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Photon-mediated interactions within an excited ensemble of emitters can result in Dicke superra-
diance, where the emission rate is greatly enhanced, manifesting as a high-intensity burst at short
times. The superradiant burst is most commonly observed in systems with long-range interactions
between the emitters, although the minimal interaction range remains unknown. Here, we put
forward a new theoretical method to bound the maximum emission rate by upper-bounding the
spectral radius of an auxiliary Hamiltonian. We harness this tool to prove that for an arbitrary
ordered array with only nearest-neighbor interactions in all dimensions, a superradiant burst is not
physically observable. We show that Dicke superradiance requires minimally the inclusion of next-
nearest-neighbor interactions. For exponentially-decaying interactions, the critical coupling is found
to be asymptotically independent of the number of emitters in all dimensions, thereby defining the
threshold interaction range where the collective enhancement balances out the decoherence effects.
Our findings provide key physical insights to the understanding of collective decay in many-body
quantum systems, and the designing of superradiant emission in physical systems for applications
such as energy harvesting and quantum sensing.

Introduction.— Collective spontaneous emission of N
initially-inverted atoms with identical all-to-all interac-
tions mediated by the electromagnetic vacuum results in
a burst of light with intensity scaling as N2 [1–3]. This
phenomenon is commonly referred to as “Dicke superra-
diance” or “superradiant burst”. Over the past decades,
this many-body phenomenon has attracted a lot of in-
terest in both theoretical [4–24] and experimental stud-
ies [25, 26] using a multitude of physical platforms such
as trapped ions [27], molecular aggregates [28–31], solid-
state emitters [32–36], cold atoms and molecules [37–40],
and superconducting qubits [41–43], with wide-ranging
applications including the generation of multi-photon
states with improved metrological properties [18, 44–
47], energy harvesting [48–50], ultrabright LEDs [51] and
quantum sensing [52, 53].

The atoms in Dicke’s original model were assumed to
be confined within a spatial extent smaller than the emis-
sion wavelength λ. Consequently, the atoms become in-
distinguishable with respect to the absorption or emission
of photons, such that their quantum state |j = N/2,m〉
(with −N/2 ≤ m ≤ N/2) is permutation-invariant. This
permutation symmetry greatly reduces the complexity
of the problem, as it constrains the dynamics to N + 1
states, instead of exploring the full Hilbert space (which
scales as 2N ). Recently, there has been substantial re-
search progress with extended systems where atoms are
distributed over a region larger than λ, thus breaking
this symmetry. Of particular interest are ordered atomic
arrays [54, 55], in which the superradiant properties can
be greatly affected by the geometry and dimensionality

of the lattice [16, 19, 20, 22, 24, 56]. The interactions be-
tween the emitters are typically modelled by long-range
dipole-dipole interactions mediated via the electromag-
netic vacuum [57, 58].

A long-standing fundamental question is the minimal
interaction range required for the occurrence of a super-
radiant burst. Intuitively, superradiance can be thought
of as a competition between (transient) phase synchro-
nization, which leads to the buildup of atomic corre-
lations, and decoherence [59]. Both effects stem from
the same dissipative interactions [8, 22]. Since synchro-
nization of nonlinear classical phase oscillators has been
demonstrated with nearest-neighbor (NN) coupling [60],
one may expect the atomic phases to synchronize for suf-
ficiently strong NN interactions resulting in a superradi-
ant burst [59]. Moreover, for a fixed interaction range,
higher dimensionality was reported to result in stronger
superradiance due to long-range order [19, 24]. On the
flip side, it could also be argued that for short-range inter-
actions, the buildup of correlations is not strong enough
to overcome decoherence, thereby preventing superradi-
ance.

