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We report here the first observation of directed flow (v1) of the hypernuclei 3H and 3 H in mid-
central Au+Au collisions at /sxy = 3 GeV at RHIC. These data are taken as part of the beam
energy scan program carried out by the STAR experiment. From 165 million events in 5-40%
centrality, about 8400 3H and 5200 4H candidates are reconstructed through two- and three-body
decay channels. We observe that these hypernuclei exhibit significant directed flow. Comparing to
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that of light nuclei, it is found that the mid-rapidity v; slopes of 3H and 4 H follow baryon number
scaling, implying that the coalescence is the dominant mechanism for these hypernuclei production

in the 3 GeV Au-+Au collisions.

When a nucleon is replaced by a hyperon (e.g. A, ¥)air
with strangeness S = -1, a nucleus is transformed into aas
hypernucleus which allows for the study of the hyperon-z
nucleon (Y-N) interaction. It is well known that two-20
body Y-N and three-body Y-N-N interactions, espe-n
cially at high baryon density, are essential for under-»
standing the inner structure of compact stars [1, 2]. Newzs
results on precision measurements of A-p elastic scat-i,
tering from Jefferson Lab [3] and X7 -p elastic scatter-,s
ing from J-PARC [4, 5] became available recently, whichax
may help to constrain the equation of state of high den-,;
sity matter inside a neutron star. Until recently, almostas
all hypernuclei measurements have been carried out with,,
light particle (e.g. e, 7, K~) induced reactions [6-8],0
where the Y-V interaction around the saturation densitys
is analyzed from spectroscopic properties of hypernuclei.ss,

Utilizing hypernuclei production in heavy-ion colli-»s;
sions to study the Y-N interaction and the propertiesss,
of QCD matter has been a subject of interest in theys:s
past decades [9-13]. However, due to limited statis-,
tics, measurements have been mainly focused on the
light hypernuclei lifetime, binding energy and produc-
tion yields [12, 14, 15]. Thermal model [16] and hadronic
transport model with coalescence afterburner [17, 18] cal-
culations have predicted abundant production of light
hypernuclei in high-energy nuclear collisions, especially
at high baryon density. Anisotropic flow has been com-
monly used for studying the properties of matter created
in high energy nuclear collisions. Due to its genuine sen-
sitivity to early collision dynamics [19-22], the first order
coefficient of the Fourier-expansion of the azimuthal dis-
tribution in the momentum space, vy, also called the di-
rected flow, has been analyzed for many particles species
ranging from m-mesons to light nuclei [23-28]. Collective
flow is driven by pressure gradients created in such col-
lisions. Hence, measurements of hypernuclei collectivity
make it possible to study the Y-N interactions in the
QCD equation of state at high baryon density.

In this paper, we report the first observation of directed
flow, vy, of f’\H and j‘\H in center-of-mass energy /sNn
= 3 GeV Au+Au collisions. The data were collected
by the STAR experiment at RHIC with the fixed-target
(FXT) setup in 2018. A gold beam of energy 3.85 GeV /u
is bombarded on a gold target of thickness 1% interac-
tion length, located at the entrance of STAR’s Time-
Projection Chamber (TPC) [29]. The TPC, which is the
main tracking detector in STAR, is 4.2 m long and 4
m in diameter, positioned inside a 0.5T solenoidal mag-
netic field along the beam direction. The collision vertexasr
position of each event along the beam direction, V., iszs
required to be within £2 cm of the target position. Anas
additional requirement on the collision vertex position too

be within a radius r of less than 2 cm is imposed to elimi-
nate background events from interactions with the beam
pipe. Beam-Beam Counters (BBC) [30] and the Time of
Flight (TOF) detector [31] are used to obtain the mini-
mum bias (MB) trigger condition. After event selection,
a total of 2.6x10% MB events are used for further analy-
sis.

The centrality is determined using the charged particle
multiplicity distribution within the pseudo-rapidity re-
gion -2 < 1 < 0 together with Monte Carlo (MC) Glauber
calculations [32, 33]. The directed flow (vq) is measured
with respect to the first-order event plane, determined
by the Event Plane Detector (EPD) [34] which covers
—5.3 < n < —2.6 for the FXT setup. For this analysis, a
relatively wide centrality range, 5-40%, is selected where
both the event plane resolution and the hypernuclei yield
are maximized. The event plane resolution in the central-
ity range is 40 — 75% [35]. Detailed information on the
event plane resolution can be found in the Supplemental
Material.
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FIG. 1. Reconstructed A hyperon and hypernuclei invariant
mass distributions from /sxy = 3 GeV Au+Au collisions in
the corresponding pr-y regions listed in Table I. While top
panels are for A — p+7n~ and 4H — *He + 7, bottom pan-
els represent the hypertriton two-body decay 3H — 3He+ 7~
and three-body decay 3H — d+p+ 7, respectively. Combi-
natorial backgrounds, shown as histograms, are constructed
by rotating decay daughter particles. Background-subtracted
invariant mass distributions are shown as filled circles.

