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The ability to prepare a macroscopic mechanical resonator into a quantum superposition state is an outstand-
ing goal of cavity optomechanics. Here we propose a technique to generate cat states of motion using the
intrinsic nonlinearity of a dispersive optomechanical interaction. By applying a bichromatic drive to an optome-
chanical cavity, our protocol enhances the inherent second-order processes of the system, inducing the requisite
two-phonon dissipation. We show that this nonlinear sideband cooling technique can dissipatively engineer a
mechanical resonator into a cat state, which we verify using the full Hamiltonian and an adiabatically reduced
model. While the fidelity of the cat state is maximized in the single-photon, strong-coupling regime, we demon-
strate that Wigner negativity persists even for weak coupling. Finally, we show that our cat state generation
protocol is robust to significant thermal decoherence of the mechanical mode, indicating that such a procedure
may be feasible for near-term experimental systems.

Introduction—Engineered micro/nanomechanical systems
have recently emerged as viable resources for quantum tech-
nologies [1] and fundamental tests of quantum mechanics [2].
At the forefront of this effort is cavity optomechanics [3],
which utilizes sideband techniques to stabilize quantum states
of motion via reservoir engineering [4]. Canonical examples
include ground state cooling [5, 6], squeezing [7, 8], and en-
tanglement [9–12] of mechanical motion. However, these pro-
tocols rely on a strong pump to parametrically enhance the lin-
ear coupling between the cavity field and mechanical motion,
obscuring the inherent nonlinearity of the interaction. Thus
the current field of quantum optomechanics is largely confined
to performing bilinear operations on Gaussian states. By re-
inforcing the intrinsic optomechanical nonlinearity, one could
break free of this Gaussian prison and prepare interesting non-
classical states of mechanical motion.

Of particular interest are macroscopic superposition states
known as cat states [13], which have previously been observed
in trapped ions [14], confined photons [15], and superconduct-
ing circuits [16, 17]. Though recent experiments have pre-
pared non-Gaussian states of mechanical motion using non-
linearities derived from superconducting qubits [18–21] and
single-photon detection [10, 22, 23], the experimental genera-
tion of macroscopic superposition states has yet to be demon-
strated. Preparing these highly non-classical states in me-
chanical resonators would allow them to be used as quantum-
enhanced sensors [24–26], nodes in quantum communication
networks [27, 28], long-lived, error-protected qubits [29, 30],
and platforms to study macroscopic quantum collapse theories
[31].

Early proposals to create mechanical cat states utilized
the intrinsic Kerr nonlinearity of the optomechanical inter-
action [31, 32], however, this method requires vacuum cou-
pling larger than both the mechanical frequency and cav-
ity loss rate. Subsequent optomechanical cat state genera-
tion protocols have suggested introducing nonlinearities via
single-photon detection to perform conditional measurements
[33, 34] or single-phonon addition/subtraction [35, 36], cou-

pling with external two-level systems [37, 38], swaps between
non-classical cavity states and mechanical modes [39, 40],
or using time-varying electromagnetic fields [41–45]. Each
of these proposals rely on some combination of probabilistic
measurements, complicated integration with external sources
of nonlinearity (e.g. qubits), and/or generation of complex
electromagnetic fields. Beyond being difficult to implement
experimentally, the complexity of these methods will incur
inefficiencies in the mechanical cat state preparation, decreas-
ing its fidelity. On the other hand, optomechanical protocols
that utilize reservoir engineering techniques [4] have recently
been proposed for the deterministic and stable generation of
macroscopic mechanical superposition states [46–49]. Such
schemes utilize continuous, coherent electromagnetic sources
and are robust to external decoherence. Unfortunately, these
proposed methods have relied on quadratic coupling between
the cavity and mechanical element, which is small relative to
its destructive linear counterpart [50, 51].

Here, we introduce a reservoir engineering technique that
uses the nonlinearity inherent to all optomechanical systems
to prepare cat states of motion. This simple scheme dif-
ferentiates itself from previous reservoir engineering propos-
als, as it circumvents the experimentally prohibitive require-
ment for direct coupling to the square of mechanical dis-
placement. Furthermore, our technique obviates the need
for external sources of nonlinearity or complex electromag-
netic drives, providing a resource-efficient method to generate
macroscopic superposition states. For this protocol, one ap-
plies two continuous-wave pumps to an optomechanical cav-
ity, one resonant and one red-detuned by twice the mechan-
ical frequency. This prepares the mechanical resonator into
a cat state via two-phonon sideband cooling and squeezing
processes. Using a master equation approach, we deduce that
mechanical cat state generation is feasible for vacuum cou-
pling rates that are greater than the cavity loss rate, but much
smaller than the mechanical frequency. By numerically sim-
ulating the full optomechanical Hamiltonian, we verify that
our protocol can generate high-fidelity mechanical cat states
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with near ideal Wigner negativity. Finally, we show that our
protocol is robust to contamination from the surrounding en-
vironment, allowing for preparation of mechanical superposi-
tion states in the presence of thermal noise.

