

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Observation of Directed Flow of Hypernuclei math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>mmultiscripts>mrow>mi mathvariant="normal">H/mi>/mrow>mprescripts>/mpres cripts>mrow>mi mathvariant="normal">//mi> /mrow>mrow>mn>3/mn>/mrow>/mmultiscripts>/mrow>/ math> and math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>mmultiscripts>mrow>mi mathvariant="normal">H/mi>/mrow>mprescripts>/mpres cripts>mrow>mi mathvariant="normal">//mi> /mrow>mrow>mn>4/mn>/mrow>/mmultiscripts>/mrow>/ math> in math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>msqrt>mrow>msub>mrow>mi>s /mi>/mrow>mrow>mi>NN/mi>/mrow>/msub>/mrow>/ms qrt>mo>=/mo>mn>3/mn>mtext>/mtext>mtext>/mtext >mi>GeV/mi>/mrow>/math> math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>mi>Au/mi>mo>+/mo>mi>Au/mi >/mrow>/math> Collisions at RHIC B. E. Aboona et al. (STAR Collaboration)

Phys. Rev. Lett. **130**, 212301 — Published 24 May 2023 DOI: 10.1103/PhysRevLett.130.212301

1	First Observation of Directed Flow of Hypernuclei ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H in $\sqrt{s_{NN}} = 3$ GeV Au+Au Collisions at BHIC		
3 4	B. E. Aboona, D. M. Anderson, Y. Liu, J. Pan, and R. E. Tribble Texas A&M University, College Station, Texas 77843		
5 6	J. Adam, J. Ceska, A. Das, and O. Lomicky Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic		
7 8	J. R. Adams, J. D. Brandenburg, T. J. Humanic, and X. Liu Ohio State University, Columbus, Ohio 43210		
9	G. Agakishiev, A. Aitbaev, A. Aparin, G. S. Averichev, T. G. Dedovich,		
10	A. Kechechvan, A. A. Korobitsin, R. Lednicky, V. B. Luong, A. Mudrokh,		
11 12	Y. Panebratsev, O. V. Rogachevsky, E. Shahaliev, M. V. Tokarev, and S. Vokal Joint Institute for Nuclear Research, Dubna 141 980		
13 14	I. Aggarwal, M. M. Aggarwal, A. Dhamija, L. Kumar, A. S. Nain, N. K. Pruthi, and J. Singh Panjab University, Chandigarh 160014, India		
15 16	Z. Ahammed Variable Energy Cyclotron Centre, Kolkata 700064, India		
	I Alaksoov		
17	Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute". Moscow 117218 and		
19	National Research Nuclear University MEPhI, Moscow 115409		
20 21	J. Atchison, M. Daugherity, J. L. Drachenberg, and D. Isenhower Abilene Christian University, Abilene, Texas 79699		
22 23	V. Bairathi and S. Kabana Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile		
24 25	W. Baker, K. Barish, D. Chen, M. L. Kabir, D. Kapukchyan, X. Liang, E. Loyd, A. Paul, C. Racz, R. Seto, and Y. Wu University of California, Riverside, California 92521		
26 27	J. G. Ball Cap University of Houston, Houston, Texas 77204		
28	P. Bhagat, A. Bhasin, A. Gupta, A. Jalotra, and M. Sharma		
29	University of Jammu, Jammu 180001, India		
30 31	S. Bhatta, S. L. Huang, R. Lacey, N. Magdy, C. Sun, Z. Yan, and C. Zhang State University of New York, Stony Brook, New York 11794		
	L C Bordenizhin E Somigullin and D N Suivide		
32 33	I. G. Bordyuzinii, E. Sainigunni, and D. N. Svirida Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute", Moscow 117218		
34	A. V. Brandin, L. Kochenda, P. Kravtsov, G. Nigmatkulov,		
35	V. A. Okorokov, P. Parfenov, M. Strikhanov, and A. Taranenko		
36	National Research Nuclear University MEPhI, Moscow 115409		
37 38	X. Z. Cai and B. Xi Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800		
39	H. Caines, F. A. Flor, J. W. Harris, R. Kunnawalkam Elayavalli,		
40	T. Liu, I. Mooney, D. B. Nemes, Y. Song, and A. Tamis		

