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Despite the development of increasingly capable quantum computers, an experimental demonstration of
a provable algorithmic quantum speedup employing today’s non-fault-tolerant devices has remained elusive.
Here, we unequivocally demonstrate such a speedup within the oracular model, quantified in terms of the scal-
ing with the problem size of the time-to-solution metric. We implement the single-shot Bernstein-Vazirani
algorithm, which solves the problem of identifying a hidden bitstring that changes after every oracle query,
utilizing two different 27-qubit IBM Quantum (IBMQ) superconducting processors. The speedup is observed
on only one of the two processors when the quantum computation is protected by dynamical decoupling, but
not without it. The quantum speedup reported here does not rely on any additional assumptions or complexity-
theoretic conjectures and solves a bona fide computational problem in the setting of a game with an oracle and
a verifier.

The quest to demonstrate a quantum speedup using phys-
ical hardware for a computational problem over a range of
increasing problem sizes – an algorithmic quantum speedup
– has motivated the field of quantum computing from its
inception [1]. Many quantum algorithms are now known
that theoretically outperform classical algorithms in solv-
ing problems of increasing size [2–14]. However, compu-
tational errors must be suppressed to realize this potential,
especially in the current noisy intermediate-scale quantum
(NISQ) era [15]. Better-than-classical algorithmic perfor-
mance has been demonstrated a number of times, e.g., on
ion-trap [16, 17], superconducting [11, 18–23], photonic [24–
28], and Rydberg atom [29] quantum processors. In most
cases, this was done by exceeding the corresponding classi-
cal algorithmic success probability at a fixed or small set of
problem sizes [16, 17, 21, 25, 28], by outperforming a limited
set of classical algorithms [18, 19, 29], or under complexity-
theoretic assumptions [20, 22, 24, 26]. See [30] for a survey of
existing experimental demonstrations of better-than-classical
algorithmic results.

To qualify as a provable, unqualified algorithmic quantum
speedup, we stipulate that the speedup – quantified in terms
of the scaling with problem size of the time-to-solution met-
ric [56] – is (i) relative to the best possible classical algorithm
(“provable”) and (ii) free of any assumptions or conjectures
(“unqualified”). Moreover, to avoid detectable finite-size ef-
fects, we stipulate that (iii) the speedup is exhibited up to the
largest experimentally accessible problem size. Similar cri-
teria were established in Ref. [56]. However, no provable,
unqualified algorithmic quantum speedup that satisfies these
stringent criteria has been empirically demonstrated so far.
Here, we provide the first such demonstration. To achieve
this, we revisit the Bernstein-Vazirani (BV) algorithm, which
was one of the very first theoretical examples of a quan-
tum/classical complexity class separation [3]. In the original
BV problem, an oracle outputs fb(x) = b ·x (mod 2) ∈ {0,1},

where x and b are both length-n bitstrings. Here x is a guess
provided by the user, and b is a secret bitstring the user is
trying to learn in as few oracle queries as possible. The best
classical algorithm requires n queries, since each query can
only provide one new bit of information about b. By solving
the problem with certainty in a single query, the BV algorithm
provides a linear speedup over the best-classical algorithm.

Here, we consider a modified, single-shot version of BV,
denoted ssBV-n, where the hidden bitstring b changes after
every query. We colloquially refer to this as the “BV guessing
game”: after one query of the single-shot oracle, the player
is allowed one guess of the bitstring b. If the verifier con-
firms that the guess is correct, the player wins; if the guess is
wrong, the game continues with a new bitstring. In this set-
ting, the optimal classical algorithm is to query the oracle with
x = 0 . . .01i0 . . .0 (i is arbitrary), which reveals bi, and then
guess the remaining n− 1 bits. This yields classical success
probability ps = 21−n, only twice better than a random guess
(this cannot be improved [57]). In stark contrast, a player
with access to a quantum computer (QC) running the original
BV algorithm has success probability ps = 1 after each query,
which becomes an exponential advantage in the speedup ratio
(defined below) over the classical setting.