Dissipation Engineering Protocol—Our procedure is
adapted from a previous technique used to prepare cat states
in superconducting microwave cavities coupled via a Joseph-
son nonlinearity [16, 17]. In this protocol, the cat state is pre-
pared in the long-lived “storage” cavity, while a second “read-
out” cavity is used to engineer nonlinear dissipation processes.
This protocol naturally maps to an optomechanical system,
whereby the mechanical resonator becomes the “storage” el-
ement, with the coupled electromagnetic cavity providing the
fast “readout”. The requisite nonlinearity is then provided by
the optomechanical interaction itself in place of a Josephson
junction. With this architecture, one can apply a strong pump
to the cavity red-detuned by twice the mechanical frequency
to mediate two-phonon cooling processes (see Fig. 1). A sec-
ond tone applied on resonance will then mix with this detuned
pump providing a two-phonon mechanical drive. Combined,
these two-phonon processes are parity preserving, such that a
resonator initialized into an even (odd) state will be restricted
to the even (odd) manifold of its Fock basis and will evolve
into an even (odd) cat state [46]. Along with these nonlinear
processes, linear optomechanical coupling will persist in any
realistic system, acting to flip the parity of the desired cat state
and contribute to its decoherence [52]. Therefore, we must
treat the optomechanical Hamiltonian in its entirety, such that
both linear and nonlinear terms are included.

To investigate our protocol, we begin with the optomechan-
ical master equation

ρ̇ =− i
h̄
[H,ρ]+κL[a]ρ +Γ(n̄b +1)L[b]ρ +Γn̄bL[b†]ρ, (1)

where a (b) is the annihilation operator for the electromag-
netic cavity (mechanical resonator). Here we assume a zero
temperature bath for the cavity (i.e. n̄a = 0) with total loss
rate κ and frequency ωc. Meanwhile, the mechanical mode
with frequency ωm is thermalized at its decay rate Γ to an
environment at finite temperature T and average occupancy
n̄b =

(
eh̄ωm/kBT −1

)−1
. We have also introduced the Lindblad

superoperator L[o]ρ = o†oρ − 1
2 o†oρ − 1

2 ρo†o for arbitrary
operator o and density matrix ρ , as well as the optomechani-
cal Hamiltonian in the frame rotating at the pump frequency
ωp

H
h̄
=−∆a†a+ωmb†b+ εd a†ei∆pt + ε

∗
d ae−i∆pt

+(g∗1a+g1a†)(b+b†)+g0a†a(b+b†).
(2)

Here we have translated the cavity mode by its steady state
amplitude α = εp/(∆+ iκ/2) in the presence of a coherent
pump with amplitude εp , where ∆ = ωp−ωc, such that a now
acts on the displaced cavity mode. The average number of
photons in the cavity due to this pump can be calculated as
n̄p = |α|2. Note that in Eq. (2) we have implicitly accounted

a) b)

FIG. 1: Schematic, frequency-space, and phase-space representa-
tions of a) conventional optomechanical sideband cooling and b) our
proposed method of mechanical cat state generation using nonlinear
sideband cooling.

for the static displacement in mechanical equilibrium position
due to this steady state photon population, as well as the cor-
responding shift in cavity frequency, by appropriately mod-
ifying our reference frame [53]. Also included is a coher-
ent cavity drive with amplitude εd and frequency ωd detuned
from the pump frequency by ∆p = ωp−ωd. Finally, the last
two terms in Eq. (2) characterize the linearized and nonlinear
optomechanical interactions, with the linear cavity-enhanced
coupling rate g1 =αg0 expressed in terms of the optomechan-
ical vacuum coupling rate g0.

