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Understanding the microscopic mechanisms of thermalization in closed quantum systems is among the key
challenges in modern quantum many-body physics. We demonstrate a method to probe local thermalization
in a large-scale many-body system by exploiting its inherent disorder, and use this to uncover the thermaliza-
tion mechanisms in a three-dimensional, dipolar-interacting spin system with tunable interactions. Utilizing
advanced Hamiltonian engineering techniques to explore a range of spin Hamiltonians, we observe a striking
change in the characteristic shape and timescale of local correlation decay as we vary the engineered exchange
anisotropy. We show that these observations originate from the system’s intrinsic many-body dynamics and
reveal the signatures of conservation laws within localized clusters of spins, which do not readily manifest using
global probes. Our method provides an exquisite lens into the tunable nature of local thermalization dynamics,
and enables detailed studies of scrambling, thermalization and hydrodynamics in strongly-interacting quantum
systems.

Thermalization in isolated quantum many-body systems
underlies the emergence of quantum statistical mechanics.
This happens despite the unitary, reversible evolution of a
closed quantum system, and is commonly understood from
the perspective of the system acting as its own bath, as for-
malized by the eigenstate thermalization hypothesis [1–8].
Equally important is the dynamics by which a system reaches
thermal equilibrium. Recent work has uncovered various uni-
versal phenomena, including scrambling [9–11] and hydro-
dynamic transport [12–15]. However, many aspects of this
approach to thermal equilibrium are still poorly understood,
particularly in regards to how thermalizing dynamics and the
eigenstate thermalization hypothesis emerge from coherent
interactions within a closed system.

In this Letter, we demonstrate a new tool to probe local
dynamics in strongly-interacting systems without the need for
single-spin control or readout. We apply it to the paradigmatic
XXZ model in a positionally disordered, dipolar spin system,
in which the nanometer-scale spin-spin separation and three-
dimensional geometry make single-site operations infeasible.
Combining this method with advanced Hamiltonian engineer-
ing pulse sequences [7, 16–19], we transform the native sys-
tem Hamiltonian into a wide range of XXZ Hamiltonians and
access qualitatively distinct regimes of equilibration. We find
that the local thermalization dynamics are consistent with co-
herently coupled clusters of spins that interact with each other
via fluctuating magnetic fields, whose correlation times and
hybridization determine the timescale and shape of the decay.
Our method provides a powerful lens into the tunable nature of
local relaxation dynamics in closed quantum many-body sys-
tems, which is not accessible via global Ramsey probes [19].

Experimental system and Hamiltonian engineering.— Our
experimental system (Fig. 1(a)) consists of a high density

(∼15 ppm), positionally-disordered ensemble of negatively-
charged nitrogen-vacancy (NV) centers in diamond [20]. The
NV center spin in its electronic ground state forms a spin-1
triplet, from which we isolate a spin-1/2 degree of freedom
via the application of an external magnetic field aligned with
one group of NVs with the same lattice orientation. The high
density of NV centers enables strong, dipolar interactions be-
tween nearby spins (J ≈ (2π)35 kHz at a typical separa-
tion). Additional paramagnetic defects and lattice strain re-
sult in large on-site disorder (W ≈ (2π)4 MHz) of the spins.
Green laser illumination enables optical polarization of the
spin state, while fluorescence on the red phonon sideband al-
lows read out of the final global spin polarization. Microwave
pulses resonant with the target NV spin transition frequency
allow fast manipulation of the spin state and Hamiltonian en-
gineering (see Ref. [6, 21, 22] for experimental details).

We utilize an improved version [23] of the robust Hamil-
tonian engineering techniques (Fig. 1(b,c)) introduced in
Ref. [16] to suppress local disorder and engineer tunable XYZ
spin-spin interaction Hamiltonians

Hg =∑
ij

Jij (gxSxi Sxj + gyS
y
i S

y
j + gzS

z
i S

z
j ) , (1)

