This is the accepted manuscript made available via CHORUS. The article has been published as:

Observation of Directed Flow of Hypernuclei math xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" $>$ mrow $>$ mmultiscripts $>$ mrow $>$ mi mathvariant="normal" $>\mathrm{H} / \mathrm{mi}>/$ mrow $>$ mprescripts $>/ m p r e s$ cripts $>$ mrow $>$ mi mathvariant $=$ "normal" $>\Lambda / \mathrm{mi}>$ /mrow $>$ mrow $>\mathrm{mn}>3 / \mathrm{mn}>/ \mathrm{mrow}>/ m m u l t i s c r i p t s>/ m r o w>/$ math> and math
xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" $>$ mrow $>$ mmultiscripts $>$ mrow $>$ mi mathvariant="normal" $>\mathrm{H} / \mathrm{mi}>/$ mrow $>$ mprescripts $>/$ mpres cripts $>$ mrow $>$ mi mathvariant="normal" $>\Lambda / \mathrm{mi}>$ /mrow $>$ mrow $>\mathrm{mn}>4 / \mathrm{mn}>/$ mrow $>/$ mmultiscripts $>/ m r o w>/$ math $>$ in math
xmlns="http://www.w3.org/1998/Math/MathML" display $=$ "inline" $>$ mrow $>$ msqrt $>$ mrow $>m s u b>m r o w>m i>s$ /mi>/mrow $>$ mrow $>\mathrm{mi}>\mathrm{NN} / \mathrm{mi}>/ \mathrm{mrow}>/ \mathrm{msub}>/ \mathrm{mrow}>/ \mathrm{ms}$ qrt $>\mathrm{mo}>=/ \mathrm{mo}>\mathrm{mn}>3 / \mathrm{mn}>$ mtext $>/$ mtext $>$ mtext $>/ m t e x t$ $>\mathrm{mi}>\mathrm{GeV} / \mathrm{mi}>/ \mathrm{mrow}>/$ math $>$ math
xmlns="http://www.w3.org/1998/Math/MathML"
display $=$ "inline" $>\mathrm{mrow}>\mathrm{mi}>\mathrm{Au} / \mathrm{mi}>\mathrm{mo}>+/ \mathrm{mo}>\mathrm{mi}>\mathrm{Au} / \mathrm{mi}$ $>/$ mrow $>/$ math $>$ Collisions at RHIC
B. E. Aboona et al. (STAR Collaboration)

Phys. Rev. Lett. 130, 212301 — Published 24 May 2023 DOI: 10.1103/PhysRevLett.130.212301

First Observation of Directed Flow of Hypernuclei ${ }_{\Lambda}^{3} \mathbf{H}$ and ${ }_{\Lambda}^{4} \mathbf{H}$ in $\sqrt{s_{\mathrm{NN}}}=\mathbf{3} \mathbf{G e V}$ $\mathrm{Au}+\mathrm{Au}$ Collisions at RHIC

B. E. Aboona, D. M. Anderson, Y. Liu, J. Pan, and R. E. Tribble
Texas A\&゙M University, College Station, Texas 77843
J. Adam, J. Ceska, A. Das, and O. Lomicky Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
J. R. Adams, J. D. Brandenburg, T. J. Humanic, and X. Liu Ohio State University, Columbus, Ohio 43210
G. Agakishiev, A. Aitbaev, A. Aparin, G. S. Averichev, T. G. Dedovich, A. Kechechyan, A. A. Korobitsin, R. Lednicky, V. B. Luong, A. Mudrokh, Y. Panebratsev, O. V. Rogachevsky, E. Shahaliev, M. V. Tokarev, and S. Vokal Joint Institute for Nuclear Research, Dubna 141980
I. Aggarwal, M. M. Aggarwal, A. Dhamija, L. Kumar, A. S. Nain, N. K. Pruthi, and J. Singh Panjab University, Chandigarh 160014, India
Z. Ahammed
Variable Energy Cyclotron Centre, Kolkata 700064, India
I. Alekseev
Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute", Moscow 117218 and National Research Nuclear University MEPhI, Moscow 115409
J. Atchison, M. Daugherity, J. L. Drachenberg, and D. Isenhower
Abilene Christian University, Abilene, Texas 79699
V. Bairathi and S. Kabana
Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
W. Baker, K. Barish, D. Chen, M. L. Kabir, D. Kapukchyan, X. Liang, E. Loyd, A. Paul, C. Racz, R. Seto, and Y. Wu
University of California, Riverside, California 92521
J. G. Ball Cap
University of Houston, Houston, Texas 77204
P. Bhagat, A. Bhasin, A. Gupta, A. Jalotra, and M. Sharma
University of Jammu, Jammu 180001, India
S. Bhatta, S. L. Huang, R. Lacey, N. Magdy, C. Sun, Z. Yan, and C. Zhang State University of New York, Stony Brook, New York 11794
I. G. Bordyuzhin, E. Samigullin, and D. N. Svirida
Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute", Moscow 117218
A. V. Brandin, L. Kochenda, P. Kravtsov, G. Nigmatkulov,
V. A. Okorokov, P. Parfenov, M. Strikhanov, and A. Taranenko National Research Nuclear University MEPhI, Moscow 115409
X. Z. Cai and B. Xi
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
H. Caines, F. A. Flor, J. W. Harris, R. Kunnawalkam Elayavalli, T. Liu, I. Mooney, D. B. Nemes, Y. Song, and A. Tamis