While Eq. (2) gives an exact description of our optome-
chanical cavity, often the final term is neglected, leading to
a linearized description. However, this term is crucial in pro-
viding the nonlinearity required for our protocol. We therefore
use a Schrieffer-Wolff transformation [68] with the generator
S = g0

ωm
a†a(b†− b) [69] to expand this term to leading order

in g0/ωm, which amounts to the replacement [53]

g0a†a(b+b†)⇒
(
g∗2a−g2a†)(b2−b†2)

−
g2

0
ωm

{(
a†a
)2

+α
∗ (2a†a+1

)
a+αa† (2a†a+1

)}
.

(3)

The first term in Eq. (3) elucidates the fact that the intrinsic
optomechanical nonlinearity can be used to mediate second-
order processes whereby single photons simultaneously inter-
act with two phonons at a strength determined by the second-
order coupling rate g2 = g2

0α/ωm. Meanwhile the second term
corresponds to the higher-order corrections to the electromag-
netic cavity in the presence of optomechanical coupling, in-
cluding the well-known self-Kerr nonlinearity [3].

Adiabatically Eliminated Model—To proceed, we assume
that the cavity’s decay rate κ exceeds the interaction rates of
the mechanical resonator with its thermal bath and the electro-
magnetic cavity [53]. In this regime, the system will quickly
equilibrate to its steady state, which we take to be the slow
subspace spanned by the cavity’s ground state and the full
Hilbert space of the mechanical mode. We then adiabatically
eliminate the cavity mode by tracing over its rapidly evolving
excited states. This is performed using the Nakajima-Zwanzig
formalism [70] to derive the reduced master equation for the
mechanical mode in the sideband-resolved regime (κ � ωm)
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as

ρ̇b =−
i
h̄
[Hb,ρb]+Γ2L[b2]ρb +ΓlinL[b]ρb +ΓexL[b†]ρb,

(4)

where

Hb

h̄
= ε2 b†2 + ε

∗
2 b2−K

(
b†b
)2
. (5)

Here we have chosen to maximize cat state generation effi-
ciency by applying the drive tone on resonance with the cavity
(ωd = ωc) and the pump tone at ωp = ωc−2ω̃m, where ω̃m is
the dressed mechanical frequency [53].

Eq. (4) includes all of the terms necessary to dissipatively
engineer mechanical cat states. The first term describes the
evolution of the resonator according to Hb. This Hamiltonian
contains coherent two-phonon squeezing terms, with ampli-
tude ε2 = 2iεd g∗2/κ , that arise from the mixing of the pump
tones applied to the cavity, along with a phonon-dependent
Kerr nonlinearity with strength K = |g2|2/4ωm. The second
term describes two-phonon optomechanical cooling at a rate
Γ2 = 4|g2|2/κ . This engineered cooling, coupled with the
squeezing terms, restricts the mechanical resonator to two-
phonon operations, thus preserving its parity. Acting under
these two processes alone, the resonator will naturally evolve
from the ground state into an even cat state on a timescale set
by τ ∼ 1/Γ2 (see Fig. 2). The size of the resultant cat state is
given by β =

√
|εd |/|g2|, while its rotation in phase space is

set by the relative phase between εp and εd .
Meanwhile, the last two terms in Eq. (4) represent inco-

herent single-phonon loss and excitation processes. In the
first case, decoherence is caused by the mechanical resonator
emitting phonons at a rate Γlin = Γth + Γ1 into either to its
intrinsic environmental bath at its thermal decoherence rate
Γth =(n̄b+1)Γ, or to an optomechanically generated reservoir
at rate Γ1 = |g1|2κ/ω2

m. The term proportional to L[b†]ρb then
corresponds to incoherent phononic excitations from these
two baths at a rate Γex = n̄bΓ+Γ1/9. Both of these single-
phonon processes will flip the parity of the cat state from
even to odd (or vice versa), causing it to decohere at a rate
Γdec = 2|β |2 (Γlin +Γex) [52]. To generate mechanical cat
states we require Γlin � Γex, so here we will focus on Γlin.
However, we retain the incoherent excitation terms in our nu-
merical analysis, as they will have noticeable effects on the
cat state’s coherence. Simulations using Eq. (4) can be seen
in Fig. 2b, where we show the evolution of the mechanical
resonator from its ground state into an even cat state of size
β = 2.