parameterized by an anisotropy vector, g = (gx, gy, gz).
This is accomplished by tuning the evolution time along
each of the three axis directions (Fig. 1(b,c)). Here,
Jij ∝ 1/r3ij is the long-ranged, anisotropic dipolar inter-
action strength. We primarily focus on XXZ Hamiltoni-
ans, where we parameterize the interaction as g(λXXZ) =
(1 + λXXZ,1 + λXXZ,1 − 2λXXZ) /3 with λXXZ characterizing
the distance away from the SU(2) symmetric Heisenberg
Hamiltonian, see Fig. 1(d). Although our main pulse se-
quence cannot engineer the Ising point g = (0,0,1) due to
finite-pulse effects, we use a spin locking sequence (i.e. con-
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FIG. 1. Experimental system and Hamiltonian engineering. (a)
Black diamond experimental system, consisting of a high density en-
semble of NV spins in diamond. Spin initialization and readout are
achieved via optical illumination and fluorescence, while spin ma-
nipulation is performed via microwave pulses. (b,c) Representative
pulse sequence block and illustration of Hamiltonian engineering
concept. By tuning pulse separations in an interaction decoupling
sequence, the effective Hamiltonian can be engineered into different
forms, such as Heisenberg (b) or XY (c) Hamiltonians. (d) Illustra-
tion of accessible XYZ Hamiltonians via Hamiltonian engineering.
The accessible Hamiltonians are averages of those obtained via trans-
forming the native Hamiltonian by a π/2 pulse [squares]. Special
Hamiltonians of interest are labeled: Ising [purple triangle], Heisen-
berg [black star], XY Hamiltonian [green diamond].

tinuous driving) to access it.
Global and local probes of thermalization.— Equipped

with the ability to engineer various XXZ Hamiltonians, we
now explore the thermalization dynamics. We first examine
the dynamics of global observables, utilizing a conventional
Ramsey sequence to measure the decay of a polarized initial
state along +x̂ [24], given by

CXXGlobal(t) =
2

N
⟨Sx(t)⟩+x̂ = (

2

N
)
2

⟨Sx(t)Sx(0)⟩+x̂, (2)

where Sµ(t) = ∑i S
µ
i (t) = ∑i e

iHgtSµi e
−iHgt is the Heisen-

berg picture global spin operator and ⟨⟩+x̂ denotes an ensem-
ble average in the state where all spins are initially polarized
along the +x̂ direction.

As a validation of our Hamiltonian engineering tools, we
first engineer the Heisenberg Hamiltonian λXXZ = 0, which
exhibits a global SU(2) symmetry and therefore preserves
uniformly polarized initial states. As seen in Fig. 2(a),
global Heisenberg dynamics display an order of magnitude
longer decay timescale than the disorder-decoupled native
NV interaction Hamiltonian (gray points). To characterize
the timescale and shape of the decay, we fit the signal to a
stretched exponential form C(t) ∝ exp(−(t/τ)ν), where τ

describes the characteristic timescale, and the stretching expo-
nent ν encodes the shape (solid lines in Fig. 2(a)). In Fig. 2(b),
the blue points show the decay timescale for a range of differ-
ent XXZ Hamiltonians, normalized by the decay curve at the
Heisenberg Hamiltonian, which is completely dominated by
extrinsic factors. Conversely, the prominent peak around the
Heisenberg Hamiltonian confirms that the normalized decay
is dominated by dynamics of the engineered Hamiltonian.

While the Heisenberg Hamiltonian freezes the decay of any
polarized initial state, it still induces dynamics in generic ini-
tial states, leading to local thermalization. To probe this local
equilibration for generic initial states, we introduce a tech-
nique to measure the infinite temperature local spin autocor-
relators, despite only having access to native global control
and measurements, by leveraging the inherent large disorder
of the system. We refer to this probe as a “disorder-order”
measurement [25]. It prepares the spins in a random prod-
uct state encoding the local disorder strength on each spin to
mimic an infinite temperature quench.

The measurement sequence is illustrated in Fig. 2(c), and
resembles the familiar spin-echo technique. The disorder-
winding and unwinding free evolutions surrounding the Flo-
quet Hamiltonian engineering serve two essential purposes.
First, the initial free-evolution step distributes each spin uni-
formly along the equator of its Bloch sphere, with the disorder
field hi imprinting a local phase θi = hiτwind. This step initial-
izes a random product state at infinite effective temperature.
Second, reversing the initial disorder-winding prior to mea-
surement of global polarization transforms the spatially ho-
mogenous measurement of the ensemble into a spatially inho-
mogenous measurement, where each spin is locally measured
along the direction in which they were initially prepared. This
local realignment (see Fig. 2(d)) allows only the local oper-
ator autocorrelations associated to the plane of the disorder-
winding to survive the disorder average. The resulting signal
is

2

N
∑
i

⟨Sxi (t)Sxi (0)⟩T=∞ + ⟨Syi (t)S
y
i (0)⟩T=∞, (3)

where ⟨⟩T=∞ denotes an expectation value over the infinite
temperature state [21].