In this Letter, we prove that superradiant burst is im-
possible in an arbitrary D-dimensional array with only
nearest-neighbor interactions, for arbitrary times and ini-
tial states. That is, we show that, in all cases, the
emission rate is upper bounded by that of independent
emitters, resulting in no enhancement from collective dy-
namics. Including next-nearest-neighbor interactions, we
show that a superradiant burst can be physically ob-
served for certain values of the interaction strengths,
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FIG. 1. Dynamics of the photon emission rate R(t) for emit-
ter arrays with only nearest-neighbor interactions of strength
γ, normalized by the individual emitter decay rate γ0. For
γ/γ0 < γs, Ṙ(0) < 0 and the photon emission rate decays
monotonically without a superradiant burst (blue). Super-
radiance occurs for γ/γ0 > γs (red). The physically-valid
regime is defined by 0 < γ/γ0 ≤ γp. For nearest-neighbor
interactions, γp < γs (with a finite gap between γp and γs)
for any arbitrary emitter array in all dimensions, rendering
Dicke superradiance physically impossible.

thereby defining a minimal interaction range for super-
radiance. Another question is the threshold interac-
tion range, which we define to be such that the criti-
cal coupling required for a burst becomes independent
of the number of emitters, for any D. We show that
exponentially-decaying interactions lie on the threshold
interaction range for which the synchronization of the
dipoles arising from the emission balances the decoher-
ence effects.

Model.—The dynamics of an undriven ensemble of N
emitters can be described by the Lindblad master equa-
tion (setting ~ = 1)

ρ̇ = −i
N∑

i,j=1

[
Jijσ

+
i σ
−
j , ρ

]
+

N∑
i,j=1

γijD[σ−i , σ
−
j ]ρ ≡ L[ρ],

(1)

with Jij = J∗ji and γij = γ∗ji to ensure Hermiticity.

The raising and lowering operators for the jth emitter
are denoted as σ+

j ≡ |ei〉 〈gi| and σ−j ≡ |gi〉 〈ei| which
describe transitions between the ground state |gi〉 and
excited state |ei〉. The first term contains the coherent
Hamiltonian interactions between the emitters, while the
second term captures processes such as collective and
local dissipation of the emitters via the superoperator
D[σ−i , σ

−
j ]ρ = σ−i ρσ

+
j − {σ+

j σ
−
i , ρ}/2. We assume Jij

and γij to be time-independent, such that the superop-
erator L generates a dynamical semigroup describing the
dynamics of a Markovian open quantum system.

For a physically valid evolution (i.e., a completely pos-
itive and trace-preserving map), the matrix Γ containing

the elements γij (which we will refer to as the decoher-
ence matrix ) must be positive semi-definite [61–63]. The
decoherence matrix can be diagonalized to yield N decay
rates Γν ≥ 0, with ν ∈ {1, . . . , N} and the corresponding
collective jump operators ĉν . The total photon emission
rate of the emitters, integrated over all emission direc-
tions, is defined for any state ρ as

Rρ ≡
N∑
ν=1

Γν 〈ĉ†ν ĉν〉 =

N∑
ν=1

ΓνTr(ĉ†ν ĉνρ). (2)

For independent emitters with γij = γ0δij , the total emis-
sion rate has a maximum of Nγ0 (saturated by the fully-
excited state), and R(t) ≡ Rρ(t) decays exponentially.
However, interactions between the emitters can cause
R(t) to increase beyond its initial value. This speedup
in emission is commonly referred to as the superradiant
burst, first discovered by Dicke [1] (see Fig. 1). Through-
out this work, we refer to superradiant burst as the in-
crease in the total emission rate beyond Nγ0, but the
peak intensity need not scale as N2. In general, char-
acterizing the burst at arbitrary times can be difficult,
hence one typically uses

Ṙρ = i
∑
ν

〈[H, ĉ†ν ĉν ]〉 −
∑
µ,ν

ΓµΓν 〈ĉ†µ[ĉµ, ĉ
†
ν ]ĉν ]〉 (3)

evaluated at the fully-excited initial state ρ(0), with
Ṙ(0) ≡ Ṙρ(0) > 0 a sufficient condition for a superra-
diant burst. While we consider the burst at t = 0, we
will provide physical justification on why this is sufficient.