In the ideal situation where Γth � Γ1, only optomechani-
cally induced losses need be considered, which sets a funda-
mental limit on our protocol’s ability to generate mechanical
cat states as Γ2 & Γ1, or equivalently,

g0 &
κ

2
. (6)
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FIG. 2: Evolution of a mechanical resonator’s Wigner distribution
from its ground state to a β = 2 even cat state using our reservoir
engineering protocol simulated with a) the full master equation in
Eq. (1) and b) the reduced master equation in Eq. (4). We also show
c) the average occupancy of the mechanical and cavity modes and d)
the minimal Wigner negativity of the mechanical state vs evolution
time (full model - solid, reduced model - dashed). Simulation pa-
rameters are given in the main text. Here we find that for the full (re-
duced) model the Wigner negativity is minimized to Wmin =−0.401
(Wmin = −0.455) at Γ2t ≈ 3.9 (Γ2t ≈ 1.6). This corresponds to a
maximal fidelity of 95.6% (99.1%) with an ideal even cat state of the
same size, whose minimal Wigner negativity (W+ ≈ −0.476) is in-
dicated by the black dashed-dotted line in d).

That is, the protocol outlined in this paper is optimal when the
vacuum coupling rate of the system is on the order of, or ex-
ceeds, the loss rate of the cavity (i.e. approaching or residing
in the single-photon, strong-coupling regime). We also note
that for β ≥ 1, Eq. (6) ensures that the autonomously stabi-
lized cat states generated by our protocol can be used in error
correction protocols where single quanta loss is the dominant
error channel [17].

Wigner Negativity—To rigorously characterize the quan-
tum superposition states generated using our procedure, we
use the Wigner function W (x, p), whose minimum we label
the Wigner negativity or W = min{W (x, p)} [53]. For dy-
namic systems,W can be further minimized in time, resulting
in the minimal Wigner negativityWmin. Using a phenomeno-
logical model, we show that for Γth� Γ1 the minimal Wigner
negativity for our dissipation engineering protocol takes the
simple form [53]

Wmin =W+ exp

[
−2C|β |2

(
κ

2g0

)2k+2
]
. (7)

Here C and k are parameters that characterize the time re-
quired to reach this minimal Wigner negativity as

tmin =
C
Γ2

(
Γ1

Γ2

)k

, (8)

whileW+ is the Wigner negativity of an ideal even cat state.
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FIG. 3: Wmin (normalized by W+ = 0.476) versus g0/κ for the
same parameters as Fig. 2 with varying κ and β = 2. Here we ob-
serve excellent agreement between the full (blue circles) and reduced
(red squares) optomechanical models over nearly two orders of mag-
nitude in g0/κ . Furthermore, the Wigner negativity approaches W+

(black dashed-dotted line) for g0/κ � 1/2, while exponentially de-
creasing for g0/κ < 1/2 as expected. Also included is a fit of Eq. (7)
to the full model (solid green line). Inset: W versus time for varying
ratios of Γ2/Γlin. Here we have chosen κ/2π = 10 kHz, such that
g0/κ = 100, while varying Γ.

From Eq. (7), one can see that while Eq. (6) sets the scale
for mechanical cat state generation, it is a soft limit, as non-
zero Wigner negativity persists for 2g0 < κ . However, far
below this limit the Wigner negativity dies off exponentially
as a function of κ/2g0 (see Fig. 3).

Numerical Simulations—Using a numerical approach, we
verify our model given in Eq. (4) against the full optomechan-
ical model of Eq. (1). This is shown in Fig. 2, where we com-
pare the evolution of a mechanical system from its ground
state to a cat state using both models. Simulations are per-
formed with the shared parameters g0/2π = 1 MHz, ωm/2π =
15 MHz, Γ/2π = 15 Hz, κ/2π = 100 kHz, n̄b = 0, and n̄p =
0.1, with εd chosen such that β = 2. This parameter set allows
for fast simulation, and hence a concrete comparison between
these two models. Though they differ at earlier times, both
models agree well on long timescales where 〈a†a〉 ≈ 0 and
the cat state has stabilized, thus validating our adiabatically
eliminated model.

We have also assessed how the condition in Eq. (6) affects
the minimal Wigner negativity of our generated cat states.
This is presented in Fig. 3 using the same parameters as
Fig. 2, while changing κ to vary the ratio g0/κ . We find
that Eq. (7) provides an excellent fit of the exact numeri-
cal results over multiple orders of magnitude in g0/κ with
the parameters C ≈ 1/3 and k ≈ −1/4. This indicates that
the minimal Wigner negativity of the β = 2 cat state studied
here decays exponentially in proportion to |β |2 (κ/2g0)