41	Yale University, New Haven, Connecticut 06520
42 43	M. Calderón de la Barca Sánchez, D. Cebra, M. D. Harasty, B. Kimelman, and Z. W. Sweger University of California, Davis, California 95616
44	I. Chakaberia, X. Dong, Y. Hu, Y. Ji, H. S. Ko, H. S. Matis,
45	G Odyniec S Ob H G Bitter I H Thomas H Wieman and N Xu
45	Lawrence Berkeley National Laboratory, Berkeley, California 94720
47	B. K. Chan, Y. Cheng, H. Z. Huang, D. Neff, S. Trentalange, G. Wang, X. Wu, and Z. Xu
48	University of California, Los Angeles, California 90095
49	Z. Chang, W. W. Jacobs, H. Liu, and S. W. Wissink
50	Indiana University, Bloomington, Indiana 47408
51	J. Chen, Z. Chen, X. Gou, Y. He, C. Li, T. Lin, M. Nie, N. R. Sahoo, Y. Shi, X. Wang,
52	Z. Wang, Q. H. Xu, Y. Xu, G. Yan, C. Yang, Q. Yang, L. Yi, Y. Yu, and J. Zhang
53	Shandong University, Qingdao, Shandong 266237
	I H Chan S Chaudhury W Ha I Ma V C Ma T Shaa D V Shan O V Shau I Thaa and C Thau
54	J. H. Chen, S. Choudhury, W. He, L. Ma, T. G. Ma, T. Shao, D. T. Shen, Q. T. Shou, J. Zhao, and C. Zhou Fudan University Shanahai 200/33
55	I dadie Oneocrobity, Shangibali, Sooqoo
56	J. Cheng, X. Huang, Y. Huang, K. Kang, Y. Li, Z. Qin, Y. Wang, Z. G. Xiao, and X. Zhu
57	Tsinghua University, Beijing 100084
	W. Christia X. Chu, I. Didanka, I. C. Duplan, O. Evgar, V. Eigyak, K. Kaudar, H. W. Ka, A. Kigalay
58	W. Christie, A. Chu, L. Didenko, J. C. Duniop, O. Eyser, T. Fisyak, K. Kauder, H. W. Ke, A. Kiselev,
59	J. M. Landgraf, A. Lebedev, J. H. Lee, N. Lewis, I. Ljubicic, R. S. Longacre, R. Ma, A. S. Nunes,
60	A. Ogawa, B. S. Page, R. Pak, L. Ruan, W. B. Schmidke, P. V. Shanmuganathan, A. H. Tang, P. Tribedy,
61	Z. Tu, T. Ullrich, G. Van Buren, F. Videbæk, J. C. Webb, Z. Xu, K. Yip, Z. Zhang, and M. Zhao
62	Brookhaven National Laboratory, Upton, New York 11973
63	H. J. Crawford, J. Engelage, E. G. Judd, J. M. Nelson, and C. Perkins
64	University of California, Berkeley, California 94720
65	G. Dale-Gau, O. Evdokimov, T. Huang, G. Wilks, Z. Ye, and Z. Zhang
66	University of Illinois at Chicago, Chicago, Illinois 60607
67	I. M. Deppner, Y. H. Leung, Y. Söhngen, and P. C. Weidenkaff
68	University of Heidelberg, Heidelberg 69120, Germany
69	A. A. Derevschikov, N. G. Minaev, D. A. Morozov, and L. V. Nogach
70	NRC "Kurchatov Institute", Institute of High Energy Physics, Protvino 142281
	I Di Carlo M Kolsey W I Llong C McNemana I Putcehko
71	L. Di Gario, M. Reisey, W. J. Liope, G. McIvaliara, J. I utschke,
72	N. Rana, D. J. Stewart, V. Verkest, and S. A. Volosnin Wayne State University Detroit Michigan 18201
73	wayne State Onibersity, Deirbit, Michigan 48201
74	P. Dixit. Md. Nasim. A. K. Sahoo, and N. Sharma
75	Indian Institute of Science Education and Research (IISER), Berhampur 760010, India
76	E. Duckworth, D. Keane, Y. Liang, S. Margetis, S. K. Radhakrishnan, and A. I. Sheikh
77	Kent State University, Kent, Ohio 44242
	C Eppler E Court- V II C I:- W I: I U 1 17 V
78	G. Eppley, F. Geurts, Y. Hall, C. Jin, W. Ll, I. Upsal, and Z. Ye Rice University Houston Teras 77951
19	

2

80 81	S. Esumi, M. Isshiki, T. Niida, R. Nishitani, T. Nonaka, K. Okubo, H. Sako, S. Sato, and T. Todorok University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan			
82 83	A. Ewigleben, A. G. Knospe, T. Protzman, and C. A. Tomkiel Lehigh University, Bethlehem, Pennsylvania 18015			
84 85	R. Fatemi, H. Harrison, and M. A. Rosales Aguilar University of Kentucky, Lexington, Kentucky 40506-0055			
86 87	S. Fazio University of Calabria & INFN-Cosenza, Italy			
88 89	C. J. Feng, H. Huang, Y. Yang, and Z. J. Zhang National Cheng Kung University, Tainan 70101			
90 91	Y. Feng, C. W. Robertson, B. Srivastava, B. Stringfellow, F. Wang, and W. Xie Purdue University, West Lafayette, Indiana 47907			
92 93	E. Finch Southern Connecticut State University, New Haven, Connecticut 06515			
94 95 96	C. Fu, Y. Huang, F. Liu, H. Liu, L. Liu, Z. Liu, X. F. Luo, K. Mi, S. S. Shi, Y. Wang, J. Wu, Y. Xu, D. Zhang, Y. Zhang, S. Zhou, and Y. Zhou Central China Normal University, Wuhan, Hubei 430079			
97 98	N. Ghimire, N. S. Lukow, J. D. Nam, B. R. Pokhrel, M. Posik, A. Quintero, and B. Surrow Temple University, Philadelphia, Pennsylvania 19122			
99 100	A. Gibson, D. Grosnick, and T. D. S. Stanislaus Valparaiso University, Valparaiso, Indiana 46383			
101 102	K. Gopal, C. Jena, R. Sharma, S. R. Sharma, and P. Sinha Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India			
102	A Hamed			
103	American University of Cairo, New Cairo 11835, New Cairo, Egypt			
105	X H He C Hu O Hu S Kumar C Liu T Lu A K Pandey			
105	H. Qiu, S. Singha, X. Sun, J. Wu, X. Zhang, Y. Zhang, and F. Zhao			
107	Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000			
109	I lia			
108	Brookhaven National Laboratory, Upton, New York 11973 and			
110	State University of New York, Stony Brook, New York 11794			
111	X Iu C Li X Li V Li Z Li M Shao K Shen F Si Y Su			
112	Y Sun Z Tang Y Wang W Zha S Zhang Y Zhang and J Zhou			
112	University of Science and Technology of China, Hefei, Anhui 230026			
	D. Kalinkin			
114	University of Kentucky. Lexinaton. Kentucky 40506-0055 and			
116	Brookhaven National Laboratory, Upton, New York 11973			
	D Mallick B Mohanty and A Panday			
117	National Institute of Science Education and Research, HBNI, Jatni 752050, India			
119	J. A. Mazer, T. Pani, D. Roy, and S. Salur			

