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Experiments have demonstrated that the strong light-matter coupling in polaritonic microcavities
significantly enhances transport. Motivated by these experiments, we have solved the disordered
multi-mode Tavis-Cummings model in the thermodynamic limit and used this solution to analyze
its dispersion and localization properties. The solution implies that wavevector-resolved spectro-
scopic quantities can be described by single-mode models, but spatially resolved quantities require
the multi-mode solution. Non-diagonal elements of the Greens function decay exponentially with
distance, which defines the coherence length. The coherent length is strongly correlated with the
photon weight and exhibits inverse scaling with respect to the Rabi frequency and an unusual de-
pendence on disorder. For energies away from the average molecular energy EM and above the
confinement energy EC , the coherence length rapidly diverges such that it exceeds the photon res-
onance wavelength λ0. The rapid divergence allows us to differentiate the localized and delocalized
regimes and identify the transition from diffusive to ballistic transport.

Introduction. The spatial confinement of the light field
in microcavities gives rise to dispersive polaritons with
outstanding spectroscopic properties [1] and establishes
an alternative channel for charge and energy transport
different from the short-range hopping. Recent experi-
mental measurements of microcavities have found that
transport can be enhanced by orders of magnitude [2–
7]. A thorough description is challenging because of the
large number of light modes in the cavity and the ener-
getic, spatial and orientational disorder.

Many theoretical models describe the light field by a
single cavity mode, which is coupled to a macroscopic
number of quantum emitters [8–27]. Recent investiga-
tions have predicted an intriguing turnover of the trans-
port, relaxation and the linewidth as a function of disor-
der [8, 9]. However, due to the all-to-all coupling struc-
ture in single-mode models, excitons can travel instan-
taneously between distant emitters and thus exceed the
speed of light, potentially leading to an unphysical pre-
diction for the transport efficiency.

Since the photonic dispersion relation ensures the
speed of light, the light fields should be described as a
continuum of cavity modes. For example, the impact
of disorder on polaritons was investigated perturbatively
[28–31]. Exact diagonalization and integration [32, 33],
mean-field based approaches [34–37], Monte-Carlo meth-
ods [38] and density-functional theory [39] have been
used to numerically investigate multi-mode models. Yet,
a fully microscopic and analytical solution of the light-
matter dynamics for disordered quantum emitters is still

∗ jianshu@mit.edu

lacking.

In this Letter, we analytically and numerically solve
the multi-mode disordered Tavis-Cumming model non-
perturbatively. Our closed-form solution predicts a finite
coherence length for all polariton energies. Away from
the average molecular energy EM, the coherence length
rapidly diverges and exceeds by far the typical length
of realistic microcavities. This defines two transport
regimes in the energy spectrum: one regime of strongly
localized polaritons, where transport is diffusive, and one
regime of delocalized polaritons, where the large coher-
ence length can support ballistic transport. The coher-
ence length exhibits a turnover as a function of disorder,
which has no analogue in the Anderson localization [40–
42], but is reminiscent of noise-assisted transport [43, 44].

Multi-mode disordered Tavis-Cummings model. As
shown in Fig. 1(a) and 1(b), we consider a one-
dimensional microcavity of length L which contains N
quantum emitters representing atoms, molecules, NV
centers or particle-hole pairs in semiconductors. For con-
creteness, we focus on molecules in the following. We
adopt a multi-mode disordered Tavis-Cummings model,
whose Hamiltonian is given as Ĥ = ĤM + ĤL + ĤLM,
where

ĤM =

N∑
j=1

EjB̂
†
j B̂j , ĤL =

∑
k

ωkâ
†
kâk,

ĤLM =

N∑
j=1

∑
k

gj,κB̂
†
j âk + H.c. . (1)

The molecules j are described by bosonic operators B̂j .
Here, the excitation energies Ej are distributed accord-
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FIG. 1. (a) One-dimensional microcavity of length L containing N molecules. (b) Sketch of the energy configuration of the
cavity modes (red sine functions) and the molecules (blue circles, Ej distributed around EM with Gaussian width σ). The
molecules are coupled with strength gj,k to the photonic modes, such that excitations can be transported via photons. (c)
Wavevector-resolved photon and molecule LDOSs for EC = 0.4 eV. (d),(e),(f) Average photon weight of the polaritons as a
function of energy for EC = 0.4, 1.0, 1.3 eV. (g),(h)(i) Coherence length of the polaritons for the same EC values as in (d),(e),(f).
Overall parameters are L = 125µm, N = 5000, EM = 1 eV, σ = 0.05 eV, and g