3/2. In
spite of this exponential behavior, significant Wigner negativ-
ity still persists for g0/κ . 0.3. Conversely, when g0 � κ ,
the minimal Wigner negativity extracted from both models
asymptotically approach their ideal values and high-fidelity
cat states are created. We have additionally investigated the
effect of increasing the mechanical decoherence rate Γlin on
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FIG. 4: Plot of Wmin versus g0/κ and Γth calculated using the
reduced model in Eq. (4). Here we have fixed g0/2π = 10 kHz,
ωm/2π = 20 MHz, n̄b = 10 (corresponding to T ≈ 10 mK), and n̄p =
100, while κ and Γ are swept to vary g0/κ (or equivalently Γ2) and
Γth, respectively. We have also chosen εd such that the generated cat
state is of size β = 2 at every point in the plot.

the time-dependence of the cat state’s Wigner negativity (inset
of Fig. 3). Here we confirm that the Wigner negativity is mini-
mized on a timescale set by 1/Γ2, with a weak dependence on
Γ1/Γ2 as indicated by Eq. (8). We further observe the mini-
mal Wigner negativity approachesW+ for Γ2/Γlin� 1, while
decohering back to zero on a timescale set by 1/Γlin.

Finally, we have used our adiabatically eliminated model
to investigate how Wmin varies over a large parameter space
in g0/κ and Γth, which is illustrated in Fig. 4. On the right
side of the plot where Γlin ≈ Γth, regions of significant Wigner
negativity are delineated by contours that exhibit a linear de-
pendence between g0/κ and Γth. Meanwhile on the left side,
these boundaries plateau to a constant value. This is because
the decoherence is no longer dominated by the thermal envi-
ronment, but instead by pump-induced linear dissipation. As
Γ1 and Γ2 scale with pump power in the same way, their ratio
is constant and given by (2g0/κ)2 [53]. These results show
clearly demarcated regions of parameters space that allow for
significant Wigner negativity even in the presence of signifi-
cant thermal noise.

Experimental Realization—Currently, the most challenging
aspect of experimentally realizing our protocol is the con-
dition given by Eq. (6). While existing experiments in mi-
crowave circuits [71] and optomechanical crystals [72] have
demonstrated 2g0/κ ≈ 0.01, ongoing improvements in both
coupling and cavity losses make each of these platforms a vi-
able candidate for achieving 2g0/κ ≈ 1. Specifically, in op-
tomechanical crystals, numerical optimization of ultra-small
mode volume cavities projects to increase the vacuum cou-
pling, while ensuring that radiation and fabrication unifor-
mity do not limit the cavity losses [73]. In the microwave
regime, bulk superconducting cavities already achieve suffi-
ciently low loss [74] and ongoing advances in materials and
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surface preparation could allow similar quality factors in vac-
uum gap capacitor optomechanical circuits. In addition to
improvements in loss, recent proposals suggest that by push-
ing circuit optomechanics into the millimeter-wave regime, g0
could also be increased by over an order of magnitude [75].
Together these innovations in increased coupling and cavity
quality factor would enable experimental implementation of
this cat state protocol. Regardless of the platform, verifica-
tion of these delicate quantum superposition states will re-
quire the ability to perform mechanical state tomography with
low added noise. Conveniently, cavity optomechanical sys-
tems have demonstrated nearly noiseless mechanical quadra-
ture measurement techniques, using either quantum nondemo-
lition [8] or transient amplification [76] methods, which are
sufficient for witnessing Wigner negativity.

Conclusion—We have introduced a simple scheme that uti-
lizes two continuous-wave pumps to cool an optomechanical
resonator into a cat state of motion. To generate significant
Wigner negativity with such a protocol, one must approach the
single-photon, strong coupling regime. Though unattainable
in current experiments, with future improvements to state-of-
the-art optomechanical systems, mechanical cat state genera-
tion using this protocol could soon be realized. This advance-
ment would allow for straightforward preparation of long-
lived mechanical cat states to be used as robust, rotation-
symmetric bosonic codes for quantum computing [77], or as
canonical systems to study the fundamental collapse mecha-
nisms of macroscopic quantum superposition states [31].
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[58] A. Kenfack and K. Życzkowski, J. Opt. B 6, 396 (2004).
[59] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard,

M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret,
Nature 584, 205 (2020).

[60] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16,
045014 (2014).

[61] J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
[62] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[63] S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).
[64] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
[65] R. Zwanzig, Physica 30, 1109 (1964).
[66] N. Lörch, Laser theory for quantum optomechanics, Ph.D. the-

sis, Gottfriend Wilhelm Leibniz Universität Hannover (2015).
[67] R. Gautier, A. Sarlette, and M. Mirrahimi, PRX Quantum 3,

020339 (2022).
[68] J. D. P. Machado and Y. M. Blanter, Phys. Rev. A 94, 063835

(2016).
[69] A. Nunnenkamp, K. Børkje, and S. M. Girvin, Phys. Rev. Lett.