M. Calderón de la Barca Sánchez, D. Cebra, M. D. Harasty, B. Kimelman, and Z. W. Sweger University of California, Davis, California 95616
I. Chakaberia, X. Dong, Y. Hu, Y. Ji, H. S. Ko, H. S. Matis,
G. Odyniec, S. Oh, H. G. Ritter, J. H. Thomas, H. Wieman, and N. Xu

Lawrence Berkeley National Laboratory, Berkeley, California 94720
B. K. Chan, Y. Cheng, H. Z. Huang, D. Neff, S. Trentalange, G. Wang, X. Wu, and Z. Xu University of California, Los Angeles, California 90095
Z. Chang, W. W. Jacobs, H. Liu, and S. W. Wissink Indiana University, Bloomington, Indiana 47408
J. Chen, Z. Chen, X. Gou, Y. He, C. Li, T. Lin, M. Nie, N. R. Sahoo, Y. Shi, X. Wang, Z. Wang, Q. H. Xu, Y. Xu, G. Yan, C. Yang, Q. Yang, L. Yi, Y. Yu, and J. Zhang Shandong University, Qingdao, Shandong 266237
J. H. Chen, S. Choudhury, W. He, L. Ma, Y. G. Ma, T. Shao, D. Y. Shen, Q. Y. Shou, J. Zhao, and C. Zhou Fudan University, Shanghai, 200433
J. Cheng, X. Huang, Y. Huang, K. Kang, Y. Li, Z. Qin, Y. Wang, Z. G. Xiao, and X. Zhu Tsinghua University, Beijing 100084
W. Christie, X. Chu, L. Didenko, J. C. Dunlop, O. Eyser, Y. Fisyak, K. Kauder, H. W. Ke, A. Kiselev, J. M. Landgraf, A. Lebedev, J. H. Lee, N. Lewis, T. Ljubicic, R. S. Longacre, R. Ma, A. S. Nunes, A. Ogawa, B. S. Page, R. Pak, L. Ruan, W. B. Schmidke, P. V. Shanmuganathan, A. H. Tang, P. Tribedy, Z. Tu, T. Ullrich, G. Van Buren, F. Videbæk, J. C. Webb, Z. Xu, K. Yip, Z. Zhang, and M. Zhao Brookhaven National Laboratory, Upton, New York 11973
H. J. Crawford, J. Engelage, E. G. Judd, J. M. Nelson, and C. Perkins University of California, Berkeley, California 94720
G. Dale-Gau, O. Evdokimov, T. Huang, G. Wilks, Z. Ye, and Z. Zhang University of Illinois at Chicago, Chicago, Illinois 60607
I. M. Deppner, Y. H. Leung, Y. Söhngen, and P. C. Weidenkaff University of Heidelberg, Heidelberg 69120, Germany
A. A. Derevschikov, N. G. Minaev, D. A. Morozov, and L. V. Nogach

NRC "Kurchatov Institute", Institute of High Energy Physics, Protvino 142281
L. Di Carlo, M. Kelsey, W. J. Llope, G. McNamara, J. Putschke,
N. Raha, D. J. Stewart, V. Verkest, and S. A. Voloshin Wayne State University, Detroit, Michigan 48201
P. Dixit, Md. Nasim, A. K. Sahoo, and N. Sharma

Indian Institute of Science Education and Research (IISER), Berhampur 760010 , India
E. Duckworth, D. Keane, Y. Liang, S. Margetis, S. K. Radhakrishnan, and A. I. Sheikh Kent State University, Kent, Ohio 44242
G. Eppley, F. Geurts, Y. Han, C. Jin, W. Li, I. Upsal, and Z. Ye Rice University, Houston, Texas 77251
S. Esumi, M. Isshiki, T. Niida, R. Nishitani, T. Nonaka, K. Okubo, H. Sako, S. Sato, and T. Todoroki University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
A. Ewigleben, A. G. Knospe, T. Protzman, and C. A. Tomkiel Lehigh University, Bethlehem, Pennsylvania 18015
R. Fatemi, H. Harrison, and M. A. Rosales Aguilar

University of Kentucky, Lexington, Kentucky 40506-0055
S. Fazio

University of Calabria $\mathcal{E}^{\text {I }}$ INFN-Cosenza, Italy
C. J. Feng, H. Huang, Y. Yang, and Z. J. Zhang National Cheng Kung University, Tainan 70101
Y. Feng, C. W. Robertson, B. Srivastava, B. Stringfellow, F. Wang, and W. Xie Purdue University, West Lafayette, Indiana 47907
E. Finch

Southern Connecticut State University, New Haven, Connecticut 06515
C. Fu, Y. Huang, F. Liu, H. Liu, L. Liu, Z. Liu, X. F. Luo, K. Mi, S. S. Shi,
Y. Wang, J. Wu, Y. Xu, D. Zhang, Y. Zhang, S. Zhou, and Y. Zhou Central China Normal University, Wuhan, Hubei 430079
N. Ghimire, N. S. Lukow, J. D. Nam, B. R. Pokhrel, M. Posik, A. Quintero, and B. Surrow Temple University, Philadelphia, Pennsylvania 19122
A. Gibson, D. Grosnick, and T. D. S. Stanislaus

Valparaiso University, Valparaiso, Indiana 46383
K. Gopal, C. Jena, R. Sharma, S. R. Sharma, and P. Sinha Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India

