fxy/F̄xy ≈ 0.027, much smaller than
the reported values in TBG flatbands [47]. Ideal quan-
tum metric and very uniform Berry curvature make this
system an ideal candidate for realizing fractional Chern
insulators [45–51].
Generic ϕ, double zeros and 4-fold flat bands.- In addition
to ϕ = 0 (Eq. (3), exact flat bands also arise at ϕ ̸= 0.
At ϕ = nπ/3 (ϕ ̸= nπ/3), the strain preserves 6-fold (3-
fold) rotational symmetry with space group symmetry
p6mm (p3m1). In Fig. 3(a), we plot the bandwidth as a
function of α̃2 and ϕ in polar coordinate, setting α̃2 and ϕ
to be the radius and polar angle, respectively. The dark
lines mark the exact flat bands and the dashed green line
marks analytic solution from perturbation theory (See
SM [56]). As we can see, for any value of ϕ, exact flat
bands can be reached at certain critical field strengths.

To further verify this conclusion, we show that ψΓ(r)
indeed contains zeros for all critical α̃’s, and thus ana-
lytic wavefunctions can be constructed for these exact
flat bands following the same procedure shown above. In
Figs. 3(c-e), we plot in log scale |ψΓ(r = 0)|, |ψΓ(r =
(2am1 + am2 )/3)| and |ψΓ(r = (2am2 + am1 )/3)|, as well
as min{|ψΓ(r = 0)|, |ψΓ(r = (2am2 + am1 )/3)|, |ψΓ(r =
(2am1 + am2 )/3)|} in Fig. 3(b). These three real space
points are the 3-fold rotation centers of the p3m1 lattice,
and the dark lines in these figures mark ψΓ = 0, which
perfectly match the exact flat bands shown in Fig. 3(a).

The reason, we only see ψΓ = 0 at these three high
symmetry points in the unit cell, is that ψΓ at other
r are in general complex. To make both the real and
imaginary parts zero, it typically requires to adjust two
real control parameters simultaneously. In contrast, ψΓ

at these high symmetry points must be real, due to the
T and C3v symmetry (See SM [56]), and thus its value
can be tuned to zero with only one control parameter,
which is why exact flat bands can emerge as we scan α̃.
This is why the addition of mirror symmetry to C3 and
T is important.

It is easy to check that for these periodic strain fields,
there exists a symmetry of ϕ → ϕ + 2π/3. This
transformation corresponds to a real space translation
that swaps the three real-space high-symmetry points
0, (2am1 + am2 )/3, and (2am2 + am1 )/3, as can be seen
from Figs. 3(c-e). This is the reason why Figs. 3(a)
and (b) are three-fold symmetric. At points highlighted
by the red circles in Fig. 3(b), ψΓ(r) has 2 zeros in
a unit cell (two of the three real-space high-symmetry
points). These double zeros are not accidental but due
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FIG. 3. Exact flat bands in polar coordinate of α̃2 (radius) and ϕ (polar angle). (a) Bandwidth lnEw as a function of
ϕ and α̃. The green dashed line shows the predicted value of principal critical α̃ from 9th order perturbation theory. (b)
min{ln |ψΓ(r = 0)|, ln |ψΓ(r = (2am

2 + am
1 )/3)|, ln |ψΓ(r = (2am

1 + am
2 )/3)|} as a function of α̃ and ϕ. (c-e) ln |ψΓ(r = 0)|,

ln |ψΓ(r = (2am
1 +am

2 )/3)|, ln |ψΓ(r = (2am
2 +am

1 )/3)| as a function of α̃ and ϕ. The dark lines in each plot show critical α̃ with
two exact flat bands. At the crossing point of two dark lines [red circles in (b)], the strain induces four degenerate flat bands.