120	Rutgers University, Piscataway, New Jersey 08854
121	M. I. Nagy
122	ELTE Eötvös Loránd University, Budapest, Hungary H-1117
123	R. L. Ray
124	University of Texas, Austin, Texas 78712
125	N. Schmitz and P. Seyboth
126	Max-Planck-Institut fur Physik, Munich 80805, Germany
107	I Segar and D. Thisty
127	Creighton University Omaha Nebraska 68178
120	croighton childrony, children, itoriana oci io
129	N. Shah
130	Indian Institute Technology, Patna, Bihar 801106, India
131	M. J. Skoby
132	Ball State University, Muncie, Indiana, 47306 and
133	Purdue University, West Lafayette, Indiana 47907
134	Y. Sun, J. S. Wang, and H. Xu
135	Huzhou University, Huzhou, Zhejiang 313000
136	T. Tarnowsky and G. D. Westfall
137	Michigan State University, East Lansing, Michigan 48824
	O D Tasi
138	University of California Los Angeles California 90095 and
139	Brookhaven National Laboratory Unton New York 11973
140	
141	C V Tsang
141	Kent State University Kent, Ohio 1/2/2 and
143	Brookhaven National Laboratory, Upton, New York 11973
144	D. G. Underwood
145	Argonne National Laboratory, Argonne, Illinois 60439 and
146	Valparaiso University, Valparaiso, Indiana 46383
147	A. N. Vasiliev
148	NRC "Kurchatov Institute", Institute of High Energy Physics, Protvino 142281 and
149	National Research Nuclear University MEPhI, Moscow 115409
150	S. Yang
151	South China Normal University, Guangzhou, Guangaong 510631
150	M Zurek
152	Argonne National Laboratory Argonne Illinois 60139
155	
154	M. Zvzak
155	Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
156	(STAR, Collaboration)
100	
157	We report here the first observation of directed flow (v_1) of the hypernuclei ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ in mid-
158	central Au+Au collisions at $\sqrt{s_{\rm NN}} = 3$ GeV at RHIC. These data are taken as part of the beam
159	energy scan program carried out by the STAR experiment. From 165 million events in 5-40%
160	centrality, about 8400 $\stackrel{\circ}{\Lambda}$ H and 5200 $\stackrel{\circ}{\Lambda}$ H candidates are reconstructed through two- and three-body
161	decay channels. We observe that these hypernuclei exhibit significant directed flow. Comparing to

162 163 164 that of light nuclei, it is found that the mid-rapidity v_1 slopes of ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H follow baryon number scaling, implying that the coalescence is the dominant mechanism for these hypernuclei production in the 3 GeV Au+Au collisions.

When a nucleon is replaced by a hyperon $(e.g. \Lambda, \Sigma)_{217}$ 165 with strangeness S = -1, a nucleus is transformed into a_{218} 166 hypernucleus which allows for the study of the hyperon-219 167 nucleon (Y-N) interaction. It is well known that two-220 168 body Y-N and three-body Y-N-N interactions, espe-221 169 cially at high baryon density, are essential for under-222 170 standing the inner structure of compact stars [1, 2]. New₂₂₃ 171 results on precision measurements of Λ -p elastic scat-224 172 tering from Jefferson Lab [3] and $\Sigma^{-}-p$ elastic scatter-₂₂₅ 173 ing from J-PARC [4, 5] became available recently, which₂₂₆ 174 may help to constrain the equation of state of high den-227 175 sity matter inside a neutron star. Until recently, almost₂₂₈ 176 all hypernuclei measurements have been carried out with₂₂₉ 177 light particle (e.g. e, π^+ , K^-) induced reactions [6–8],₂₃₀ 178 where the Y-N interaction around the saturation density₂₃₁ 179 is analyzed from spectroscopic properties of hypernuclei.232 180 Utilizing hypernuclei production in heavy-ion colli-233 181 sions to study the Y-N interaction and the properties₂₃₄ 182 of QCD matter has been a subject of interest in the₂₃₅ 183 past decades [9–13]. However, due to limited statis-236 184 tics, measurements have been mainly focused on the 185 light hypernuclei lifetime, binding energy and produc-186 tion yields [12, 14, 15]. Thermal model [16] and hadronic 187 transport model with coalescence afterburner [17, 18] cal-188 culations have predicted abundant production of light 189 hypernuclei in high-energy nuclear collisions, especially 190 at high baryon density. Anisotropic flow has been com-191 monly used for studying the properties of matter created 192 in high energy nuclear collisions. Due to its genuine sen-193 sitivity to early collision dynamics [19–22], the first order 194 coefficient of the Fourier-expansion of the azimuthal dis-195 tribution in the momentum space, v_1 , also called the di-196 rected flow, has been analyzed for many particles species 197 ranging from π -mesons to light nuclei [23–28]. Collective 198 flow is driven by pressure gradients created in such col-199 lisions. Hence, measurements of hypernuclei collectivity 200 make it possible to study the Y-N interactions in the 201 QCD equation of state at high baryon density. 202