107, 063602 (2011).
[70] I. Wilson-Rae, N. Nooshi, J. Dobrindt, T. J. Kippenberg, and

W. Zwerger, New J. Phys. 10, 095007 (2008).
[71] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D.

Whittaker, and R. W. Simmonds, Nature 471, 204 (2011).
[72] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and

O. Painter, Appl. Phys. Lett. 101, 081115 (2012).
[73] A. Bozkurt, C. Joshi, and M. Mirhosseini, Opt. Express 30,

12378 (2022).
[74] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Hol-

land, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H.
Devoret, L. Glazman, and R. J. Schoelkopf, Appl. Phys. Lett.
102, 192604 (2013).

[75] B. D. Hauer, K. Cicak, F. Lecocq, R. W. Simmonds, J. Aumen-
tado, and J. D. Teufel, Conference on Lasers and Electro-Optics
, STu2H.2 (2021).

[76] R. D. Delaney, A. P. Reed, R. W. Andrews, and K. W. Lehnert,
Phys. Rev. Lett. 123, 183603 (2019).

[77] A. L. Grimsmo, J. Combes, and B. Q. Baragiola, Phys. Rev. X
10, 011058 (2020).

https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevLett.91.130401
https://doi.org/10.1103/PhysRevLett.91.130401
https://doi.org/10.1088/1367-2630/15/9/093007
https://doi.org/10.1088/1367-2630/15/9/093007
https://doi.org/10.1103/PhysRevA.101.063834
https://doi.org/10.1103/PhysRevA.101.033812
https://doi.org/10.1103/PhysRevA.101.033812
https://doi.org/10.1103/PhysRevA.88.033804
https://doi.org/10.1103/PhysRevA.88.033804
https://doi.org/10.1103/PhysRevA.88.033614
https://doi.org/10.1103/PhysRevA.88.033614
https://doi.org/10.1103/PhysRevLett.117.143601
https://doi.org/10.1103/PhysRevA.98.063814
https://doi.org/10.1103/PhysRevA.91.013842
https://doi.org/10.1103/PhysRevLett.116.163602
https://doi.org/10.1038/ncomms10988
https://doi.org/10.1103/PhysRevLett.121.123602
https://doi.org/10.1088/2058-9565/aada1d
https://doi.org/10.1088/2058-9565/aada1d
https://doi.org/10.1103/PhysRevA.88.023817
https://doi.org/10.1103/PhysRevA.88.023817
https://doi.org/10.1088/0953-4075/47/4/045502
https://doi.org/10.1103/PhysRevA.98.063801
https://doi.org/10.1103/PhysRevA.100.013831
https://doi.org/10.1038/nature06715
https://doi.org/10.1103/PhysRevA.89.053838
https://doi.org/10.1103/PhysRevA.46.4239
https://doi.org/10.1016/0031-8914(74)90215-8
https://doi.org/10.1016/0031-8914(74)90215-8
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1119/1.18698
https://doi.org/10.1088/1464-4266/6/10/003
https://doi.org/10.1038/s41586-020-2587-z
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1143/PTP.20.948
https://doi.org/10.1063/1.1731409
https://doi.org/10.1016/0031-8914(64)90102-8
https://doi.org/10.15488/8519
https://doi.org/10.15488/8519
https://doi.org/10.1103/PRXQuantum.3.020339
https://doi.org/10.1103/PRXQuantum.3.020339
https://doi.org/10.1103/PhysRevA.94.063835
https://doi.org/10.1103/PhysRevA.94.063835
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1088/1367-2630/10/9/095007
https://doi.org/10.1038/nature09898
https://doi.org/10.1063/1.4747726
https://doi.org/10.1364/OE.455248
https://doi.org/10.1364/OE.455248
https://doi.org/10.1063/1.4807015
https://doi.org/10.1063/1.4807015
https://doi.org/10.1364/CLEO_SI.2021.STu2H.2
https://doi.org/10.1364/CLEO_SI.2021.STu2H.2
https://doi.org/10.1103/PhysRevLett.123.183603
https://doi.org/10.1103/PhysRevX.10.011058
https://doi.org/10.1103/PhysRevX.10.011058

	Acknowledgments
	References