√
ρ = 0.14 eV. The photonic cutoff energy is

ωcut-off = 50 eV, such that 5000 photonic modes are included in the simulations.

ing to a Gaussian function P (E) = 1√
πσ
e−(E−EM)2/(2σ2),

with center EM and disorder width σ. Yet, our findings
also hold for arbitrary disorder distributions. The light
field is quantized by the photonic operators âk labeled by
k. The photonic dispersion relation is ωk =

√
c2q2k + E2

C,
where c is the speed of light, qk is the wavevector (speci-
fied below), and EC is the confinement energy depending
on the geometry of the microcavity. As the total excita-

tion number n̂ =
∑
j B̂
†
j B̂j +

∑
k â
†
kâk is conserved, we

can restrict our analysis to the single-excitation mani-
fold. The light-matter interaction in Eq. (1) is given by
gj,k = gkϕk(rj) where rj = N/L · j is the position of
molecule j, gk is the wavevector dependent light-matter
interaction, and ϕk(r) are the photonic mode functions in
one-dimensional space. We restrict the current investiga-
tion to energetic disorder, while spatial and orientational
disorder will be considered elsewhere later.

For the numerical calculations we use an open bound-
ary condition, such that the photonic modes are ϕk(r) =

sin (qkr) /
√
L/2 for the wavevectors qk = π ·k/L with in-

teger k > 0 [45]. In the analytical calculation, we assume
a periodic boundary condition such that the photonic
modes are ϕk(r) = exp (iqkr) /

√
L, where qk = 2π · k/L

with integer k. We note that in the L → ∞ limit, the
boundary condition has a negligible effect.

Analytical solution. The Heisenberg equations of B̂j
and âk are transformed into the Laplace space defined

by f̂(z) =
∫∞
0
dte−ztf̂(t) for arbitrary operators f̂(t).

We find that the coupling between different cavity modes
k1, k2 scales as âk1(z) ∝ ρN−1/2âk2(z) and thus van-
ishes in the thermodynamic limit N,L → ∞ with con-

stant density ρ = N/L [45]. In other words, one can
treat the system as a superpostion of uncoupled single-
mode systems, which have been investigated in detail in
Refs. [9, 46, 47]. The solution of the Heisenberg operators
in this limit is

âk(z) =
â
(0)
k

z + iωk(z)
− i
∑
j

gj,kB̂
(0)
j

(z + iωk(z)) (z + iEj)
,

B̂j(z) =
B̂

(0)
j

z + iEj
− i
∑
k

gj,kâ
(0)
k

(z + iEj) (z + iωk(z))

−
∑
k

∑
j1

gj,kg
∗
j1,k

B̂
(0)
j1

(z + iEj) (z + iωk(z)) (z + iEj1)
, (2)

where â
(0)
k and B̂

(0)
j denote the initial conditions of the

time evolution. We have defined the renormalized photon
energy by

ωk(z) = ωk − i
∑
j

|gj,k|2

z + iEj
→ ωk + g2kρΓ(z), (3)

where the z dependence reflects a retardation effect. We
have expressed the disorder average in terms of the den-
sity ρ and the disorder-averaged Green’s function of the

unperturbed molecules Γ(z) = −i
∫
dE P (E)

(z+iE) . Using

Eq. (2), we can construct arbitrary retarded Green’s

functions such as G
(L)
k,k′(z) ≡ −i

〈[
âk(z), â

(0)†
k′

]〉
or

G
(M)
j,j′ (z) ≡ −i

〈[
B̂j(z), B̂

(0)†
j′

]〉
. Performing the disor-



3

FIG. 2. (a) Imaginary part of the Green’s function as a func-
tion of the relative position coordinate r = rj − rj′ as defined
in Eq. (5). The results are shown in red (photon contribu-
tion, r > 0) and blue (molecule contribution, r < 0). The
black lines depict the amplitude decay predicted by the co-
herence length in Eq. (7). (b) Imaginary part of the Green’s
function as a function of wavevector (i.e., the LDOS). The
solid and dashed black lines depict the analytical predictions
using Eq. (4). Parameters are the same as in Fig. 1 (d). Each
Green’s function has been averaged over an interval of width
δ = 0.005 [eV ].

der average, the Green’s function for N,L → ∞ reads
as

G
(L)
k,k′(z) = −i δk,k′

z + iωk(z)
,

G
(M)
j,,j′(z) = Γ(z)δj,j′ − i

∑
k

gj,kg
∗
j1,k

z + iωk(z)
ρΓ(z)2. (4)

These Green’s functions are equivalent to the single-mode
system when the sum over k is neglected. The simple
superpostion of all k modes reflects the mode decoupling
in the thermodynamic limit, for which the matter system
becomes homogeneous in a statistical sense.