In this paper, we report the first observation of directed 203 flow, v_1 , of ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H in center-of-mass energy $\sqrt{s_{\rm NN}}$ 204 = 3 GeV Au+Au collisions. The data were collected 205 by the STAR experiment at RHIC with the fixed-target 206 (FXT) setup in 2018. A gold beam of energy 3.85 GeV/u207 208 is bombarded on a gold target of thickness 1% interaction length, located at the entrance of STAR's Time-209 Projection Chamber (TPC) [29]. The TPC, which is the 210 main tracking detector in STAR, is 4.2 m long and 4 211 m in diameter, positioned inside a 0.5 T solenoidal mag-212 netic field along the beam direction. The collision vertex₂₃₇ 213 position of each event along the beam direction, V_z , is₂₃₈ 214 required to be within ± 2 cm of the target position. An₂₃₉ 215 additional requirement on the collision vertex position to₂₄₀ 216

be within a radius r of less than 2 cm is imposed to eliminate background events from interactions with the beam pipe. Beam-Beam Counters (BBC) [30] and the Time of Flight (TOF) detector [31] are used to obtain the minimum bias (MB) trigger condition. After event selection, a total of 2.6×10^8 MB events are used for further analysis.

The centrality is determined using the charged particle multiplicity distribution within the pseudo-rapidity region $-2 < \eta < 0$ together with Monte Carlo (MC) Glauber calculations [32, 33]. The directed flow (v_1) is measured with respect to the first-order event plane, determined by the Event Plane Detector (EPD) [34] which covers $-5.3 < \eta < -2.6$ for the FXT setup. For this analysis, a relatively wide centrality range, 5-40%, is selected where both the event plane resolution and the hypernuclei yield are maximized. The event plane resolution in the centrality range is 40 - 75% [35]. Detailed information on the event plane resolution can be found in the Supplemental Material.

FIG. 1. Reconstructed Λ hyperon and hypernuclei invariant mass distributions from $\sqrt{s_{\rm NN}} = 3$ GeV Au+Au collisions in the corresponding $p_{\rm T}$ -y regions listed in Table I. While top panels are for $\Lambda \rightarrow p + \pi^-$ and ${}^{\Lambda}_{\Lambda}{\rm H} \rightarrow {}^{4}{\rm He} + \pi^-$, bottom panels represent the hypertriton two-body decay ${}^{\Lambda}_{\Lambda}{\rm H} \rightarrow {}^{3}{\rm He} + \pi^$ and three-body decay ${}^{\Lambda}_{\Lambda}{\rm H} \rightarrow d + p + \pi^-$, respectively. Combinatorial backgrounds, shown as histograms, are constructed by rotating decay daughter particles. Background-subtracted invariant mass distributions are shown as filled circles.

In order to ensure high track quality, we require that the number of TPC points used in the track fitting (nHitsFit) to be larger than 15 (out of a maximum of 45). ${}^{3}_{A}$ H is reconstructed via both two-body and three-

body decays ${}^{3}_{\Lambda}\text{H} \rightarrow {}^{3}\text{He} + \pi^{-}$ and ${}^{3}_{\Lambda}\text{H} \rightarrow d + p + \pi^{-}$ 241 while ${}^{4}_{\Lambda}$ H is reconstructed via the two-body decay chan-242 nel, ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$. Charged particles, including π^{-} , 243 $p, d, {}^{3}$ He and 4 He are selected based on the ionization 244 energy loss (dE/dx) measured in the TPC as a func-245 tion of rigidity (p/|q|), where p and q are the momentum 246 and charge of the particle. The secondary decay topol-247 ogy is reconstructed using the KFParticle package based 248 on a Kalman filter method [36, 37]. The package also 249 utilizes the covariance matrix of reconstructed tracks to 250 construct a set of topological variables. Selection cuts on 251 these variables are placed on hypernuclei candidates to₂₇₃ 252 enhance the signal significance. Figure 1 shows the recon-274 253 structed invariant mass distributions for Λ , $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H, $^{275}_{275}$ 254 which are reconstructed using various decay channels in_{276} 255 the corresponding transverse momentum $p_{\rm T}$ - rapidity y_{277} 256 regions as listed in Table I. Combinatorial background is₂₇₈ 257 estimated by rotating decay particles through a random₂₇₉ 258 angle between 10 and 350 degrees. For the $\Lambda,$ the $\pi^-_{_{280}}$ 259 is rotated. For the $^{3(4)}_{\Lambda}$ H two-body decay, the $^{3(4)}$ He is₂₈₁ rotated, and for the $^{3}_{\Lambda}$ H three-body decay, the deuteron₂₈₂ 260 261 is rotated. The combinatorial background, shown as the₂₈₃ 262 shaded region, is normalized in the invariant mass region:284 263 $(1.14, 1.16), (3.01, 3.04), \text{ and } (3.95, 4.0) \text{ GeV}/c^2 \text{ for } \Lambda_{,285}$ 264 ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H, respectively. The background-subtracted in-₂₈₆ 265 variant mass distribution (filled circles) in each panel is₂₈₇ 266 fitted with a linear function plus a Student-t distribution₂₈₈ 267 for Λ and a Gaussian distribution for hypernuclei to ex-289 268 tract the signal count. In total, 8400 $^{3}_{\Lambda}$ H and 5200 $^{4}_{\Lambda}$ H₂₉₀ 269 reconstructed hypernuclei from the 5-40% centrality bin₂₉₁ 270 are used for further analysis. 271 292

FIG. 2. A hyperon and hypernuclei acceptance, shown in $p_{\rm T}^{311}$ versus y, from the $\sqrt{s_{\rm NN}} = 3$ GeV Au+Au collisions. Dashed³¹² rectangular boxes illustrate the acceptance regions used for₃₁₃ directed flow analysis, and the red arrow in panel a) represents₃₁₄ the target rapidity ($y_{\rm target} = -1.045$).