Quantum speedup quantified.— In a head-to-head comparison
of success probabilities, ps > 21−n0 , for a fixed problem size
n0, implies a better-than-classical result. This is the context in
which better-than-classical results have been achieved for the
Grover and BV algorithms [16, 17, 21]. However, the success
probability at a fixed problem size is not a reliable measure
of quantum speedup, as detecting an algorithmic speedup re-
quires computing the scaling with problem size. Moreover,
ps is itself a function of the time tr(n) taken to run the cal-
culation, i.e., the time required to run the complete quan-
tum or classical circuit once. Instead, we quantify quantum
speedup in terms of the scaling with the problem size n of
the speedup ratio of the classical and quantum total runtimes:
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FIG. 1. Circuit for the BV algorithm, including DD pulses. The ora-
cle shown encodes the unknown bitstring b = 111000 for the ssBV-6
problem. A controlled-NOT (CNOT, or CX) or identity gate is per-
formed from qubit i to the ancilla qubit if bi = 1 or 0, respectively.
Note that the quantum and classical oracles are identical in the ssBV-
n problem, and so both take time tr ∝ |b| to run, where |b| is the
Hamming weight of b. Each BV-n circuit requires n+ 1 qubits. A
Hadamard gate (H) is applied to each qubit before and after the or-
acle, and each qubit is measured in the computational basis for a
total circuit depth ≥ |b|+ 3 (with equality only for fully connected
architectures). DD pulses (Pi) are turned on during idle times. Pulse
placement is schematic but illustrates the principles we used in prac-
tice: (i) DD fills all available idle times, (ii) pulse intervals are varied
depending on the available idle time per qubit. The actual timeline
is shown in units of dt = 2/9 ns – the inverse sampling rate of the
backend’s arbitrary waveform generators.

S(n) = TTSC(n)
TTSQ(n)

, where the total runtime is quantified using the
well-established time-to-solution (TTS) metric [56]:

TTS(n) = tr(n)R(n) , R(n) =
log(1− pd)

log(1− ps(tr(n)))
. (1)

⌈R(n)⌉ is the number of repetitions – oracle calls in the present
context – needed to find a solution at least once with desired
probability pd , given that a single repetition succeeds with
probability ps(tr(n)); we set pd = 0.99 henceforth. Thus, the
TTS quantifies the total time it takes to win the BV guessing
game, whether classically or with access to a QC.

We choose to measure tr(n) in terms of the circuit execution
time and the readout duration and ignore the postprocessing
overhead, as the latter is a constant in our experiments, set by
the time it takes to count the number of times the secret bit-
string b appears out of the constant total number S of “shots”
(circuit runs); we use the maximum allowed number S for all
n. Also, as detailed below, the circuit unitaries are specified
in terms of the native gates of the device and do not incur a
compilation overhead. It follows from the BV circuit struc-
ture (Fig. 1) that tr(n) = cτ2qn+ τ0, where 1 ≤ c ≤ 2 depends
on the qubit connectivity graph, with the two limits corre-
sponding to all-to-all connectivity (c = 1) and a chain (c = 2).
For our IBMQ implementation, we found c ≈ 1.76 [30]. The

two-qubit gate time, τ2q, and the sum of the single qubit and
readout times, τ0, depend on the specific QC and can vary by
orders of magnitude across platforms.

When accounting for gate and measurement imperfections,
we expect TTSQ(n) in the ssBV-n case to scale as n2λn (with
λ > 0, an effective noise parameter), instead of as tr ∼ n, as
would be the case for a noiseless QC. The factor 2λn arises
from a (naive) noise model wherein gate and measurement fi-
delities multiply in a circuit of depth O(n), yielding a TTS
denominator that scales as log(1 − 2−λn) ≈ 2−λn. When
ssBV-n is solved classically, computing fb(x) = b · x (mod 2)
also takes time ∝ n (the cost of adding n bits), so we obtain
TTSC(n) ∝ n/ log(1−21−n)≈ n2n−1. We thus expect

S(n)∼ 2(1−λ )n, n ∈ [nmin,nmax], (2)

where nmax denotes the largest number of data qubits available
to the quantum algorithm and nmin is identified empirically
by excluding small-size effects. We will declare a quantum
speedup if the speedup exponent λ < 1. It is important
to emphasize that the speedup exponent must be extracted
using n reaching up to and including nmax, since otherwise,
one cannot hope to draw conclusions that reflect asymptotic
scaling behavior. Using this criterion, we demonstrate below
that a statistically significant quantum speedup is achieved
for DD-protected ssBV-n quantum circuits, but no speedup
is obtained for “bare” quantum circuits implemented without
DD.