Spectroscopy. The wavevector-resolved photon and
molecule local density of states (LDOSs) are given as

νX,k(ω) ≡ − limδ↓0
1
π ImG

(X)
k,k (−iω + δ) with X = L and

X = M, respectively, and can be measured spectroscopi-
cally [9].

In Fig. 1(c), we investigate the LDOSs for EC = 0.4 eV.
The LDOSs for EC = 1.0 eV and EC = 1.3 eV can
be found in the Supplementary Information [45]. The
dashed lines depict the lower and upper polaritons for a
vanishing disorder σ = 0. Close to ωk = EM, where both

dispersions would cross for g = 0, the lower and upper
polaritons exhibit a Rabi splitting of Ω ≈ 2g

√
ρ. The

photon and molecule LDOSs closely follow the photonic
dispersion curves of the disorder-free systems (dashed).
The photon LDOS accumulates close to the photon dis-
persion ωk, but also around EM close to the polariton
anticrossing, where light and matter are strongly mixed.
The molecule LDOS accumulates around EM, where it re-
sembles the original disorder distribution. Along ωk and
away from EM, the molecule LDOS is one order of magni-
tude smaller than the photon LDOS. Because of level re-
pulsion, the molecule LDOS is suppressed for energies ωk
at the anticrossing (purple arrow), which resembles the
electromagnetically-induced transparency and related ef-
fects [9, 48–50]. As each photon mode interacts with a
disordered ensemble, the level repulsion is smeared out
in the photon LDOS.

The photon and molecule weights of a specific eigen-
state |α〉 with energy ω is given as W (X)(ω) ≡
〈α| P̂ (X) |α〉 =

∑
k νX,k(ω)/ν(ω), where ν(ω) =∑

X=L,M;k νX,k(ω), and P̂ (X) is the photon (molecule)
projection operator. The numerical calculation in Fig. 1
(d,e,f) verifies the analytical solution for various EC.
(i) For EC = 0.4 eV < EM, the photon weight van-
ishes around the resonance condition ω ≈ 1 eV, as the
molecules by far outnumber the photon modes in this
energy region. The photon weight increases monotoni-
cally with increasing distance from the resonance condi-
tion. (ii) For EC = 1.0 eV = EM, the photon weight does
not monotonically increase with distance from EM. The
peak around ω ≈ 0.9 eV is a consequence of the polari-
tion formation, causing the light field to be pushed down
energetically. (iii) For EC = 1.3 eV > EM, light and
matter are energetically separated such that the mutual
influence is rather weak. Motivated by Ref. [32], we de-
fine dark (bright) states as eigenstates with a photonic
weight W (L) < 10% (W (L) > 10%), which accumulate in
the dip of the photon weight in Fig. 1(d).

Polariton localization. Figure 2 (a) depicts the imagi-
nary part of the Green’s function in position space,

ηX,r(ω) ≡ − lim
δ↓0

1

π
ImG

(X)
j,j′ (−iω + δ) ∝ e−

r
2ζcoh , (5)

where r = |rj − rj′ |, for EC = 0.4 eV and three different
energies ω. In this definition we have used the transla-
tional invariance of the Green’s function in the N → ∞
limit. The light (matter) Green’s function is depicted for
r > 0 (r < 0). Clearly, the amplitude of the Green’s
function shows an exponential decay with increasing r,
where the coherence length ζcoh depends on energy.

Figure 2(b) depicts the imaginary part of the Green’s
function in wavevector space, i.e., νX,k(ω) for X = L,M.
Overall, we observe that the widths of the Green’s func-
tions in position and wavevector space are related by
the Heisenberg uncertainty principle. In contrast to the
photon contribution, which converges to zero for large
wavevectors q, the molecule Green’s function converges
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FIG. 3. Coherence length as a function of Rabi splitting
[(a),(c)] and disorder [(b),(d)]. Parameters are the same as
in Fig. 1.

to a finite value. This is reflected by strong spatial fluctu-
ations of the molecule Green’s function in position space
in Fig. 2(a), which are absent in the photon Green’s func-
tion.