A. Hamed

American University of Cairo, New Cairo 11835, New Cairo, Egypt
X. H. He, C. Hu, Q. Hu, S. Kumar, C. Liu, T. Lu, A. K. Pandey, H. Qiu, S. Singha, X. Sun, J. Wu, X. Zhang, Y. Zhang, and F. Zhao Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000
J. Jia

Brookhaven National Laboratory, Upton, New York 11973 and State University of New York, Stony Brook, New York 11794
X. Ju, C. Li, X. Li, Y. Li, Z. Li, M. Shao, K. Shen, F. Si, Y. Su, Y. Sun, Z. Tang, Y. Wang, W. Zha, S. Zhang, Y. Zhang, and J. Zhou

University of Science and Technology of China, Hefei, Anhui 230026
D. Kalinkin

University of Kentucky, Lexington, Kentucky 40506-0055 and Brookhaven National Laboratory, Upton, New York 11973
D. Mallick, B. Mohanty, and A. Pandav

National Institute of Science Education and Research, HBNI, Jatni 752050, India
J. A. Mazer, T. Pani, D. Roy, and S. Salur

Rutgers University, Piscataway, New Jersey 08854
M. I. Nagy

ELTE Eötvös Loránd University, Budapest, Hungary H-1117
R. L. Ray

University of Texas, Austin, Texas 78712
N. Schmitz and P. Seyboth

Max-Planck-Institut für Physik, Munich 80805, Germany
J. Seger and D. Tlusty

Creighton University, Omaha, Nebraska 68178
N. Shah

Indian Institute Technology, Patna, Bihar 801106, India
M. J. Skoby

Ball State University, Muncie, Indiana, 47306 and Purdue University, West Lafayette, Indiana 47907
Y. Sun, J. S. Wang, and H. Xu

Huzhou University, Huzhou, Zhejiang 313000
T. Tarnowsky and G. D. Westfall

Michigan State University, East Lansing, Michigan 48824
O. D. Tsai

University of California, Los Angeles, California 90095 and
Brookhaven National Laboratory, Upton, New York 11973
C. Y. Tsang

Kent State University, Kent, Ohio 44242 and Brookhaven National Laboratory, Upton, New York 11973
D. G. Underwood

Argonne National Laboratory, Argonne, Illinois 60439 and Valparaiso University, Valparaiso, Indiana 46383
A. N. Vasiliev

NRC "Kurchatov Institute", Institute of High Energy Physics, Protvino 142281 and National Research Nuclear University MEPhI, Moscow 115409
S. Yang

South China Normal University, Guangzhou, Guangdong 510631
M. Zurek

Argonne National Laboratory, Argonne, Illinois 60439
M. Zyzak

Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
(STAR Collaboration)
We report here the first observation of directed flow $\left(v_{1}\right)$ of the hypernuclei ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ in midcentral $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV}$ at RHIC. These data are taken as part of the beam energy scan program carried out by the STAR experiment. From 165 million events in $5-40 \%$ centrality, about $8400{ }_{\Lambda}^{3} \mathrm{H}$ and $5200{ }_{\Lambda}^{4} \mathrm{H}$ candidates are reconstructed through two- and three-body decay channels. We observe that these hypernuclei exhibit significant directed flow. Comparing to
that of light nuclei, it is found that the mid-rapidity v_{1} slopes of ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ follow baryon number scaling, implying that the coalescence is the dominant mechanism for these hypernuclei production in the $3 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions.

When a nucleon is replaced by a hyperon (e.g. $\Lambda, \Sigma)_{217}$ with strangeness $S=-1$, a nucleus is transformed into a_{218} hypernucleus which allows for the study of the hyperon-219 nucleon $(Y-N)$ interaction. It is well known that two-220 body $Y-N$ and three-body $Y-N-N$ interactions, espe-221 cially at high baryon density, are essential for under-222 standing the inner structure of compact stars [1, 2]. New 223 results on precision measurements of $\Lambda-p$ elastic scat-224 tering from Jefferson Lab [3] and $\Sigma^{-}-p$ elastic scatter- ${ }_{225}$ ing from J-PARC [4, 5] became available recently, which ${ }_{226}$ may help to constrain the equation of state of high den- ${ }_{227}$ sity matter inside a neutron star. Until recently, almost ${ }_{28}$ all hypernuclei measurements have been carried out with 229 light particle (e.g. e, π^{+}, K^{-}) induced reactions [6-8],230 where the $Y-N$ interaction around the saturation density ${ }_{231}$ is analyzed from spectroscopic properties of hypernuclei. ${ }_{232}$

Utilizing hypernuclei production in heavy-ion colli-233 sions to study the $Y-N$ interaction and the properties ${ }_{234}$ of QCD matter has been a subject of interest in the ${ }_{235}$ past decades $[9-13]$. However, due to limited statis-236 tics, measurements have been mainly focused on the light hypernuclei lifetime, binding energy and production yields [12, 14, 15]. Thermal model [16] and hadronic transport model with coalescence afterburner [17, 18] calculations have predicted abundant production of light hypernuclei in high-energy nuclear collisions, especially at high baryon density. Anisotropic flow has been commonly used for studying the properties of matter created in high energy nuclear collisions. Due to its genuine sensitivity to early collision dynamics [19-22], the first order coefficient of the Fourier-expansion of the azimuthal distribution in the momentum space, v_{1}, also called the directed flow, has been analyzed for many particles species ranging from π-mesons to light nuclei [23-28]. Collective flow is driven by pressure gradients created in such collisions. Hence, measurements of hypernuclei collectivity make it possible to study the $Y-N$ interactions in the QCD equation of state at high baryon density.