In order to ensure high track quality, we require that
the number of TPC points used in the track fitting
(nHitsFit) to be larger than 15 (out of a maximum of
45). 3H is reconstructed via both two-body and three-
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body decays 3H — 3He + 7~ and 3H — d+p + 7~
while 1 H is reconstructed via the two-body decay chan-
nel, 4H — “He + 7—. Charged particles, including 7,
p, d, *He and *He are selected based on the ionization
energy loss (dE/dz) measured in the TPC as a func-
tion of rigidity (p/|q|), where p and ¢ are the momentum
and charge of the particle. The secondary decay topol-
ogy is reconstructed using the KFParticle package based
on a Kalman filter method [36, 37]. The package also
utilizes the covariance matrix of reconstructed tracks to
construct a set of topological variables. Selection cuts on
these variables are placed on hypernuclei candidates to,;,
enhance the signal significance. Figure 1 shows the recon-,,
structed invariant mass distributions for A, 3H and 3 H,,s
which are reconstructed using various decay channels in,,
the corresponding transverse momentum pr - rapidity y..,
regions as listed in Table I. Combinatorial background is,,
estimated by rotating decay particles through a random,,,
angle between 10 and 350 degrees. For the A, the 7 4,
is rotated. For the i(4)H two-body decay, the 3*)He iss
rotated, and for the 3H three-body decay, the deuteronzs
is rotated. The combinatorial background, shown as thezss
shaded region, is normalized in the invariant mass region:ss
(1.14, 1.16), (3.01, 3.04), and (3.95, 4.0) GeV/c? for A,z
3H and 3 H, respectively. The background-subtracted in-ze
variant mass distribution (filled circles) in each panel isssr
fitted with a linear function plus a Student-t distributionzes
for A and a Gaussian distribution for hypernuclei to ex-2so
tract the signal count. In total, 8400 3H and 5200 4 Haso
reconstructed hypernuclei from the 5-40% centrality bins
are used for further analysis. 202
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FIG. 2. A hyperon and hypernuclei acceptance, shown in pp3t
versus y, from the \/snn = 3 GeV Au+Au collisions. Dasheds2
rectangular boxes illustrate the acceptance regions used forss
directed flow analysis, and the red arrow in panel a) represents,,,
the target rapidity (ysarget = -1.045).
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Figure 2 shows the pr versus y acceptance of the recon-sr

TABLE I. pr-y acceptance windows of light nuclei, A hyperon
and hypernuclei used for directed flow analysis.

Mass Number (A)|Particle|pr (GeV/c) Y
1 A p | (0.4,08) |(-1.0, 0.0)
2 d | (08,1.6) |(-1.0, 0.0)
3 ?\3H (1.0, 2.5) |(-1.0, 0.0)
t 3He | (1.2,2.4) [(-1.0,-0.1)
iH 1.2, 3.0
4 e El 6 3'23 (-1.0, -0.2)

structed A, 3H and 4H candidates in the center-of-mass
frame. Following the established convention [38], the neg-
ative sign is assigned to v; in the rapidity region of y <
0. The pr-y acceptance windows used for our analysis
are tabulated in Table I and also indicated in Fig. 2.

For pr-integrated v; measurements, the pp-dependent
reconstruction efficiency needs to be accounted for, which
is estimated by the embedding method in STAR analy-
ses [12, 39]. Monte-Carlo generated hyperons and hy-
pernuclei are passed through the GEANT3 simulation of
the STAR detector. The simulated TPC response is then
embedded into data, and the whole event is processed
and analyzed using the same procedure as in the data
analysis. The two-dimensional reconstruction efficiency,
including the detector acceptance, in pp-y are obtained
for each decay channel, and applied to candidates in the
data accordingly [40]. Kinematically, the three-body de-
cay of 3H is very similar to the background of corre-
lated d + A due to the very small A separation energy of
3H. Such correlated d + A pairs that pass the 3H three-
body decay topological cuts are subtracted statistically
(For details, see Fig. 3 in the Supplemental Material,
which includes [41]). The 3H signal fraction within the
invariant mass window (2.988, 2.998) GeV/c? and rapid-
ity range (-1.0, 0.0) is estimated to be 0.69 £ 0.03.