From Eq. (4) we can determine the coherence length
ζcoh using functional analysis, which characterizes the
localization of the polaritons [45, 51]: In the L → ∞
limit, we find

ηM,r(ω) ∝ G(M)
j,j′ (−iω) =

∫
dq Gq(ω)eiqr, (6)

where r = |rj − rj′ | 6= 0 and Gq(ω) =
g2qL/2π/

[
−iω + iωqL/2π(−iω)

]
. Specifically, the Green’s

function decays as ∝ e−αr, where α is the largest value
such that Gq−iα′ is analytic for all |α′| < α. Gq has two
types of non-analyticities, namely the roots of the de-
nominator and the branch cuts along the imaginary axis
±q ∈ [iEC/c, i∞] due to the root in ωk. As explained
later, the branch cut has minor influence on ηX,r, such
that the coherence length is effectively determined by
the root of Gq, i.e.,

ζ−1coh =
2

c
Im

√
[ω − g2ρΓ(−iω)]

2 − E2
C, (7)

where gk = g is assumed for simplicity. Interestingly, the
coherence length depends via the product g

√
ρ = Ω/2

(i.e., the Rabi frequency) on the light-matter coupling g.
In Fig. 1(g,h,i), we compare the analytical expression

for ζcoh with the numerical evaluation [45], which con-
firms the validity of the analytical solution. For large en-
ergies ω, we observe that the coherence length diverges.
For realistic parameters and energies ω ≈ EM, the branch
cuts starting at ±iEC

c have a minor influence on the co-
herence length, as for a large EC, 2c/EC is significantly
smaller than ζcoh, while for small EC, the influence of
the branch cut in the Fourier transformation in Eq. (6)

is negligible and the Green’s function is still mainly de-
termined by the pole of the Green’s function [45].

Analysis. In Fig. 1 we demonstrate a correlation be-
tween the photon weight and the coherence length. As
the interaction between the molecules is mediated via
photons, the coherence length increases when photons
can travel further without being scattered by molecules.
The relation of coherence length and photon scattering
can be understood by expanding the Green’s function
in orders of g, where destructive interference of distinct
photon scattering paths decrease the coherence length
for increasing g [45]. A low scattering probability is re-
flected by a large photon weight in the Green’s function.
The coherence length of the Green’s function can thus be
identified with the absorption length for light traveling
along the extended direction of the cavity according to
Beer’s absorption law [45]. Dark states have a detrimen-
tal impact on the coherence length. In general, we find
a clear relation of dark states with a localized Green’s
function, and bright states with a delocalized Green’s
function. The localized (delocalized) regimes are thereby
described by ζcoh < λ0 (ζcoh > λ0), where λ0 = hc/EM

is the resonance wavelength of the molecular excitations.

In Fig. 3, we analyze the coherence length ζcoh as
a function of Ω = 2g

√
ρ and σ for EC = 0.4 eV and

EC = 1.0 eV. In Fig. 3(a) for small Ω, we observe a clear
linear dependence with slope −2 for all energies ω. This
can be explained by photon scattering, which consists of
absorption (∝ gρ) and re-emission (∝ g). Interestingly,
the coherence length for ω = 1.2 eV exhibits a dip for
large Ω, as the matter LDOS is strongly deformed and
accumulates around ω = 1.2 eV, causing enhanced pho-
ton scattering.

The observations in Fig. 3(c) for EC = 1.0 eV and large
ω = 1.0, 1.1, 1.2 eV are qualitatively similar to panel (a).
The coherence length behaves very differently for small
ω, where the photonic modes are absent for g = 0 as
ωk > EC. As for these energies eigenstates can be only
formed with non-resonant photon modes, the coherence
length for small Ω is very small and almost independent
of Ω [45]. Interestingly, the coherence length increases
over more than one order of magnitude for Ω ≈ 0.3 eV
and ω = 0.8 eV because of the peak in the photon weight
for small energies ω ≈ 0.8 eV in Fig. 1(e).