In this paper, we report the first observation of directed flow, v_{1}, of ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ in center-of-mass energy $\sqrt{s_{\mathrm{NN}}}$ $=3 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions. The data were collected by the STAR experiment at RHIC with the fixed-target (FXT) setup in 2018. A gold beam of energy $3.85 \mathrm{GeV} / \mathrm{u}$ is bombarded on a gold target of thickness 1% interaction length, located at the entrance of STAR's TimeProjection Chamber (TPC) [29]. The TPC, which is the main tracking detector in STAR, is 4.2 m long and 4 m in diameter, positioned inside a 0.5 T solenoidal magnetic field along the beam direction. The collision vertex ${ }_{237}$ position of each event along the beam direction, V_{z}, is i $_{238}$ required to be within $\pm 2 \mathrm{~cm}$ of the target position. An ${ }_{239}$ additional requirement on the collision vertex position to 2 $_{20}$
be within a radius r of less than 2 cm is imposed to eliminate background events from interactions with the beam pipe. Beam-Beam Counters (BBC) [30] and the Time of Flight (TOF) detector [31] are used to obtain the minimum bias (MB) trigger condition. After event selection, a total of $2.6 \times 10^{8} \mathrm{MB}$ events are used for further analysis.

The centrality is determined using the charged particle multiplicity distribution within the pseudo-rapidity region $-2<\eta<0$ together with Monte Carlo (MC) Glauber calculations [32, 33]. The directed flow $\left(v_{1}\right)$ is measured with respect to the first-order event plane, determined by the Event Plane Detector (EPD) [34] which covers $-5.3<\eta<-2.6$ for the FXT setup. For this analysis, a relatively wide centrality range, $5-40 \%$, is selected where both the event plane resolution and the hypernuclei yield are maximized. The event plane resolution in the centrality range is $40-75 \%$ [35]. Detailed information on the event plane resolution can be found in the Supplemental Material.

FIG. 1. Reconstructed Λ hyperon and hypernuclei invariant mass distributions from $\sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions in the corresponding $p_{\mathrm{T}}-y$ regions listed in Table I. While top panels are for $\Lambda \rightarrow p+\pi^{-}$and ${ }_{\Lambda}^{4} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\pi^{-}$, bottom panels represent the hypertriton two-body decay ${ }_{\Lambda}^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\pi^{-}$ and three-body decay ${ }_{\Lambda}^{3} \mathrm{H} \rightarrow d+p+\pi^{-}$, respectively. Combinatorial backgrounds, shown as histograms, are constructed by rotating decay daughter particles. Background-subtracted invariant mass distributions are shown as filled circles.

In order to ensure high track quality, we require that the number of TPC points used in the track fitting (nHitsFit) to be larger than 15 (out of a maximum of 45). ${ }_{\Lambda}^{3} \mathrm{H}$ is reconstructed via both two-body and three-
body decays ${ }_{\Lambda}^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\pi^{-}$and ${ }_{\Lambda}^{3} \mathrm{H} \rightarrow d+p+\pi^{-}$ while ${ }_{\Lambda}^{4} \mathrm{H}$ is reconstructed via the two-body decay channel, ${ }_{\Lambda}^{4} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\pi^{-}$. Charged particles, including π^{-}, $p, d,{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ are selected based on the ionization energy loss $(\mathrm{d} E / \mathrm{d} x)$ measured in the TPC as a function of rigidity $(p /|q|)$, where p and q are the momentum and charge of the particle. The secondary decay topology is reconstructed using the KFParticle package based on a Kalman filter method [36, 37]. The package also utilizes the covariance matrix of reconstructed tracks to construct a set of topological variables. Selection cuts on these variables are placed on hypernuclei candidates to ${ }_{273}$ enhance the signal significance. Figure 1 shows the recon- ${ }_{274}$ structed invariant mass distributions for $\Lambda,{ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}, 275$ which are reconstructed using various decay channels in_{276} the corresponding transverse momentum p_{T} - rapidity y_{277} regions as listed in Table I. Combinatorial background is s_{278} estimated by rotating decay particles through a random ${ }_{279}$ angle between 10 and 350 degrees. For the Λ, the $\pi^{-}{ }_{280}$ is rotated. For the ${ }_{\Lambda}^{3(4)} \mathrm{H}$ two-body decay, the ${ }^{3(4)} \mathrm{He} \mathrm{is}_{281}$ rotated, and for the ${ }_{\Lambda}^{3} \mathrm{H}$ three-body decay, the deuteron ${ }_{282}$ is rotated. The combinatorial background, shown as the ${ }_{283}$ shaded region, is normalized in the invariant mass region:284 $(1.14,1.16),(3.01,3.04)$, and $(3.95,4.0) \mathrm{GeV} / c^{2}$ for $\Lambda, 285$ ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$, respectively. The background-subtracted in-286 variant mass distribution (filled circles) in each panel is ${ }_{287}$ fitted with a linear function plus a Student-t distribution ${ }_{288}$ for Λ and a Gaussian distribution for hypernuclei to ex-289 tract the signal count. In total, $8400{ }_{\Lambda}^{3} \mathrm{H}$ and $5200{ }_{\Lambda}^{4} \mathrm{H}_{290}$ reconstructed hypernuclei from the $5-40 \%$ centrality bin bin are used for further analysis.