316

TABLE I. p_{T} -y acceptance windows of light nuclei, Λ hyperon and hypernuclei used for directed flow analysis.

Mass Number (A)	Particle	$p_{\rm T}~({\rm GeV}/c)$	y
1	Λ, p	(0.4, 0.8)	(-1.0, 0.0)
2	d	(0.8, 1.6)	(-1.0, 0.0)
2	$^{3}_{\Lambda}H$	(1.0, 2.5)	(-1.0, 0.0)
3	$t, {}^{3}\text{He}$	(1.2, 2.4)	(-1.0, -0.1)
4	$^{4}_{\Lambda}\text{H}$	(1.2, 3.0)	(10, 0.2)
4	⁴ He	(1.6, 3.2)	(-1.0, -0.2)

structed Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H candidates in the center-of-mass frame. Following the established convention [38], the negative sign is assigned to v_1 in the rapidity region of y < 0. The $p_{\rm T}$ -y acceptance windows used for our analysis are tabulated in Table I and also indicated in Fig. 2.

For $p_{\rm T}$ -integrated v_1 measurements, the $p_{\rm T}$ -dependent reconstruction efficiency needs to be accounted for, which is estimated by the embedding method in STAR analyses [12, 39]. Monte-Carlo generated hyperons and hypernuclei are passed through the GEANT3 simulation of the STAR detector. The simulated TPC response is then embedded into data, and the whole event is processed and analyzed using the same procedure as in the data analysis. The two-dimensional reconstruction efficiency, including the detector acceptance, in $p_{\rm T}$ -y are obtained for each decay channel, and applied to candidates in the data accordingly [40]. Kinematically, the three-body decay of ${}^{3}_{\Lambda}$ H is very similar to the background of correlated $d + \Lambda$ due to the very small Λ separation energy of ${}^{3}_{\Lambda}$ H. Such correlated $d + \Lambda$ pairs that pass the ${}^{3}_{\Lambda}$ H threebody decay topological cuts are subtracted statistically (For details, see Fig. 3 in the Supplemental Material, which includes [41]). The ${}^{3}_{\Lambda}$ H signal fraction within the invariant mass window (2.988, 2.998) GeV/c^2 and rapidity range (-1.0, 0.0) is estimated to be 0.69 ± 0.03 .

The directed flow of Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H are extracted with the event plane method [42]. In each rapidity bin, the azimuthal angle with respect to the reconstructed event plane $(\Phi = \Phi' - \Psi_1)$ is further divided into four equal bins with a width of $\pi/4$, where Φ' and Ψ_1 are the azimuth angle of a particle candidate and the first order event plane, respectively. After applying the reconstruction efficiency correction, the azimuthal angle distributions are fitted with a function $f(\Phi) = c_0[1 + 2v_1^{obs} \cdot \cos(\Phi) + 2v_2^{obs} \cdot \cos(2\Phi)]$, where c_0 , v_1^{obs} and v_2^{obs} are fitting parameters, and correspond to the normalization constant, the observed directed and the elliptic flow, respectively. To obtain the final v_1 in a wide centrality range of 5-40% centrality in this analysis, the observed directed flow v_1^{obs} needs to be corrected for the average event plane resolution $\langle 1/R \rangle$ [42], i.e $v_1 = v_1^{obs} \cdot \langle 1/R \rangle$, and $\langle 1/R \rangle = \sum_i (N_i/R_i) / \sum_i N_i$, where N_i and R_i stand for the number of particle candidates and the first order event plane resolution in the *i*-th centrality bin, respectively.

The resulting Λ hyperon and hypernuclei $v_1(y)$, from₃₄₆ 318 5-40% mid-central Au+Au collisions at $\sqrt{s_{\rm NN}} = 3 {\rm ~GeV}_{347}$ 319 are shown in Fig. 3. For comparison, the $v_1(y)$ of $p_{,348}$ 320 d, t, ³He and ⁴He from the same data [43] are shown as₃₄₉ 321 open symbols. $v_1(y)$ of Λ , p, d, t, ³He and ⁴He are fitted₃₅₀ 322 with a third-order polynomial function $v_1(y) = a \cdot y + b \cdot y^{3}_{351}$ 323 in the rapidity ranges listed in Table I, where a, which 324 stands for the mid-rapidity slope $dv_1/dy|_{y=0}$, and b are 325 fitting parameters. Due to limited statistics, the hyper-326 nuclei $v_1(y)$ distributions are fitted with a linear function 327 $v_1(y) = a \cdot y$, in the rapidity range -1.0 < y < 0.0. The lin-328 ear terms for light nuclei are plotted as dashed lines in 329 the positive rapidity region, while for Λ , $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H, they 330 are shown by the yellow-red lines in the corresponding 331 panels. The Λ result is close to that of the proton, and 332 hypernuclei $v_1(y)$ distributions are also similar to those 333 light nuclei with the same mass numbers. This is the 334 first observation of significant hypernuclei directed flow 335 in high-energy nuclear collisions. 336

FIG. 3. A hyperon and hypernuclei directed flow v_1 , shown as a function of rapidity, from the $\sqrt{s_{\rm NN}} = 3$ GeV 5-40% mid-central Au+Au collisions. In the case of ${}^{3}_{\Lambda}$ H v_1 , both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H are shown as the yellow-red lines. The rapidity dependence of v_1 for p, d, t, 3 He, and 4 He are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in₃₅₂ the positive rapidity region [43].