Dynamical decoupling.— DD-protection has a long history
of experimental demonstrations on various quantum devices
(see Ref. [58] for a review), and has also been shown to im-
prove various performance metrics, such as qubit memory fi-
delity [59, 60], crosstalk mitigation [61, 62], quantum vol-
ume [63], and algorithmic fidelity [64]. However, we are un-
aware of prior experimental demonstrations of the use of DD
to directly improve quantum algorithmic scaling.

A major challenge in using DD is that pulse imperfec-
tions can significantly deteriorate performance, necessitating
a careful choice of DD sequence. Building on a survey of
numerous known sequences [65], we selected the universally
robust (URp) sequence family [66] as the top performance
enhancer. This sequence was designed to suppress pulse
axis and angle errors and has been shown previously to en-
hance performance in superconducting-qubit-based NISQ de-
vices [60, 67]. It suppresses pulse errors up to O(ε p/2) using
p pulses, where ε is the nominal infidelity [66].
Experimental implementation.— We implemented ssBV-n on
two different 27-qubit QCs: Montreal and Cairo. While simi-
lar in their connectivity, they have different quantum volumes,
qubit generations, and gate fidelities [30]. Since the BV algo-
rithm uses one ancilla, we have nmax = 26.

Given the unknown string b, the BV oracle is implemented
by performing CNOTs from a subset of the first n qubits to
the ancilla qubit (numbered n+1), and the number of CNOTs
is the Hamming weight k = |b| (see Fig. 1). There are 2n
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FIG. 2. Full output distribution for BV-6 from Cairo. Oracles fb are
numbered from 0 to 63, corresponding to b ∈ {06, . . . ,16}, sorted by
increasing Hamming weight. Ideally, the output state for oracle fb
(vertical axis) is b, but in reality, other bitstrings (horizontal axis) are
observed as well. Green dots on the diagonal correspond to ps > 1/2,
where ps is the empirical frequency (success probability) with which
b was output for oracle fb. Success probabilities are reported with
5σ confidence intervals.

different oracles, and in the ssBV-n problem with n fixed, one
is selected at random in each round. However, to increase
our confidence in the results we exploited the fact that given
n and k, the circuits for all

(n
k

)
distinct bitstrings are identical

up to qubit permutation; we used this symmetry and tested
the n+1 permutationally-inequivalent strings b= 1k0n−k with
0 ≤ k ≤ n for each n.

For DD, we employed a “decouple then compute” strat-
egy [68, 69], whereby pulses constituting short but complete
DD sequences are inserted into the idle intervals of the quan-
tum circuit. These idle intervals arise because the algorithm
specifies them or due to limited connectivity of the underlying
architecture, which requires information swapping between
some qubits while others are idle. We implemented one rep-
etition of UR14 and UR18 per idle interval on Montreal and
Cairo, respectively; see Fig. 1.

We took S = 100K (32K) shots using Cairo (Montreal) for
each unique circuit. We then sampled the corresponding re-
sults for all BV-n oracles using bootstrapping [70] and report
the mean TTS for BV-n along with error bars corresponding
to ±5σ for the bootstrapped distribution. See [30] for more
experimental implementation details.
Results.— The Cairo results for BV-6, both with and without
DD, are shown in Fig. 2. The oracles and outputs bitstrings are
sorted by increasing Hamming weight. It is clear from these
results that a higher Hamming weight results in a decreasing
success probability without DD; this is consistent with our
expectation that deeper circuits have a lower overall fidelity.
With DD, this problem is significantly mitigated, which al-
ready suggests that error suppression through DD will be cen-
tral to our quantum speedup demonstration. In fact, with DD
the single-shot output success probability exceeds 1/2 for all
oracles, which allows reaching the bounded-error quantum
polynomial (BQP) threshold of 2/3 for all possible inputs by
classical majority vote on multiple repetitions [3, 17]. Without
DD, the single-shot output success probability is below 1/2
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FIG. 3. Time-to-solution (TTS) as a function of problem size or num-
ber of data qubits n. We report TTS(n) = 1