Note that despite their superficial similarities, Eq. (3) is
very different from Eq. (2); for example, a Heisenberg Hamil-
tonian does not cause any decay in Eq. (2), but does cause
local equilibration in Eq. (3). We further generalize this pro-
tocol for disordered rotations around the x̂, ŷ, ẑ axes and
combine the results to infer the local autocorrelations of each
axis individually, i.e. CµµLocal(t) =

4
N ∑i⟨S

µ
i (t)S

µ
i (0)⟩T=∞ for

µ =X,Y,Z.
The decay timescales for the disorder-order measurements

are shown as the red traces in Fig. 2. In Fig. 2(a,b), we
find that the decay of such local correlators for the Heisen-
berg Hamiltonian is significantly faster than the global cor-
relators, confirming that the disorder-order technique detects
local thermalization, even in the SU(2)-symmetric case that
preserves polarized initial states.
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FIG. 2. Measuring global and local spin autocorrelators. (a) Mea-
sured coherence decay under an engineered Heisenberg Hamiltonian
for global [blue circles] and local [red squares] spin autocorrelators.
Fit is a stretched exponential. For reference, we also show the XY-
8 decay [gray points], which characterizes the decay under the na-
tive interaction Hamiltonian. (b) Decay times for normalized global
and local spin autocorrelators. Vertical dashed lines denote special
Hamiltonians of interest. (c) “Disorder Order” sequence to measure
the decay of local spin autocorrelators for an infinite temperature ini-
tial state, which reveals local thermalization. The sequence consists
of a π/2 initialization pulse, a free evolution duration to encode the
local disorder strength into the spin state, a varying number of rep-
etitions of the Hamiltonian engineering sequence, followed by a π
pulse and free evolution to rephase the spins and −π/2 pulse for spin
state readout. The sequence is designed to suppress higher-order cor-
rections (see Ref. [21] for details). (d) Measured normalized spin
polarization as a function of disorder unwinding time, showing a re-
vival when the winding and unwinding times are equal. In this ex-
ample, the Hamiltonian engineering consists of two Floquet cycles
of Heisenberg Hamiltonian engineering.

Tuning local thermalization.— Interestingly, different XXZ
Hamiltonians show markedly different decay shapes, as
shown in Fig. 3(b). Varying the XXZ Hamiltonian for local
spin autocorrelators along X, we find a significant deviation
of the decay shape from a simple exponential form, contrary
to conventional NMR heuristics [26]. While the simple expo-
nential shape qualitatively captures features close to the Ising
Hamiltonian, we observe a striking decrease of the stretch-
ing exponent on the easy-plane side of the phase diagram
(λXXZ > 0), where ∣gx,y ∣ > ∣gz ∣. As we will see, the un-
expected variations of the stretching exponent are an explicit
manifestation of the intrinsic, quantum many-body noise be-
ing tuned by the effective Hamiltonian.

To provide a physical explanation for the observed decay
timescales and shapes, we develop a simple physical model
and complement it with numerical simulations that qualita-
tively reproduce the observations.

Focusing first on the decay shape of the engineered Ising
dynamics, one can analytically calculate the global and lo-
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FIG. 3. Decay timescale and decay shape for local correlators.
(a) Local X [red], Y [yellow] and Z [blue] spin autocorrelator decay
timescales, normalized by extrinsic decay and rescaled by Hamilto-
nian norm. The blue arrow indicates divergent timescales of Z cor-
relators closer to the Ising Hamiltonian [21]. (b) Local spin auto-
correlator decay shapes, averaged over X, Y, as characterized by the
stretching exponent. Horizontal dotted line at d/α = 1 is the naive
expectation based on existing arguments in the NMR literature, pre-
dicting an exponential decay. A second dashed line at 0.5 = d/2α is
also plotted as the expectation for dynamics which generate Marko-
vian fluctuating fields. Solid line is the prediction from a dynamical
mean-field model.

cal Sx autocorrelators for randomly-positioned d-dimensional
spin ensembles with power-law 1/rα Ising interactions [27–
29]. For any given spin, quantum fluctuations of neighboring
spins produce a random magnetic field B̂i = ∑j JijŜzj driving
precession dynamics in the XY plane. Crucially, this magnetic
field is static, as the local magnetization Szj is conserved un-
der the ZZ Ising Hamiltonian, and spins precess ballistically
as ∆φt(r) ∼ t/rα. Counting the number of spins contributing
to this precession, as depicted in Fig. 4(a), leads to a stretching
exponent of d/α, in agreement with our experimental obser-
vations.