Here, we put forward a new (and complementary) cri-
terion to preclude any possibility of a burst: by a simple
change of basis, one can write Eq. (2) as the expectation
value of an auxiliary spin Hamiltonian

HΓ =

N∑
j,k=1

γkjσ
+
j σ
−
k , (4)

with Rρ = tr(HΓρ). The maximum photon emission rate
can thus be calculated by bounding the spectral radius
of the auxiliary spin Hamiltonian. If the upper bound
is equal or smaller than Nγ0, no burst can occur for
all times and arbitrary initial states. While finding the
largest eigenvalue of HΓ may be non-trivial, this crite-
rion allows one to definitively prove the absence of a
burst for arbitrary times, thus going beyond the con-
dition Ṙ(0) ≡ Ṙρ(0) > 0. Furthermore, this approach
opens up the possibility of finding theoretical limits for
the emission rate arising from superradiant dynamics,
as we show below and in the Supplementary Informa-
tion [64].
No superradiance for nearest-neighbor coupling.— Let

us consider a hypercube array of N emitters with ar-
bitrary dimension D (N = nD). For the case of NN
interactions, γii ≡ γ0 = 1 and γij = γ if emitters i and
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j are nearest-neighbor (γij = 0 otherwise). The cou-
pling γ ∈ [0, 1] is required for the matrix Γ to be positive
semidefinite. Without loss of generality, we have assumed
γij to be real and positive. We prove that for this model,
superradiant burst cannot occur for any t > 0, for any
arbitrary initial state and for any Hamiltonian coupling
Jij . To determine the physically valid regime, we impose
the condition that Γ is positive semidefinite. Notice that
the decoherence matrix can be expressed as Γ = IN+γA,
where IN is the N ×N identity matrix, and A is the ad-
jacency matrix of a n×n grid graph. Using the fact that
the grid graph is the Cartesian product of D path graphs
Pn�· · ·�Pn, it can be shown that the smallest eigenvalue
of Γ is [64]

Γmin = 1− 2Dγ cos

(
π

N1/D + 1

)
, (5)

which gives the physically valid regime as γ ≤ γp,

γp =

[
2D cos

(
π

N1/D + 1

)]−1

. (6)

This rate reduces to γp = 1/(2D) in the N →∞ limit, or
when imposing periodic boundary conditions for a finite
N . This can be regarded as coming from the coordination
number for each emitter, which approaches 2D in the
infinite-array limit. We now state our main result.

Theorem 1 Let Γ be the decoherence matrix for a
nearest-neighbor interaction model, with γij = δij+γδ〈ij〉,
where γ ∈ [0, 1], and δ〈ij〉 = 1 if the emitters indexed by i
and j are nearest-neighbor on the D−dimensional regular
lattice, and 0 otherwise. For γ ≤ (2D)−1, the emission

rate Rρ is maximized by the fully-excited state |e〉⊗N with
Rρ = N .

We provide a sketch of the proof here, while the de-
tails can be found in the Supplementary Information [64].
By expressing HΓ in the product-state basis and us-
ing the Gershgorin circle theorem [65], we can upper
bound maxtR(t) ≤ N in the physically valid regime
γ < 1/(2D). This is saturated by N independent emit-
ters in the fully-excited state, with eigenvalue N . Hence,
Theorem 1 implies that superradiant burst is impossible
at all times. To gain a deeper physical understanding,
we evaluate the superradiant regime γ > γs for the fully-
excited initial state, characterized by the transition at
Ṙ(0) = 0, for which [64]

γs =
[
2D(1−N−1/D)

]−1/2

. (7)

For all 2 < N1/D < ∞, it can be shown that γp < γ2
s

and therefore γp < γs. Hence, the superradiant regime
does not overlap with the physically valid regime. Gener-
alization to the hyper-rectangle configuration where the
number of sites along each dimension can be different is

Observable
superradiance

I

II
III

FIG. 2. Region of superradiant burst in the γ2−γ1 plane. The
physically valid (superradiant) regime is contained within the
blue (red) boundary lines, with the conditions stated in the
main text. Blue shaded region: Physically valid, but not su-
perradiant. Regions I, II and III are defined in the main text.
Red shaded region: Physically valid with superradiant burst.
Grey shaded region: unphysical regime. The red shaded re-
gion requires a minimum of γ2 ≈ 0.185. All shaded regions
here are obtained from numerical calculations for N = 100,
which agree very well with the analytical results obtained in
the infinite-array limit.

straightforward, and the same conclusion is obtained [64].
While our analysis of the NN model is valid for any ini-
tial state, we consider a fully-inverted initial state for the
next two sections: the analysis of next-nearest neighbor
and exponentially decaying interactions.