FIG. 2. Λ hyperon and hypernuclei acceptance, shown in $p_{\mathrm{T}^{311}}$ versus y, from the $\sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions. Dashed ${ }^{312}$ rectangular boxes illustrate the acceptance regions used for 3_{313} directed flow analysis, and the red arrow in panel a) represents 3_{314} the target rapidity ($y_{\text {target }}=-1.045$).

TABLE I. $p_{\mathrm{T}}-y$ acceptance windows of light nuclei, Λ hyperon and hypernuclei used for directed flow analysis.

Mass Number (A)	Particle	$p_{\mathrm{T}}(\mathrm{GeV} / c)$	y
1	Λ, p	$(0.4,0.8)$	$(-1.0,0.0)$
2	d	$(0.8,1.6)$	$(-1.0,0.0)$
3	${ }_{\Lambda}^{3} \mathrm{H}$	$(1.0,2.5)$	$(-1.0,0.0)$
	$t,{ }^{3} \mathrm{He}$	$(1.2,2.4)$	$(-1.0,-0.1)$
4	${ }_{\Lambda}^{4} \mathrm{H}$	$(1.2,3.0)$	$(-1.0,-0.2)$
	${ }^{4} \mathrm{He}$	$(1.6,3.2)$	

structed $\Lambda,{ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ candidates in the center-of-mass frame. Following the established convention [38], the negative sign is assigned to v_{1} in the rapidity region of $y<$ 0 . The $p_{\mathrm{T}}-y$ acceptance windows used for our analysis are tabulated in Table I and also indicated in Fig. 2.

For p_{T}-integrated v_{1} measurements, the p_{T}-dependent reconstruction efficiency needs to be accounted for, which is estimated by the embedding method in STAR analyses [12, 39]. Monte-Carlo generated hyperons and hypernuclei are passed through the GEANT3 simulation of the STAR detector. The simulated TPC response is then embedded into data, and the whole event is processed and analyzed using the same procedure as in the data analysis. The two-dimensional reconstruction efficiency, including the detector acceptance, in $p_{\mathrm{T}}-y$ are obtained for each decay channel, and applied to candidates in the data accordingly [40]. Kinematically, the three-body decay of ${ }_{\Lambda}^{3} \mathrm{H}$ is very similar to the background of correlated $d+\Lambda$ due to the very small Λ separation energy of ${ }_{\Lambda}^{3} \mathrm{H}$. Such correlated $d+\Lambda$ pairs that pass the ${ }_{\Lambda}^{3} \mathrm{H}$ threebody decay topological cuts are subtracted statistically (For details, see Fig. 3 in the Supplemental Material, which includes [41]). The ${ }_{\Lambda}^{3} \mathrm{H}$ signal fraction within the invariant mass window $(2.988,2.998) \mathrm{GeV} / c^{2}$ and rapidity range $(-1.0,0.0)$ is estimated to be 0.69 ± 0.03.

The directed flow of $\Lambda,{ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ are extracted with the event plane method [42]. In each rapidity bin, the azimuthal angle with respect to the reconstructed event plane $\left(\Phi=\Phi^{\prime}-\Psi_{1}\right)$ is further divided into four equal bins with a width of $\pi / 4$, where Φ^{\prime} and Ψ_{1} are the azimuth angle of a particle candidate and the first order event plane, respectively. After applying the reconstruction efficiency correction, the azimuthal angle distributions are fitted with a function $f(\Phi)=c_{0}\left[1+2 v_{1}^{o b s} \cdot \cos (\Phi)+\right.$ $\left.2 v_{2}^{\text {obs }} \cdot \cos (2 \Phi)\right]$, where $c_{0}, v_{1}^{\text {obs }}$ and $v_{2}^{\text {obs }}$ are fitting parameters, and correspond to the normalization constant, the observed directed and the elliptic flow, respectively. To obtain the final v_{1} in a wide centrality range of 5 40% centrality in this analysis, the observed directed flow $v_{1}^{o b s}$ needs to be corrected for the average event plane resolution $\langle 1 / R\rangle$ [42], i.e $v_{1}=v_{1}^{\text {obs }} \cdot\langle 1 / R\rangle$, and $\langle 1 / R\rangle=\sum_{i}\left(N_{i} / R_{i}\right) / \sum_{i} N_{i}$, where N_{i} and R_{i} stand for the number of particle candidates and the first order event plane resolution in the i-th centrality bin, respectively.

The resulting Λ hyperon and hypernuclei $v_{1}(y)$, from ${ }_{346}$ $5-40 \%$ mid-central $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV}_{347}$, are shown in Fig. 3. For comparison, the $v_{1}(y)$ of $p, 348$ $d, t,{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ from the same data [43] are shown as349 open symbols. $v_{1}(y)$ of $\Lambda, p, d, t,{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ are fitted ${ }_{350}$ with a third-order polynomial function $v_{1}(y)=a \cdot y+b \cdot y^{3}{ }_{351}$ in the rapidity ranges listed in Table I, where a, which stands for the mid-rapidity slope $d v_{1} /\left.d y\right|_{y=0}$, and b are fitting parameters. Due to limited statistics, the hypernuclei $v_{1}(y)$ distributions are fitted with a linear function $v_{1}(y)=a \cdot y$, in the rapidity range $-1.0<y<0.0$. The linear terms for light nuclei are plotted as dashed lines in the positive rapidity region, while for $\Lambda,{ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$, they are shown by the yellow-red lines in the corresponding panels. The Λ result is close to that of the proton, and hypernuclei $v_{1}(y)$ distributions are also similar to those light nuclei with the same mass numbers. This is the first observation of significant hypernuclei directed flow in high-energy nuclear collisions.