2n ∑b TTS(n,b), where
TTS(n,b) is given by Eq. (1), with pd = 0.99 and tr(n) replaced by
tr(n,b), since each oracle (labeled by b ∈ {0,1}n) takes a different
time to run. Results for Montreal and Cairo are shown by the orange
and blue symbols, respectively, and filled (empty) symbols represent
results with (without) DD; dotted lines are guides to the eye. The
asymptotic classical scaling TTSC(n) ∼ 2n is shown as white grid
lines, and the hypothetical, ideal quantum scaling TTSQ(n) ∝ n of
each QC is indicated by the dashed lines (for QC-specific parameter
values see [30]). The solid lines give the worst-case scaling fit for
each curve, whose slopes λ are reported in the bottom legend, with
uncertainties representing 95% confidence intervals. Without DD,
the TTS curves terminate at n′max = 16 (n′max = 20) for Montreal
(Cairo), since we find ps = 0 for n > n′max. Moreover, λ > 1 without
DD, indicating a worse-than-classical scaling. With DD protection,
on Cairo, the ps > 0 range is extended to n = 23, and λ is just below
the breakeven point of 1, but the uncertainty is too large to conclude
that quantum speedup has occurred. In contrast, the Montreal scaling
with DD does exhibit quantum speedup. Since two-qubit operations
and readout durations are shorter for Cairo, it exhibits a consistently
lower absolute TTS than Montreal. We report 5σ confidence inter-
vals from bootstrapping for each data point; error bars are mostly
covered by the symbols.

for 7/64 of the inputs, so for these inputs, the BQP threshold
cannot be reached. With (without) DD, the average single-
shot success probability is 80.3% (73.2%). While this is much
higher than the classical single-shot probability of 2−5 ∼ 3%,
it does not suffice for claiming a quantum speedup, as this re-
quires that we demonstrate a scaling advantage as a function
of the problem size n. Moreover, even demonstrating such an
advantage just for ps(n) is insufficient [30].

Our main result is presented in Fig. 3, which shows the TTS
vs the problem size n for both Montreal and Cairo. White grid
lines show the classical TTS (scaling as n2n−1), and the ideal
quantum TTS (equal to tr ∼ n) is shown for reference by the
two dashed lines – one each for Montreal and Cairo. As is ap-
parent, the scaling without DD (empty symbols) for both de-
vices is worse than the classical scaling at large n. We attribute
this, beyond the aforementioned exponential fidelity loss with
circuit depth, to the fact that transmon-based devices suffer
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from spontaneous emission errors, as a result of which they
preferentially generate bitstrings with low Hamming weight,
which is worse than a uniformly random guess. This is also
consistent with the result shown in Fig. 2 (left).

With DD, this problem is mitigated, so that ps > 0 is ex-
tended for Cairo (blue) to n = nmax = 23 (excessive readout
noise required us to treat Cairo as a device with ntot = 24 [30]).
Most notably, it is clear that with DD the Montreal scaling
(orange) is better than classical and extends to n = nmax = 26,
suggesting a quantum speedup.

To quantify this and extract the speedup exponent λ as con-
servatively as possible, we compute the worst-case scaling
from our data [30]. The results are shown as the straight blue
and orange lines in Fig. 3, along with the numerical values
of λ in the legend. Without DD, we obtain λ = 1.13± 0.11
and 1.28± 0.08 for Montreal and Cairo, respectively, mean-
ing a quantum slowdown. For Cairo, the scaling with DD
is λ = 0.98 ± 0.02, not a statistically significant difference
from the classical scaling. However, the fit confirms that
Montreal with DD exhibits an algorithmic quantum speedup:
λ = 0.60± 0.03. All the reported uncertainties represent 2σ

symmetric confidence intervals [30]. The difference between
Cairo and Montreal agrees with the reported larger quantum
volume (128 vs 64) of Montreal [71], and suggests that the lat-
ter is a relevant performance metric also in the present context
of algorithmic speedups.