354

Systematic uncertainties are estimated by varying₃₅₅ 337 track selection criteria for particle identification, as well₃₅₆ 338 as cuts on the topological variables used in the KFPar-357 339 ticle package [36]. Major contributors to the systematic₃₅₈ 340 uncertainty are listed in Table II. As one can see, the359 341 dominant sources of systematic uncertainty are from hy-360 342 pernuclei candidate selection, estimated by varying topo-361 343 logical cuts and nHitsFit. Event plane resolution de-362 344 termination also contributes 1.4% [40]. Assuming these₃₆₃ 345

sources are uncorrelated, the total systematic uncertainty is obtained by adding them together quadratically. In case of the $^{3}_{\Lambda}$ H three-body decay, the fraction of the correlated $d\Lambda$ contamination has been analyzed in each rapidity bin. Its systematic uncertainty contribution to the final v_1 slope is negligible.

TABLE II. Sources of systematic uncertainties for midrapidity slope $dv_1/dy|_{y=0}$ of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H.

	$^{3}_{\Lambda}\text{H}$		$^{4}_{\Lambda}\text{H}$
Source	two-body	three-body	two-body
Topological cuts	1.3%	9.4%	8.0%
nHitsFit	9.0% 1.4% 13.1%		<1.0%
EP Resolution			1.4%
Total			8.3%

FIG. 4. Mass dependence of the mid-rapidity v_1 slope, dv_1/dy , for Λ , ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H from the $\sqrt{s_{\rm NN}} = 3$ GeV 5-40% mid-central Au+Au collisions. The statistical and systematic uncertainties are presented by vertical lines and square brackets, respectively. The slopes of p, d, t, 3 He and 4 He from the same collisions are shown as black circles. The blue and dashed green lines are the results of a linear fit to the measured light nuclei and hypernuclei v_1 slopes, respectively. For comparison, calculations of transport models plus coalescence afterburner are shown as gold and red bars from JAM model, and blue bars from UrQMD model.

The results of the mid-rapidity slope dv_1/dy for Λ , ${}_{\Lambda}^{3}$ H (both two- and three-body decays) and ${}_{\Lambda}^{4}$ H are shown in Fig. 4, as filled squares, as a function of particle mass. For comparison, v_1 slopes of p, d, t, 3 He and 4 He from the same 5-40% $\sqrt{s_{\rm NN}} = 3$ GeV Au+Au collisions are shown as open circles. The Λ hyperon and hypernuclei slopes dv_1/dy are all systematically lower than the nuclei of same mass numbers. Linear fits ($f = a + b \cdot mass$) are performed on the mass dependence of dv_1/dy for both light nuclei and hypernuclei. For light nuclei, only statistical uncertainties are used in the fit, while statistical and systematic uncertainties are used for hypernuclei. The

slope parameters b are 0.3323 ± 0.0003 for light nuclei₄₂₀ and 0.27 ± 0.04 for hypernuclei. As one can see, their₄₂₁ slopes are similar within uncertainties.

Using transport models JAM [22, 44] and UrQMD [21],423 367 $v_1(y)$ of Λ and hypernuclei are simulated for the $\sqrt{s_{\rm NN}} =_{424}$ 368 3 GeV Au+Au collisions within the same centrality and₄₂₅ 369 kinematic acceptance used in data analysis. For com-426 370 parison, similar calculations are performed for light nu-427 371 clei. The simulation is done in two steps: (i) using the $_{428}$ 372 JAM model (with momentum-dependent potential) and₄₂₉ 373 UrQMD model (without momentum-dependent poten-430 374 tial) in the mean field mode with the incompressibility $_{431}$ 375 $\kappa = 380$ MeV to produce neutrons, protons and As at₄₃₂ 376 kinetic freeze-out; (ii) forming hypernuclei through the₄₃₃ 377 coalescence of Λ and nucleons, similar to the light nu-434 378 clei production with the coalescence procedure discussed₄₃₅ 379 in [43]. The probability for hypernuclei production i_{436} 380 dictated by coalescence parameters of relative momenta₄₃₇ 381 $\Delta p < 0.12 \ (0.3) \ {\rm GeV/itc}$ and relative distance $\Delta r < 4 \ {\rm fm}_{438}$ 382 in the rest frame of $np\Lambda$ $(nnp\Lambda)$ for ${}^{3}_{\Lambda} H({}^{4}_{\Lambda} H)$. These pa-439 383 rameters are chosen such that the hypernuclei yields at_{440} 384 mid-rapidity can be described [12]. The rapidity depen- $_{441}$ 385 dences of v_1 from the model calculations are then fitted₄₄₂ 386 with a third-order polynomial function within the rapid-443 387 ity interval $-1.0 \le y \le 0.0$. The resulting mid-rapidity₄₄₄ 388 slopes are shown in Fig. 4 as red and blue bars for JAM_{445} 389 and UrQMD models, respectively. In the figure, results₄₄₆ 390 for light nuclei from JAM are also presented as gold bars.447 391 Both transport models (JAM and UrQMD) plus co-448 392 alescence afterburner calculations for hypernuclei are in₄₄₉ 393 agreement with data within uncertainties. Interactions₄₅₀ 394 among baryons and strange baryons are important in-451 395 gredients in the transport models, especially in the high₄₅₂ 396 baryon density region [45, 46]. The properties of the₄₅₃ 397 medium is determined by such interactions. In addition,454 398 the yields of hypernuclei, if created via the coalescence₄₅₅ 399 process, are also strongly affected by the hyperon and nu-456 400 cleon interactions. In our treatment, the coalescence pa-457 401 rameters used $(\Delta r, \Delta p)$ reflect the production probabil-458 402 ity determined by N-N and Y-N interactions [18, 47, 48].₄₅₉ 403 The mass dependence of the $v_1(y)$ slope implies that co-460 404 alescence might be the dominant mechanism for hyper-461 405 nuclei production in such heavy-ion collisions. The mass₄₆₂ 406 dependence of the hypernuclei v_1 slope also seems to be₄₆₃ 407 similar to that of light nuclei, as shown in Fig. 4, although₄₆₄ 408 it may not necessarily be so due to the differences in $N-N_{465}$ 409 and Y-N interactions. Clearly, precision data on hyper-466 410 nuclei collectivity will yield invaluable insights on Y-N 411 interactions at high baryon density. 412