FIG. 3. Λ hyperon and hypernuclei directed flow v_{1}, shown as a function of rapidity, from the $\sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV} 5-40 \%$ mid-central $\mathrm{Au}+\mathrm{Au}$ collisions. In the case of ${ }_{\Lambda}^{3} \mathrm{H} v_{1}$, both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for $\Lambda,{ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ are shown as the yellow-red lines. The rapidity dependence of v_{1} for p, $d, t,{ }^{3} \mathrm{He}$, and ${ }^{4} \mathrm{He}$ are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in_{352} the positive rapidity region [43].
sources are uncorrelated, the total systematic uncertainty is obtained by adding them together quadratically. In case of the ${ }_{\Lambda}^{3} \mathrm{H}$ three-body decay, the fraction of the correlated $d \Lambda$ contamination has been analyzed in each rapidity bin. Its systematic uncertainty contribution to the final v_{1} slope is negligible.

TABLE II. Sources of systematic uncertainties for midrapidity slope $d v_{1} /\left.d y\right|_{y=0}$ of ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$.

	${ }_{\Lambda}^{3} \mathrm{H}$		${ }_{\Lambda}^{4} \mathrm{H}$
Source	two-body	three-body	two-body
Topological cuts	1.3%	9.4%	8.0%
nHitsFit	9.0%		$<1.0 \%$
EP Resolution	1.4%		1.4%
Total	13.1%		8.3%

FIG. 4. Mass dependence of the mid-rapidity v_{1} slope, $d v_{1} / d y$, for $\Lambda,{ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ from the $\sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV} 5-40 \%$ mid-central $\mathrm{Au}+\mathrm{Au}$ collisions. The statistical and systematic uncertainties are presented by vertical lines and square brackets, respectively. The slopes of $p, d, t,{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ from the same collisions are shown as black circles. The blue and dashed green lines are the results of a linear fit to the measured light nuclei and hypernuclei v_{1} slopes, respectively. For comparison, calculations of transport models plus coalescence afterburner are shown as gold and red bars from JAM model, and blue bars from UrQMD model.

The results of the mid-rapidity slope $d v_{1} / d y$ for $\Lambda,{ }_{\Lambda}^{3} \mathrm{H}$ (both two- and three-body decays) and ${ }_{\Lambda}^{4} \mathrm{H}$ are shown in Fig. 4, as filled squares, as a function of particle mass. For comparison, v_{1} slopes of $p, d, t,{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ from the same $5-40 \% \sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions are shown as open circles. The Λ hyperon and hypernuclei slopes $d v_{1} / d y$ are all systematically lower than the nuclei of same mass numbers. Linear fits ($f=a+b \cdot$ mass $)$ are performed on the mass dependence of $d v_{1} / d y$ for both light nuclei and hypernuclei. For light nuclei, only statistical uncertainties are used in the fit, while statistical and systematic uncertainties are used for hypernuclei. The
slope parameters b are 0.3323 ± 0.0003 for light nuclei ${ }_{420}$ and 0.27 ± 0.04 for hypernuclei. As one can see, their ${ }_{421}$ slopes are similar within uncertainties.

Using transport models JAM [22, 44] and UrQMD [21],423 $v_{1}(y)$ of Λ and hypernuclei are simulated for the $\sqrt{s_{\mathrm{NN}}}={ }_{424}$ $3 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions within the same centrality and $_{425}$ kinematic acceptance used in data analysis. For com-426 parison, similar calculations are performed for light nu-427 clei. The simulation is done in two steps: (i) using the ${ }_{428}$ JAM model (with momentum-dependent potential) and ${ }_{429}$ UrQMD model (without momentum-dependent poten-430 tial) in the mean field mode with the incompressibility ${ }_{431}$ $\kappa=380 \mathrm{MeV}$ to produce neutrons, protons and $\Lambda \mathrm{s} \mathrm{at}_{432}$ kinetic freeze-out; (ii) forming hypernuclei through the ${ }_{433}$ coalescence of Λ and nucleons, similar to the light nu-434 clei production with the coalescence procedure discussed d_{435} in [43]. The probability for hypernuclei production is S_{436} dictated by coalescence parameters of relative momenta a_{437} $\Delta p<0.12$ (0.3) $\mathrm{GeV} /$ itc and relative distance $\Delta r<4 \mathrm{fm}_{438}$ in the rest frame of $n p \Lambda(n n p \Lambda)$ for ${ }_{\Lambda}^{3} \mathrm{H}\left({ }_{\Lambda}^{4} \mathrm{H}\right)$. These pa-439 rameters are chosen such that the hypernuclei yields at ata mid-rapidity can be described [12]. The rapidity depen-441 dences of v_{1} from the model calculations are then fitted ${ }_{442}$ with a third-order polynomial function within the rapid- ${ }_{443}$ ity interval $-1.0 \leq y \leq 0.0$. The resulting mid-rapidity ${ }_{444}$ slopes are shown in Fig. 4 as red and blue bars for JAM_{445} and UrQMD models, respectively. In the figure, results ${ }_{446}$ for light nuclei from JAM are also presented as gold bars. ${ }_{447}$