All the slopes vary with n in Fig. 3. One might thus ask
what the scaling would appear to be for a hypothetical QC
with fewer qubits (hmax) than the actual nmax = 26; we ad-
dress this in Fig. 4. This figure shows the maximum local
slope of each of the curves in Fig. 3 for n ≤ hmax [30]. The re-
sults clearly show the growth of the speedup exponents λhmax

for Cairo with and without DD, and for Montreal without DD,
to the point λ > 1 or beyond, where no quantum speedup sur-
vives. In contrast, the speedup exponent for Montreal with
DD is well within the quantum speedup region of λ < 1 for
all values of hmax.
Discussion and Conclusions.— The ssBV-n problem has a
provable, conjecture-free exponential speedup over the best
possible classical algorithm in the setting of a game involving
an oracle and a verifier. The main weakness of this setting is
its oracular nature: we are forced to hide the internal structure
of the circuit from the players since the BV circuit can be ef-
ficiently simulated classically by virtue of the fact that it uses
only Clifford gates [72]. In contrast, quantum supremacy is
not subject to oracular restrictions and is in this sense a more
interesting type of quantum advantage. However, this advan-
tage only holds under certain conjectures. Another interesting
class of non-oracular speedups is quantum constant depth cir-
cuits vs classical logarithmic depth circuits [9, 10] and quan-
tum limited-space advantage [11]. Here, the assumption is a
classical resource constraint. Some sort of tradeoff between
computational complexity assumptions, constraints, and orac-
ularity thus appears to be inevitable.

To test for a quantum speedup, we compared the asymptotic
scaling of the TTS metric with problem size for both classi-
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FIG. 4. Results for λhmax , the maximum local slope of each of the
curves in Fig. 3 for n ≤ hmax, i.e., the worst-case-scaling when Fig. 3
is restricted to hmax + 1 qubits. Only Montreal with DD exhibits
an unambiguous quantum speedup, with λhmax well below 1 for all
n ≤ hmax. Error bars represent 2σ confidence intervals.

cal and quantum algorithms. We demonstrated a statistically
significant algorithmic quantum speedup on Montreal using
this metric. A crucial feature in our implementation was error
suppression through DD, without which the speedup was not
exhibited.

It is natural to question whether this speedup can be ex-
pected to continue indefinitely. Given the flatness of λhmax

seen in Fig. 4, extrapolating the quantum speedup result for
Montreal to n slightly larger than nmax appears reasonable.
However, for n ≫ nmax the DD-enabled speedup cannot sur-
vive, since in the absence of a mechanism for entropy removal,
such as fault-tolerant quantum error correction [73], decoher-
ence always eventually dominates. Thus, one should expect
the DD-enabled quantum speedup to disappear at some finite
upper limit on n. The fact that this upper limit is not ob-
served in our experiments satisfies a key goal of implement-
ing a quantum algorithm on a NISQ device, namely to check
whether a quantum advantage is already accessible even be-
fore the advent of fault-tolerance, up to the largest problem
sizes supported by the device. We have shown here that, with
the help of error suppression via DD, this is indeed the case.

Another natural question is to what extent the speedup re-
ported here can be further improved. We certainly expect that
methods such as error mitigation (MEM) [74] and further DD
sequence optimization [64, 75–77] will have such an effect,
though TTSQ should then account for the additional classical
computation time they incur. For MEM, this cost overwhelms
the quantum speedup we have observed [78]. Device-tailored
optimization of DD sequences with advanced low-level pulse
control is an exciting frontier that remains largely unexplored
and appears particularly promising. While we focused on
superconducting-qubit devices, DD protection can be bene-
ficial across platforms, as all NISQ devices are affected by
computational errors such as decoherence and crosstalk.
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An ideal quantum computer would yield an exponential
TTS speedup for the ssBV-n problem. Our results are com-
paratively less impressive: we demonstrated what amounts to
a polynomial quantum speedup, by reducing the exponent of
the TTS scaling to below its classical minimum. Our work
provides a path to testing such speedups across platforms and
algorithms in the NISQ era.
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