Next-nearest neighbor coupling.—Including the NNN
interactions, we now show that a superradiant burst is
indeed possible. For simplicity, let us consider a 1D ring
of N emitters with periodic boundary conditions. In this
configuration, Γ turns out to be a circulant matrix with
the first column given by (1, γ1, γ2, 0, . . . , 0, γ2, γ1)T with
0 ≤ {γ1, γ2} ≤ 1. The subsequent columns are simply
cyclic permutations of the first column. Diagonalizing Γ
exactly yields the eigenvalues

Γν = 1 + 2γ1 cos

(
2πν

N

)
+ 2γ2 cos

(
4πν

N

)
(8)

for ν = 0, . . . , N − 1. In the infinite-array limit N →∞,
the eigenvalues form a continuous band in momentum
space Γ(k) = 1 + 2γ1 cos(k) + 2γ2 cos(2k), with the di-
mensionless wavevector 0 ≤ k < 2π. At the turning
points where ∂kΓ = 0, we have: Γ(0) = 1 + 2(γ1 + γ2)
which is always positive, Γ(π) = 1 − 2(γ1 − γ2) and
Γ(k∗) = 1 − (γ2

1 + 8γ2
2)/4γ2 where cos k∗ = −γ1/4γ2.

Demanding that Γ(k) > 0 thus produces the physi-
cally valid regimes: (I) γ1 − γ2 ≤ 1

2 , γ1 > 4γ2 and (II)
γ2

1 + 8γ2
2 ≤ 4γ2, γ1 ≤ 4γ2, together with the bounds
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FIG. 3. Differential emission rate ∆R = R(t)/R(0) − 1 against time (in units of emitter lifetime), for N = 9 emitters. ∆R > 0
indicates superradiance. (a) Dynamical behavior of ∆R for the Dicke model (red), Next-nearest neighbor 1D ring (NNN,
orange), Nearest-neighbor 1D ring (NN, blue) and Nearest-neighbor 2D square (NN, green) (see labels in (b)). The coupling

parameters are chosen to maximize g(2)(0). (b) Short-time behavior obtained by zooming into the grey region of (a). Only the
Dicke and the next-nearest neighbor models exhibit superradiance. The curve for the Dicke model is scaled down by a factor
of 10 for visualization purposes.

γ1, γ2 ∈ [0, 1] (blue regions in Fig. 2). The superra-
diant condition can be obtain from Ṙ(0) = 0 as (III)
γ2

1 + γ2
2 > 1/2.

There is an overlap region with the physically valid
regime, as shown by the red shaded region in Fig. 2.
For certain values of γ1, γ2, superradiant burst can oc-
cur. Moreover, the fact that this overlap region requires
γ2 > (4−

√
2)/14 ≈ 0.185 is consistent with our previous

conclusion of no superradiance using only NN coupling
(i.e., γ2 = 0). Superradiance is also forbidden by having
only NNN coupling (i.e., γ1 = 0). Results from numeri-
cal simulations of N = 9 emitters are presented in Fig. 3,
which show that the NNN model has a small superradiant
burst compared to the Dicke model, and no superradi-
ance for NN models. We remark that this superradiance
arises from destructive interference leading to dark decay
channels with suppressed decay rates Γν ≈ 0 while the
dominant decay channel has a rate that does not scale
with N . This mechanism is generally true for all models
with a sharp interaction cutoff beyond a certain range.

Threshold interaction range for a superradiant burst.—
In many previous works [16, 19, 20, 22, 24], Γ is obtained
from a realistic modelling of the atomic interactions me-
diated by electromagnetic vacuum using the appropriate
Green’s function. Our goal here, however, is to shed light
on the essential physics of superradiance by considering
analytically tractable models that still exhibit interest-
ing behaviors. Consider an interaction which decays ex-
ponentially with the separation rij between the emitters:
γij ∝ e−κrij , where κ controls the decay of the interaction
strength with emitter separation. We set the diagonal el-
ements of Γ as 1, and define γ ≡ e−κd with d the emitter
NN separation such that γij = γ|~xi−~xj |, where ~xi ∈ ZD
is the position vector of the ith lattice site. Physically,
this model describes exponentially-decaying interactions
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FIG. 4. Critical coupling γs for exponentially-decaying in-
teractions in a 1D chain, a 2D square array and a 3D cubic
array with N emitters. Superradiance occurs for γ > γs. For
all dimension D, γs becomes independent of N for large N .
(Inset) Log-log plot of γs against D for N ≈ 106. γs decreases
as D increases with a power-law scaling γs ∼ D−0.793.