Both transport models (JAM and UrQMD) plus co-448 alescence afterburner calculations for hypernuclei are in_{449} agreement with data within uncertainties. Interactions S_{450} among baryons and strange baryons are important in-451 gredients in the transport models, especially in the high 4_{452} baryon density region [45, 46]. The properties of the ${ }_{453}$ medium is determined by such interactions. In addition,454 the yields of hypernuclei, if created via the coalescence ${ }_{455}$ process, are also strongly affected by the hyperon and nu-456 cleon interactions. In our treatment, the coalescence pa-457 rameters used $(\Delta r, \Delta p)$ reflect the production probabil-458 ity determined by $N-N$ and $Y-N$ interactions $[18,47,48] .459$ The mass dependence of the $v_{1}(y)$ slope implies that co-460 alescence might be the dominant mechanism for hyper-461 nuclei production in such heavy-ion collisions. The mass ${ }_{462}$ dependence of the hypernuclei v_{1} slope also seems to be ${ }_{463}$ similar to that of light nuclei, as shown in Fig. 4, although ${ }_{464}$ it may not necessarily be so due to the differences in $N-N_{465}$ and $Y-N$ interactions. Clearly, precision data on hyper-466 nuclei collectivity will yield invaluable insights on $Y-N$ interactions at high baryon density.

This is the first report of the collectivity of hypernuclei in heavy-ion collisions. Hydrodynamically, collective motion is driven by pressure gradients created in such ${ }^{467}$ collisions. This work opens up a new direction for study- ${ }^{468}$ ing $Y-N$ interaction under finite pressure [49]. This is ${ }_{470}^{469}$ important for making connection between nuclear colli- ${ }_{-471}$ sions and the equation of state which governs the inner ${ }_{472}$
structure of compact stars.
To summarize, we report the first observation of hypernuclei ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H} v_{1}$ from $\sqrt{s_{\mathrm{NN}}}=3 \mathrm{GeV}$ mid-central $5-40 \% \mathrm{Au}+\mathrm{Au}$ collisions at RHIC . The rapidity dependences of their v_{1} are compared with those of Λ, p, d, $t,{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ in the same collisions. It is found that, within uncertainties, the mass dependent v_{1} slope of hypernuclei, ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ is similar to that of light nuclei, implying that they follow the baryon mass scaling. Calculations from transport models (JAM and UrQMD) plus coalescence afterburner can qualitatively reproduce the rapidity dependence of v_{1} and the mass dependence of v_{1} slope. These observations suggest that coalescence of nucleons and hyperon Λ could be the dominant mechanism for the hypernuclei ${ }_{\Lambda}^{3} \mathrm{H}$ and ${ }_{\Lambda}^{4} \mathrm{H}$ production in the 3 GeV collisions. Model calculations suggest that baryon density at freeze-out may depend on collision energy [5052]. High statistics data at different energies, especially at the high baryon density region, will help in extracting the information on $Y-N$ interaction and possibly its density dependence in the future.

Acknowledgments: We thank Drs. Y. Nara and J. Steinheimer for insightful discussions. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre and WUT ID-UB of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).
[1] D. Gerstung, N. Kaiser, and W. Weise, Eur. Phys. J. A 56, 175 (2020), arXiv:2001.10563 [nucl-th].
[2] D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015), arXiv:1407.4448 [nucl-th].
[3] J. Rowley et al. (CLAS), Phys. Rev. Lett. 127, 272303
(2021), arXiv:2108.03134 [hep-ex].
[4] K. Miwa et al. (J-PARC E40), Phys. Rev. C 104, 045204526 (2021), arXiv:2104.13608 [nucl-ex].

527
[5] K. Miwa et al. (J-PARC E40), Phys. Rev. Lett. 128,528 072501 (2022), arXiv:2111.14277 [nucl-ex].

529
[6] A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod.530 Phys. 88, 035004 (2016), arXiv:1605.00557 [nucl-th]. ${ }_{531}$
[7] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 532 57, 564 (2006).
[8] L. Tang et al. (HKS), Phys. Rev. C 90, 034320 (2014),534 arXiv:1406.2353 [nucl-ex].
[9] B. I. Abelev et al. (STAR), Science 328, 58 (2010),536 arXiv:1003.2030 [nucl-ex].
[10] S. Acharya et al. (ALICE), Phys. Lett. B 797, 134905 ${ }_{538}$ (2019), arXiv:1907.06906 [nucl-ex].

539
[11] L. Adamczyk et al. (STAR), Phys. Rev. C 97, 054909 5_{54} (2018), arXiv:1710.00436 [nucl-ex].
[12] M. Abdallah et al. (STAR), Phys. Rev. Lett. 128, 202301 ${ }_{542}$ (2022), arXiv:2110.09513 [nucl-ex].
[13] T. R. Saito et al., Nature Rev. Phys. 3, 803 (2021).
543
[14] J. Chen, D. Keane, Y.-G. Ma, A. Tang, and Z. Xu, Phys. ${ }_{545}^{544}$ Rept. 760, 1 (2018), arXiv:1808.09619 [nucl-ex].
[15] J. Adam et al. (STAR), Nature Phys. 16, 409 (2020) ${ }_{547}^{547}$ arXiv:1904.10520 [hep-ex].
[16] A. Andronic, P. Braun-Munzinger, J. Stachel, , $_{549}$ and H. Stocker, Phys. Lett. B 697, 203 (2011),550 arXiv:1010.2995 [nucl-th].
[17] J. Steinheimer et al., Phys. Lett. B 714, 85 (2012),552 arXiv:1203.2547 [nucl-th].
[18] J. Aichelin et al., Phys. Rev. C 101, 044905 (2020) ${ }_{\text {,554 }}^{553}$ arXiv:1907.03860 [nucl-th].
[19] C. M. Hung and E. V. Shuryak, Phys. Rev. Lett. 75,556 4003 (1995), arXiv:hep-ph/9412360.