to the rotational symmetry. For example, at ϕ = π,
the rotational symmetry of the system increases to 6-
fold and two of the high symmetry points, (2am2 +am1 )/3
and (2am1 + am2 )/3, are connected by this 6-fold rota-
tion. Thus, when ψΓ(r = (2am2 + am1 )/3) reaches zero
at α̃ ≈ 1.695, so does ψΓ(r = (2am1 + am2 )/3) (see SM.
Fig. S3(d) [56] for the plot of ψΓ(r)). With two zeros,
we can construct two meromorphic Bloch-periodic func-
tions f (1)k (z) and f

(2)
k (z) similar to Eq. (5). Hence there

are four flat bands instead of two, as is shown in SM.
Fig. S3 [56]. For completeness, we also plotted the pre-
dicted values of smallest critical α̃ from 9th order pertur-
bation theory in Fig. 3(a) (green dashed lines, see SM.
Sec. VII [56] for details), they agree very well with the
numerically calculated critical α̃.
Fragile topology and exact solutions in interacting sys-
tems– As shown in SM Sec. IX-X [56], in analogy to flat
bands in TBG [2, 3, 59], these flat bands are fragile topo-
logical bands. In addition, For spin-1/2 fermions with
charge repulsion, these flat bands exhibit an emergent
U(2)×U(2) symmetry and integer fillings can be solved
exactly (see SM Sec. XII [56]), similar to TBG [60–62].
At charge neutrality (ν = 0), there are degenerate ground
states with Chern number 0 or ±2, but thermal fluctua-
tions stabilize the C = 0 state via order-by-disorder. At
filling ν = ±1, the exact ground state is a Chern insulator
with C = ±1.
Breaking chiral symmetry.– In analogy to TBG, as we
move away from the chiral limit, these magic flat bands
survive, although a small bandwidth emerges. Here
we turn on the chiral symmetry breaking term c0 and
AI in Eq. (2), setting Ã as Eq. (3) with ϕ = 0 and
AI(r) = −α2c0t0

4

∑3
i=1 cos(G

m
i · r). For a kagome lattice,

this AI naturally arises from nearest-neighbor hoppings
(See SM [56]). As shown in Fig. 4, magic flat bands sur-

vive even if c0 reaches 0.5, although the bandwidth is no
longer exactly zero, and the maximum bandgap and the
minimum bandwidth slightly misalign. At α̃ = 0.79, the
bandgap to bandwidth ratio is > 17 for c0 = 0.1 and
> 5 for c0 = 0.3. Upon further increasing c0, these two
bands eventually mix with other bands. However, band
hybridization and inversion result in an isolated highly
flat band at c0 = 0.9 and α̃ = 1.29 as shown in SM.

FIG. 4. Effect of chiral symmetry breaking.(a)-(b)Bandwidth
Ew and bandgap Eg as a function of α̃ for different c0.
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Fig. S4 [56]. Similarly, for Ã with ϕ = π [Eq. (3)] and
the same AI , at c0 ≈ 0.15 and α̃ ≈ 1.695, the four de-
generate flat bands around charge neutrality split into
two pairs of isolated nearly flat bands as shown in SM.
Sec. IX [56], and both of them remain fragile topological,
protected by C2 and C3, respectively.
Discussions.–In this letter, we studied a QBCP near
the Γ point under periodic strain with C3v symmetry,
and found exact topological flat bands in the chiral
limit. Utilizing materials with nearly-chiral QBCPs (e.g.,
GaCu3(OH)6Cl2 [57]) and a periodic strain field, which
has already been achieved in experiments [32, 34], it is
possible to access the vicinity of this chiral limit and ex-
plore these flat bands, offering a new platform to study
topological flat bands, fragile topology, and correlated
phases such as fractional Chern insulators and unconven-
tional superconductivity. To further verify the feasibility
of this proposal, in SM. Sec. XIV [56], we compared our
model with existing experiments and the estimation indi-
cates current strain-engineering technology would allow
us to reach at least the first two magic flat bands at the
temperature T ∼ 4 K. In addition, the same principle
also applies to other systems with quadratic band cross-
ings, such as photonic/phononic crystals, magnons, and
optical lattices [63–67].
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