The directed flow of A, 3H and } H are extracted with
the event plane method [42]. In each rapidity bin, the
azimuthal angle with respect to the reconstructed event
plane (& = &' —U,) is further divided into four equal bins
with a width of 7/4, where ® and ¥; are the azimuth
angle of a particle candidate and the first order event
plane, respectively. After applying the reconstruction
efficiency correction, the azimuthal angle distributions
are fitted with a function f(®) = co[l + 2v§**- cos(®) +
208%%. cos(2®)], where cp, v{** and v$* are fitting pa-
rameters, and correspond to the normalization constant,
the observed directed and the elliptic flow, respectively.
To obtain the final v; in a wide centrality range of 5-
40% centrality in this analysis, the observed directed
flow v$** needs to be corrected for the average event
plane resolution (1/R) [42], i.e v; = v¢** - (1/R), and
(1/R) = >, (N;i/R;)/>_; Ni, where N; and R; stand
for the number of particle candidates and the first order
event plane resolution in the i-th centrality bin, respec-
tively.
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The resulting A hyperon and hypernuclei vy (y), fromsss
5-40% mid-central Au+Au collisions at /sy = 3 GeVaw
, are shown in Fig. 3. For comparison, the v1(y) of p,us
d, t, *He and “He from the same data [43] are shown asas
open symbols. vy (y) of A, p, d, t, *He and *He are fittedss
with a third-order polynomial function vy (y)=a-y-+b-y3sm
in the rapidity ranges listed in Table I, where a, which
stands for the mid-rapidity slope dvq/dy|y=0, and b are
fitting parameters. Due to limited statistics, the hyper-
nuclei vq (y) distributions are fitted with a linear function
v1(y)=a-y, in the rapidity range —1.0 < y < 0.0. The lin-
ear terms for light nuclei are plotted as dashed lines in
the positive rapidity region, while for A, 3 H and 4 H, they
are shown by the yellow-red lines in the corresponding
panels. The A result is close to that of the proton, and
hypernuclei v1(y) distributions are also similar to those
light nuclei with the same mass numbers. This is the
first observation of significant hypernuclei directed flow
in high-energy nuclear collisions.
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FIG. 3. A hyperon and hypernuclei directed flow v1, shown
as a function of rapidity, from the /snn = 3 GeV 5-40%
mid-central Au+Au collisions. In the case of f’\H v1, both
two-body (dots) and three-body (triangles) decays are used.
The linear terms of the fitting for A, 3H and 4H are shown
as the yellow-red lines. The rapidity dependence of v; for p,
d, t, ®He, and *He are also shown as open markers (circles,
diamonds, up-triangles, down-triangles and squares), and the
linear terms of the fitting results are shown as dashed lines inss.
the positive rapidity region [43]. 353
354
Systematic uncertainties are estimated by varyingsss
track selection criteria for particle identification, as wellsss
as cuts on the topological variables used in the KFPar-ss
ticle package [36]. Major contributors to the systematicsss
uncertainty are listed in Table II. As one can see, thess
dominant sources of systematic uncertainty are from hy-s
pernuclei candidate selection, estimated by varying topo-ze
logical cuts and nHitsFit. Event plane resolution de-z:
termination also contributes 1.4% [40]. Assuming thesess

sources are uncorrelated, the total systematic uncertainty
is obtained by adding them together quadratically. In
case of the 3H three-body decay, the fraction of the cor-
related dA contamination has been analyzed in each ra-
pidity bin. Its systematic uncertainty contribution to the

final vy slope is negligible.

TABLE II. Sources of systematic uncertainties for mid-

rapidity slope dvy /dy|y—o0 of 3H and A H.

3H Al
A A
Source two-body | three-body | two-body
Topological cuts| 1.3% 9.4% 8.0%
nHitsFit 9.0% <1.0%
EP Resolution 1.4% 1.4%
Total 13.1% 8.3%
T T T
Au+Au Collisionsat RHIC Hed”
Energy: |Syy =3GeV -
Centrality: 5-40% Y 4 v )
1.0 b /* —
T He* e
;>‘ p 4 - 4H
o d .- ~
\H . o // 3H
= 0.5 7 A -
© p 7
o ~ Data Model
- ./ Hypernucle [ =7 UrQMD
- JAN Light nudei O > 9aM
oob————mmmmmm™mMm}/m™mM@m™mM@m————— —
! ! ! !
1 2 3 4
Particle Mass (GeV/c?)
FIG. 4. Mass dependence of the mid-rapidity v: slope,

dvi/dy, for A, YH and {H from the \/snn = 3 GeV 5-40%
mid-central Au+Au collisions. The statistical and system-
atic uncertainties are presented by vertical lines and square
brackets, respectively. The slopes of p, d, t, He and *He from
the same collisions are shown as black circles. The blue and
dashed green lines are the results of a linear fit to the mea-
sured light nuclei and hypernuclei v; slopes, respectively. For
comparison, calculations of transport models plus coalescence
afterburner are shown as gold and red bars from JAM model,
and blue bars from UrQMD model.