⁴¹³ This is the first report of the collectivity of hypernu-⁴¹⁴ clei in heavy-ion collisions. Hydrodynamically, collective ⁴¹⁵ motion is driven by pressure gradients created in such⁴⁶⁷ ⁴¹⁶ collisions. This work opens up a new direction for study-⁴⁶⁸ ⁴¹⁷ ing Y-N interaction under finite pressure [49]. This is₄₇₀ ⁴¹⁸ important for making connection between nuclear colli-⁴⁷¹ ⁴¹⁹ sions and the equation of state which governs the inner⁴⁷² structure of compact stars.

To summarize, we report the first observation of hypernuclei ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H v_1 from $\sqrt{s_{\rm NN}} = 3$ GeV mid-central 5-40% Au+Au collisions at RHIC. The rapidity dependences of their v_1 are compared with those of Λ , p, d, t, ³He and ⁴He in the same collisions. It is found that, within uncertainties, the mass dependent v_1 slope of hypernuclei, ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H is similar to that of light nuclei, implying that they follow the baryon mass scaling. Calculations from transport models (JAM and UrQMD) plus coalescence afterburner can qualitatively reproduce the rapidity dependence of v_1 and the mass dependence of v_1 slope. These observations suggest that coalescence of nucleons and hyperon Λ could be the dominant mechanism for the hypernuclei ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H production in the 3 GeV collisions. Model calculations suggest that baryon density at freeze-out may depend on collision energy [50– 52]. High statistics data at different energies, especially at the high baryon density region, will help in extracting the information on Y-N interaction and possibly its density dependence in the future.

Acknowledgments: We thank Drs. Y. Nara and J. Steinheimer for insightful discussions. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre and WUT ID-UB of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

- D. Gerstung, N. Kaiser, and W. Weise, Eur. Phys. J. A 56, 175 (2020), arXiv:2001.10563 [nucl-th].
- [2] D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva, Phys. Rev. Lett. **114**, 092301 (2015), arXiv:1407.4448 [nucl-th].
- [3] J. Rowley et al. (CLAS), Phys. Rev. Lett. 127, 272303

(2021), arXiv:2108.03134 [hep-ex].

473

474 [4] K. Miwa *et al.* (J-PARC E40), Phys. Rev. C 104, 045204526
 475 (2021), arXiv:2104.13608 [nucl-ex]. 527

525

544

- 476 [5] K. Miwa *et al.* (J-PARC E40), Phys. Rev. Lett. **128**,528
 477 072501 (2022), arXiv:2111.14277 [nucl-ex]. 529
- [6] A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod.⁵³⁰
 Phys. 88, 035004 (2016), arXiv:1605.00557 [nucl-th]. ⁵³¹
- [7] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 532
 57, 564 (2006). 533
- [8] L. Tang *et al.* (HKS), Phys. Rev. C **90**, 034320 (2014),⁵³⁴
 arXiv:1406.2353 [nucl-ex].
- 484 [9] B. I. Abelev *et al.* (STAR), Science **328**, 58 (2010),536
 485 arXiv:1003.2030 [nucl-ex]. 537
- 486 [10] S. Acharya *et al.* (ALICE), Phys. Lett. B **797**, 134905₅₃₈
 487 (2019), arXiv:1907.06906 [nucl-ex].
- 488 [11] L. Adamczyk *et al.* (STAR), Phys. Rev. C 97, 054909₅₄₀
 489 (2018), arXiv:1710.00436 [nucl-ex].
- 490 [12] M. Abdallah *et al.* (STAR), Phys. Rev. Lett. **128**, 202301₅₄₂
 491 (2022), arXiv:2110.09513 [nucl-ex].
- ⁴⁹² [13] T. R. Saito *et al.*, Nature Rev. Phys. **3**, 803 (2021).
- ⁴⁹³ [14] J. Chen, D. Keane, Y.-G. Ma, A. Tang, and Z. Xu, Phys.₅₄₅
 ⁴⁹⁴ Rept. **760**, 1 (2018), arXiv:1808.09619 [nucl-ex]. 546
- 495 [15] J. Adam *et al.* (STAR), Nature Phys. 16, 409 (2020),547
 496 arXiv:1904.10520 [hep-ex]. 548
- 497 [16] A. Andronic, P. Braun-Munzinger, J. Stachel, 549
 498 and H. Stocker, Phys. Lett. B 697, 203 (2011), 550 499 arXiv:1010.2995 [nucl-th]. 551
- [17] J. Steinheimer *et al.*, Phys. Lett. B **714**, 85 (2012), 552
 arXiv:1203.2547 [nucl-th]. 553
- [18] J. Aichelin *et al.*, Phys. Rev. C **101**, 044905 (2020),554
 arXiv:1907.03860 [nucl-th].
- [19] C. M. Hung and E. V. Shuryak, Phys. Rev. Lett. 75,556
 4003 (1995), arXiv:hep-ph/9412360.
- 506 [20] J. Brachmann *et al.*, Phys. Rev. C **61**, 024909 (2000),558
 507 arXiv:nucl-th/9908010.
- 508 [21] J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, 560
 509 and H. Stöcker, Phys. Rev. C 89, 054913 (2014), 561
 510 arXiv:1402.7236 [nucl-th]. 562
- [22] Y. Nara, H. Niemi, A. Ohnishi, and H. Stöcker, Phys. 563
 Rev. C 94, 034906 (2016), arXiv:1601.07692 [hep-ph]. 564
- ⁵¹³ [23] L. Adamczyk *et al.* (STAR), Phys. Rev. Lett. **112**,565
 ⁵¹⁴ 162301 (2014), arXiv:1401.3043 [nucl-ex].
- 515 [24] L. Adamczyk *et al.* (STAR), Phys. Rev. Lett. **120**,567
 516 062301 (2018), arXiv:1708.07132 [hep-ex]. 568
- ⁵¹⁷ [25] J. Adam *et al.* (STAR), Phys. Rev. C **102**, 044906 (2020), ⁵⁶⁹ arXiv:2007.04609 [nucl-ex]. ⁵⁷⁰
- [26] L. Adamczyk *et al.* (STAR), Phys. Rev. C 88, 014902₅₇₁
 (2013), arXiv:1301.2348 [nucl-ex].
- ⁵²¹ [27] J. Adam *et al.* (STAR), Phys. Rev. C **103**, 034908 (2021), ⁵²² arXiv:2007.14005 [nucl-ex]. ⁵⁷⁴
- ⁵²³ [28] A. Bzdak *et al.*, Phys. Rept. **853**, 1 (2020), ⁵⁷⁵ arXiv:1906.00936 [nucl-th]. ⁵⁷⁶