Analyzing the coherence length as a function of dis-
order in Fig. 3(b), we observe a turnover as a function
of σ. This is in contrast to the Anderson localization,
where the coherence length monotonically decreases with
disorder. Recent work has revealed a turnover of the
steady-state flux as a function of disorder in the single-
mode Tavis-Cummings model [8, 9, 15], which can be
explained by the overlap of the photon LDOS and the
molecule energy disorder distribution P (E) [9]. This in-
terpretation can also be employed here. For small σ,
the disorder distribution is strongly centered around EM.
With increasing σ, the disorder distribution increases for
ω 6= EM, such that more molecules can resonantly scat-
ter the photons with energy ω, which reduces the coher-
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ence length. For a large disorder, the molecule energies
spread over a large energy regime, such that there are
only few molecules in resonance with the photon modes
close to ω, which enhances the coherence length. As the
Gauss distribution becomes very flat close to the center
for large σ, the coherence length becomes independent
of ω for large σ. For ω = 1.0 eV, we do not observe a
turnover, as the disorder distribution P (ω ≈ EM) de-
creases monotonically for increasing σ. The turnovers
can be also observed for EC = 1.0 eV in Fig. 3(d) for
large ω = 1.1 eV, 1.2 eV, while overall the dependence on
σ is more complicated because of the significant influence
of the square root dispersion relation of ωk close to q = 0.

Conclusions. We have analytically and numeri-
cally solved the multi-mode disordered Tavis-Cummings
model and predict its dispersion and localization proper-
ties. (i) The analytical solution is built on the mode de-
coupling and statistical self-averaging and is exact in the
thermodynamic limit. Based on the solution, wavevector
resolved properties such as broadened spectral line-shape
and dispersion can be predicted effectively within the
single-mode treatment, whereas spatial-dependent prop-
erties such as transport and coherence length involve a
wavevector summation and thus require the multi-mode
formalism. (ii) A coherence length is introduced to char-
acterize the finite size of the eigenstates as a function of
the excitation energy and shows transitions from local-
ized states around the molecular energy (EM) to delocal-
ized states away from EM. These transitions are strongly
correlated with the photon weight and define a ballistic
and a localized transport regime. (iii) Intriguingly, the
coherence length is inversely proportional to the square
of the Rabi frequency and can exhibit a turnover as a
function of disorder. (iv) Both the dispersion and coher-
ence length depend strongly on the cavity confinement
energy EC: the number of available resonant photon
modes and thus the light-matter coupling regime increase
as the cavity changes from blue-shifted (EC > EM), res-
onance (EC = EM), to red-shifted (EC < EM). The
current investigation focuses on the one-dimensional sys-
tem with energetic disorder, while higher-dimensional
systems with spatial and orientational disorder will be
considered elsewhere.

The coherence length crucially depends on the light-
matter coupling and the disorder. For example, it
can be enhanced by more than one order of magnitude

with a slight increase of the light-matter interaction [cf.
Fig. 3(c)]. Moreover, it can exhibit a turnover as a func-
tion of disorder, which contrasts the monotonically de-
creasing coherence length known from the Anderson lo-
calization, but is reminiscent of noise-assisted quantum
transport [52–55]. Arising from the overlap of the light
LDOS and the disorder distribution, this turnover is in-
duced by the same mechanism as the transport turnover
previously predicted in the single-mode disordered Tavis-
Cummings model [9]. Experimentally, this turnover can
be investigated using a mixture of two molecular ensem-
bles as in [18].

Noteworthy, the experiment in Ref. [7] has identified
a transition from diffusive transport for small photonic
weight to ballistic transport for large photonic weight.
This observation is in perfect agreement with our analyt-
ical calculation, which predicts localized (i.e., diffusive)
and delocalized (i.e., ballistic) eigenstates and a sharp
transition as a function of excitation energy, as shown in
Fig. 1. Theses findings reveals that the photonic weight
explains the enhanced transport efficiency. In general,
dark states with low photon weight correspond to local-
ized states, while bright states with high photon weight
correspond to delocalized states.

The experiment in Ref. [38] indicates that phonon-
assisted coupling of diffusive eigenstates and ballistic
eigenstates helps to overcome the localization. Extend-
ing our current model in Eq. (1) to incorporate phonon
modes will quantitatively demonstrate this mechanism.
Moreover, as experimentally shown in [56], the detri-
mental impact of the cavity quality on transport prop-
erties can be modeled by a complex dispersion relation
ωk → ωk − iκ with κ > 0. This will result in a com-
plex energy shift ω → ω + iκ in the coherence length in
Eq. (7), leading to a suppression of transport. These and
other experimental implications will be studied in future
works.
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