557
[20] J. Brachmann et al., Phys. Rev. C 61, 024909 (2000), ,558 55 arXiv:nucl-th/9908010.
[21] J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, ${ }_{560}$ and H. Stöcker, Phys. Rev. C 89, 054913 (2014),561 arXiv:1402.7236 [nucl-th].

562
[22] Y. Nara, H. Niemi, A. Ohnishi, and H. Stöcker, Phys. ${ }_{563}$ Rev. C 94, 034906 (2016), arXiv:1601.07692 [hep-ph]. ${ }_{564}$
[23] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 112, ${ }_{565}$ 162301 (2014), arXiv:1401.3043 [nucl-ex].
[24] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 120,567 062301 (2018), arXiv:1708.07132 [hep-ex].

568
[25] J. Adam et al. (STAR), Phys. Rev. C 102, 044906 (2020) ${ }_{\text {,569 }}^{568}$ arXiv:2007.04609 [nucl-ex].

570
[26] L. Adamczyk et al. (STAR), Phys. Rev. C 88, 014902_{571} (2013), arXiv:1301.2348 [nucl-ex].
[27] J. Adam et al. (STAR), Phys. Rev. C 103, 034908 (2021) , 573 arXiv:2007.14005 [nucl-ex].
[28] A. Bzdak et al., Phys. Rept. 853, 1 (2020) ${ }_{5575}^{574}$ arXiv:1906.00936 [nucl-th].
[29] M. Anderson et al., Nucl. Instrum. Meth. A 499, 659 (2003), arXiv:nucl-ex/0301015.
[30] C. A. Whitten (STAR), AIP Conf. Proc. 980, 390 (2008).
[31] W. J. Llope (STAR), Nucl. Instrum. Meth. A 661, S110 (2012).
[32] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007), arXiv:nuclex/0701025.
[33] B. I. Abelev et al. (STAR), Phys. Rev. C 81, 024911 (2010), arXiv:0909.4131 [nucl-ex].
[34] J. Adams et al., Nucl. Instrum. Meth. A 968, 163970 (2020), arXiv:1912.05243 [physics.ins-det].
[35] M. S. Abdallah et al. (STAR), Phys. Lett. B 827, 137003 (2022), arXiv:2108.00908 [nucl-ex].
[36] I. Kisel (CBM), J. Phys. Conf. Ser. 1070, 012015 (2018).
[37] M. Zyzak, Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR, Ph.D. thesis, Frankfurt U. (2016).
[38] H. Liu et al. (E895), Phys. Rev. Lett. 84, 5488 (2000), arXiv:nucl-ex/0005005.
[39] J. Adam et al. (STAR), Phys. Rev. C 102, 034909 (2020), arXiv:1906.03732 [nucl-ex].
[40] M. S. Abdallah et al. (STAR), Phys. Lett. B 827, 137003 (2022), arXiv:2108.00908 [nucl-ex].
[41] J. Haidenbauer, Phys. Rev. C 102, 034001 (2020), arXiv:2005.05012 [nucl-th].
[42] H. Masui, A. Schmah, and A. M. Poskanzer, Nucl. Instrum. Meth. A 833, 181 (2016), arXiv:1212.3650 [physics.data-an].
[43] M. Abdallah et al. (STAR), Phys. Lett. B 827, 136941 (2022), arXiv:2112.04066 [nucl-ex].
[44] Y. Nara et al., Phys. Rev. C 61, 024901 (2000), arXiv:nucl-th/9904059.
[45] A. S. Botvina, K. K. Gudima, J. Steinheimer, M. Bleicher, and J. Pochodzalla, Phys. Rev. C 95, 014902 (2017), arXiv:1608.05680 [nucl-th].
[46] A. S. Botvina, J. Steinheimer, E. Bratkovskaya, M. Bleicher, and J. Pochodzalla, Phys. Lett. B 742, 7 (2015), arXiv:1412.6665 [nucl-th].
[47] T. Shao, J. Chen, C. M. Ko, K.-J. Sun, and Z. Xu, Chin. Phys. C 44, 114001 (2020), arXiv:2004.02385 [nucl-ex].
[48] F. Wang and S. Pratt, Phys. Rev. Lett. 83, 3138 (1999), arXiv:nucl-th/9907019.
[49] T. Neidig, K. Gallmeister, C. Greiner, M. Bleicher, and V. Vovchenko, Phys. Lett. B 827, 136891 (2022), arXiv:2108.13151 [hep-ph].
[50] T. Reichert, G. Inghirami, and M. Bleicher, Eur. Phys. J. A 56, 267 (2020), arXiv:2007.06440 [nucl-th].
[51] J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 73, 034905 (2006), arXiv:hep-ph/0511094.
[52] J. Randrup and J. Cleymans, Phys. Rev. C 74, 047901 (2006), arXiv:hep-ph/0607065.