Away from the Ising Hamiltonian, the non-zero flip-flop
term gx,y transports magnetization through the spin bath, ren-
dering the local field dynamical. When the correlation time
of the field becomes comparable to the precession timescale,
the accrued phases can destructively interfere. This qualita-
tively modifies the earlier scaling to ∆φt(r) ∼ tβ/rα, where
1 ≥ β ≥ 1/2 is a phenomenological parameter interpolating
between ballistic and diffusive precession dynamics in the re-
spective limits of static and Markovian fields, see Fig. 4(b).
Shorter bath correlation times reduce the stretching exponent
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to ν = βd/α, and yield d/2α in the Markovian limit.
To confirm that the bath correlation times determine the

stretching exponents in the full non-commuting XXZ Hamil-
tonian, we use a minimal model that incorporates the correla-
tion times and vector nature of the dynamic magnetic field into
a self-consistent dynamical mean-field model [21, 30]. In par-
ticular, we approximate the quantum magnetic fields by zero-
mean, normally distributed classical variables whose temporal
correlations are self-consistently determined by the local de-
phasing dynamics of neighbouring spins. The resulting decay
shapes and stretching exponents qualitatively match the ex-
perimental data (red line in Fig. 3(b)), validating our intuition
that dynamic magnetic fields transverse to a particular spin
axis produce lower stretching exponents than static ones.

The above physical picture explains the easy-axis regime
timescales, but not the easy plane. On the easy-axis side, the
static Z fields lead to rapid, linear accumulation of precession
phase, which causes rapid decay of the X and Y correlation
functions. This prediction agrees with the λXXZ < 0 region
of Fig. 3(b), where the ratio of X to Z timescales (plotted in
Fig. 4(e)) remains below 1. However on the easy plane side,
and in particular for the XY point H ∝ SxSx + SySy , we
would expect Z fields to decay faster than X and Y fields,
and therefore the X to Z timescale ratio to significantly ex-
ceed 1, simply because there are more fields transverse to it.
This runs contrary to observation, as can be clearly seen in the
λXXZ > 0 region of Fig. 3(b) and Fig. 4(e). Figure 4(e) also
shows the expectation from the single-spin dynamical mean-
field model, which shows sizable deviations from experimen-
tal observations.

To address these discrepancies, we consider a model includ-
ing exact coherent interactions between strongly coupled pairs
of spins within the dynamical mean field framework, as is de-
picted schematically in Fig. 4(d) and compared against data
in Fig. 4(e). This improvement can be understood by not-
ing that local conservation of magnetization within these clus-
ters significantly extends the Z decay timescale relative to the
transverse axes. Thus, the reduction of the peak in timescale
ratio near the XY Hamiltonian constitutes a signature of hy-
bridization of clusters of spins contributing to the thermaliza-
tion dynamics. It is noteworthy that both experiment and exact
diagonalization (Fig. 4(e)) give a lower timescale ratio than
the pair-spin model, suggesting that the experiment witnesses
quantum correlations that go beyond two-body clusters.

Discussions.— These observations reveal the interplay be-
tween coherent hybridization and local dephasing as a con-
crete thermalization mechanism in a closed many-body sys-
tem, and open up a wide range of opportunities for explo-
rations in many-body physics and quantum sensing. The
disorder-order technique allows us to probe complex many-
body phenomena where local control is otherwise inaccessi-
ble. It will also be interesting to extend the Hamiltonian engi-
neering techniques to higher spin dimensions, utilizing the full
spin-1 nature of the NV center spin to access a richer range of
dynamical phenomena [31, 32], or to extend the measurement
techniques for local autocorrelations to more intricate spin
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FIG. 4. Physical mechanism driving coherence decay. (a) Quan-
tum fluctuations of neighboring spins produce a dynamical mean-
field that induces decay, and as time progresses, weakly coupled
spins at larger distances start to contribute as well. (b) For differ-
ent Hamiltonians, the correlation time of the dynamical mean-field
changes, resulting in different rates of phase accumulation over time
(ballistic for a static field, diffusive for a Markovian fast-varying
field) and leading to different decay shapes at early-to-intermediate
times. (c) Illustration of a single spin experiencing the fluctuating
magnetic field from its neighbors. (d) Illustration of the additional
effect of hybridization between strongly coupled pairs of spins. (e)
Ratio between X and Z decay times of local correlators for experi-
mental data and various models. Including local hybridization [blue]
improves the agreement with experimental data [red], and exact diag-
onalization of full quantum dynamics [yellow, 18 spins] agrees best.

correlators, such as out-of-time-ordered-correlators [7, 33].
Finally, our results highlight the ability to engineer complex
interaction Hamiltonians and probe the resulting evolution, a
key building block towards the use of such solid-state ensem-
ble spin systems for entanglement-enhanced quantum sens-
ing [34–36]. The techniques demonstrated here should be ap-
plicable to a wide variety of quantum simulation and sensing
platforms.
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Note added: after the completion of this project, we became
aware of related work [40], which develops similar techniques
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and applies them to study spin transport.
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