The results of the mid-rapidity slope dv;/dy for A, 3H
(both two- and three-body decays) and }H are shown in
Fig. 4, as filled squares, as a function of particle mass.
For comparison, v; slopes of p, d, t, 3He and *He from
the same 5-40% /s = 3 GeV Au+Au collisions are
shown as open circles. The A hyperon and hypernuclei
slopes dv; /dy are all systematically lower than the nuclei
of same mass numbers. Linear fits (f = a + b-mass) are
performed on the mass dependence of dvy/dy for both
light nuclei and hypernuclei. For light nuclei, only statis-
tical uncertainties are used in the fit, while statistical and
systematic uncertainties are used for hypernuclei. The
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slope parameters b are 0.3323 + 0.0003 for light nucleiso
and 0.27 £ 0.04 for hypernuclei. As one can see, theirs
slopes are similar within uncertainties. -

Using transport models JAM [22, 44] and UrQMD [21],42s
v1(y) of A and hypernuclei are simulated for the /syN =2
3 GeV Au+Au collisions within the same centrality andas
kinematic acceptance used in data analysis. For com-ss
parison, similar calculations are performed for light nu-.-
clei. The simulation is done in two steps: (i) using theas
JAM model (with momentum-dependent potential) andas
UrQMD model (without momentum-dependent poten-so
tial) in the mean field mode with the incompressibilityas
k = 380 MeV to produce neutrons, protons and As ats:
kinetic freeze-out; (ii) forming hypernuclei through theas
coalescence of A and nucleons, similar to the light nu-us
clei production with the coalescence procedure discussedass
in [43]. The probability for hypernuclei production isas
dictated by coalescence parameters of relative momentaas
Ap < 0.12 (0.3) GeV/itc and relative distance Ar < 4 fmass
in the rest frame of npA (nnpA) for 3H(1H). These pa-o
rameters are chosen such that the hypernuclei yields atao
mid-rapidity can be described [12]. The rapidity depen-,,
dences of v; from the model calculations are then fitted,,,
with a third-order polynomial function within the rapid-,.;
ity interval —1.0 < y < 0.0. The resulting mid-rapidity,.,
slopes are shown in Fig. 4 as red and blue bars for JAM s
and UrQMD models, respectively. In the figure, results,,
for light nuclei from JAM are also presented as gold bars. .,

Both transport models (JAM and UrQMD) plus co-ss
alescence afterburner calculations for hypernuclei are inse
agreement with data within uncertainties. Interactions.s
among baryons and strange baryons are important in-ss
gredients in the transport models, especially in the highus.
baryon density region [45, 46]. The properties of theuss
medium is determined by such interactions. In addition,sss
the yields of hypernuclei, if created via the coalescencesss
process, are also strongly affected by the hyperon and nu-ss
cleon interactions. In our treatment, the coalescence pa-ss;
rameters used (Ar, Ap) reflect the production probabil-sss
ity determined by N-N and Y-N interactions [18, 47, 48].s
The mass dependence of the vy (y) slope implies that co-o
alescence might be the dominant mechanism for hyper-s
nuclei production in such heavy-ion collisions. The massue:
dependence of the hypernuclei v; slope also seems to beus
similar to that of light nuclei, as shown in Fig. 4, althoughuae.
it may not necessarily be so due to the differences in N-N s
and Y-N interactions. Clearly, precision data on hyper-se
nuclei collectivity will yield invaluable insights on Y-N
interactions at high baryon density.

This is the first report of the collectivity of hypernu-
clei in heavy-ion collisions. Hydrodynamically, collective
motion is driven by pressure gradients created in such*
collisions. This work opens up a new direction for study—j:
ing Y-N interaction under finite pressure [49]. This is,,
important for making connection between nuclear colli-,,
sions and the equation of state which governs the innera

structure of compact stars.

To summarize, we report the first observation of hyper-
nuclei 3H and {H v; from /syn = 3 GeV mid-central
5-40% Au+Au collisions at RHIC. The rapidity depen-
dences of their vy are compared with those of A, p, d,
t, 3He and *He in the same collisions. It is found that,
within uncertainties, the mass dependent v slope of hy-
pernuclei, f’\H and ?\H is similar to that of light nuclei,
implying that they follow the baryon mass scaling. Cal-
culations from transport models (JAM and UrQMD) plus
coalescence afterburner can qualitatively reproduce the
rapidity dependence of v; and the mass dependence of
vy slope. These observations suggest that coalescence of
nucleons and hyperon A could be the dominant mecha-
nism for the hypernuclei 3 H and 4 H production in the 3
GeV collisions. Model calculations suggest that baryon
density at freeze-out may depend on collision energy [50—
52]. High statistics data at different energies, especially
at the high baryon density region, will help in extract-
ing the information on Y-N interaction and possibly its
density dependence in the future.
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