between the atoms. For a sufficiently large N in D di-
mensions such that γN � 1, Ṙ(0) is approximately given
by the asymptotic form

Ṙ(0) ∼ N
(

2Dγ2

1− γ2
− 1 +

C

(− ln γ)D

)
(9)

for some constant C [64]. Interestingly, this suggests that
the critical coupling parameter γs for superradiance is
independent of N as N → ∞ for all dimension, agree-
ing with the numerical results shown in Fig. 4. This is
in stark contrast with previous results (primarily using
long-range power-law interactions such as γij ∝ 1/rij),
which predict that the critical emitter separation in-
creases with N in 2D and 3D arrays [19, 24]. Figure 4
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also shows that for large N , γs ∼ D−0.793 exhibits a
power-law scaling with the spatial dimension. This is
intuitive as the average coupling per emitter increases
with D which in turn lowers the critical coupling re-
quired for superradiance [24]. The N -independence of
γs for our short-range exponential model can be physi-
cally interpreted as the threshold interaction range where
the synchronization effects due to collective interactions
scales similarly with N as the local decoherence, such
that adding more emitters do not affect the onset of the
superradiant regime. For even shorter-range interactions
such as the NN model, the local decoherence dominates
which prevents superradiance. Longer-range models such
as power-law interactions favor synchronization and thus
enhance superradiance as N increases.

Scaling of the peak emission rate with number of emit-
ters— Eq. (4) shows that the problem of calculating the
emission rate is equivalent to finding the average energy
of a state under the Hamiltonian HΓ. This enables us
to find upper bounds on the scaling of the peak emis-
sion rate with N , for arbitrary geometries and types of
interactions. As we have shown before in Theorem 1,
the maximum emission rate for arbitrary NN models is
Nγ0. For 1D arrays with an exponentially-decaying in-
teraction, the upper bound on the emission rate is found
to scale as O(N) for γ < 1 [64]. This bound increases to
O(N logN) for 1D arrays with a power-law interaction of
the form 1/r [64]. This latter scaling is consistent with
the numerical results obtained in the literature which,
in contrast to our bound, have only been obtained for
relatively small systems and under certain approxima-
tions [20, 22, 24]. While finding exact bounds may be
exponentially hard, one could in principle upper-bound
other models, as well as tighten the currently-obtained
bounds.

Discussion.—In this Letter, we addressed the funda-
mental problem of the minimal interaction range required
for superradiance. Crucially, we proved that nearest-
neighbor interactions cannot induce emitter correlations
faster that the decoherence, resulting in the impossibil-
ity of superradiance. As shown, the minimal interac-
tion range is therefore next-nearest neighbor, and longer-
range interactions generally lead to stronger superradi-
ance. We also found that the short-range exponential
interaction marks the threshold interaction range in all
dimensions where the emitter correlations and local de-
coherence scale similarly with the number of emitters
such that the critical coupling required for superradiant
burst becomes independent of the number of emitters,
in stark contrast with previous conclusions using longer-
range power-law interactions. We stress that, apart from
the nearest-neighbor model, our classification of a super-
radiant burst is strictly speaking only valid at short times
up to O((γ0t)

2) (if R̈(0) < 0 which is true for the models
considered here [64]), where the dynamics of the fully-
excited emitters do not depend on the Hamiltonian. This

can be physically justified for later times using second-
order mean field theory [64].

The techniques used in this work have broader applica-
tions in determining the theoretical bounds for the emis-
sion rate of different models, thereby exposing the ulti-
mate limitations of superradiance beyond the NN model.
Beyond providing fundamental insights to the physics of
superradiance, our results can also motivate the design of
atomic lattices in engineered baths such as nanophotonic
crystals with engineered interactions or superconducting
resonator arrays for qubits. Moreover, hypercube geome-
tries should be within reach of state-of-the-art quantum
simulators, given the recent advances in generating ar-
bitrary networks in cavity [66] and circuit [67] quantum
electrodynamics platforms.
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