- [29] M. Anderson *et al.*, Nucl. Instrum. Meth. A **499**, 659 (2003), arXiv:nucl-ex/0301015.
- [30] C. A. Whitten (STAR), AIP Conf. Proc. **980**, 390 (2008).
- [31] W. J. Llope (STAR), Nucl. Instrum. Meth. A 661, S110 (2012).
- [32] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007), arXiv:nuclex/0701025.
- [33] B. I. Abelev *et al.* (STAR), Phys. Rev. C **81**, 024911 (2010), arXiv:0909.4131 [nucl-ex].
- [34] J. Adams *et al.*, Nucl. Instrum. Meth. A **968**, 163970 (2020), arXiv:1912.05243 [physics.ins-det].
- [35] M. S. Abdallah *et al.* (STAR), Phys. Lett. B **827**, 137003 (2022), arXiv:2108.00908 [nucl-ex].
- [36] I. Kisel (CBM), J. Phys. Conf. Ser. **1070**, 012015 (2018).
- [37] M. Zyzak, Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR, Ph.D. thesis, Frankfurt U. (2016).
- [38] H. Liu et al. (E895), Phys. Rev. Lett. 84, 5488 (2000), arXiv:nucl-ex/0005005.
- [39] J. Adam *et al.* (STAR), Phys. Rev. C **102**, 034909 (2020), arXiv:1906.03732 [nucl-ex].
- [40] M. S. Abdallah *et al.* (STAR), Phys. Lett. B **827**, 137003 (2022), arXiv:2108.00908 [nucl-ex].
- [41] J. Haidenbauer, Phys. Rev. C 102, 034001 (2020), arXiv:2005.05012 [nucl-th].
- [42] H. Masui, A. Schmah, and A. M. Poskanzer, Nucl. Instrum. Meth. A 833, 181 (2016), arXiv:1212.3650 [physics.data-an].
- [43] M. Abdallah *et al.* (STAR), Phys. Lett. B **827**, 136941 (2022), arXiv:2112.04066 [nucl-ex].
- [44] Y. Nara *et al.*, Phys. Rev. C **61**, 024901 (2000), arXiv:nucl-th/9904059.
- [45] A. S. Botvina, K. K. Gudima, J. Steinheimer, M. Bleicher, and J. Pochodzalla, Phys. Rev. C 95, 014902 (2017), arXiv:1608.05680 [nucl-th].
- [46] A. S. Botvina, J. Steinheimer, E. Bratkovskaya, M. Bleicher, and J. Pochodzalla, Phys. Lett. B 742, 7 (2015), arXiv:1412.6665 [nucl-th].
- [47] T. Shao, J. Chen, C. M. Ko, K.-J. Sun, and Z. Xu, Chin. Phys. C 44, 114001 (2020), arXiv:2004.02385 [nucl-ex].
- [48] F. Wang and S. Pratt, Phys. Rev. Lett. 83, 3138 (1999), arXiv:nucl-th/9907019.
- [49] T. Neidig, K. Gallmeister, C. Greiner, M. Bleicher, and V. Vovchenko, Phys. Lett. B 827, 136891 (2022), arXiv:2108.13151 [hep-ph].
- [50] T. Reichert, G. Inghirami, and M. Bleicher, Eur. Phys. J. A 56, 267 (2020), arXiv:2007.06440 [nucl-th].
- [51] J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 73, 034905 (2006), arXiv:hep-ph/0511094.
- [52] J. Randrup and J. Cleymans, Phys. Rev. C 74, 047901 (2006), arXiv:hep-ph/0607065.