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When a system’s parameter is abruptly changed, a relaxation toward the new equilibrium of
the system follows. We show that a crossing between the second and third eigenvalues of the
relaxation operator results in a singularity in the dynamics analogous to a first-order equilibrium
phase transition. While dynamical phase transitions are intrinsically hard to detect in nature, here
we show how this kind of transition can be observed in an experimentally feasible 4-state colloidal
system. Finally, analytical proof of survival in the thermodynamic limit of a many body (1D Ising)
model is provided.

Our understanding of out-of-equilibrium systems pri-
marily developed through analogies with systems at ther-
mal equilibrium [1, 2]. In equilibrium, phase transitions
are associated with a non-analytic behavior of the free
energy. The singular character of phase transitions con-
tributed to a strong and rigorous consolidation of such
parallels [3, 4], with universal features establishing pro-
found connections among apparently far and unrelated
phenomena. Much effort was invested throughout the
last century in understanding first- and second-order
equilibrium phase transitions. This study led to the ad-
vancement of several important results, including the ex-
act solution of the 2D Ising model [5], the phenomeno-
logical Ginzburg-Landau theory [6], the Yang-Lee zeros
[7] and even renormalization group [8, 9]. Many of these
techniques were developed due to an inherent difficulty
associated with phase transitions: short-range equilib-
rium systems do not have any phase transition unless
the thermodynamic limit (where the number of particles
goes to infinity) is taken, and even then, they do not
exist in one dimensional or non-interacting equilibrium
systems [10].

Although phase transitions were originally studied
in equilibrium systems, similar phenomena also appear
away from thermal equilibrium. In fact, most equilibrium
phase transitions have a dynamical counterpart when the
external parameter changes across or is quenched through
its critical value [11–13]. Several nonequilibrium effects
have similar characteristics to equilibrium phase transi-
tions. For example, the same power law singularities of
second-order phase transitions observed in many equi-
librium systems at criticality can be found in generat-
ing functions of diffusing systems [3, 4, 14]. Dynami-
cal phase transitions [15–18] and discontinuities in the
large-deviation rate function [12, 19–21] also withstand
similar analogies. In contrast to the equilibrium case, a
nonequilibrium phase transition might have a constant
flux across it [22]. These dynamical phase transitions of-
ten have different characteristics than their equilibrium
counterpart. In addition, non-equilibrium systems can
have phase transitions even under conditions that are
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incompatible with phase transitions at equilibrium, for
example in 1D systems [23–25].

In this letter, we show how eigenvalue crossing be-
tween the second and third eigenvalues of a Markovian
operator can induce a singularity in the long time limit
approach to equilibrium as a function of the bath tem-
perature Tb. As in dynamical phase transitions [15–18],
here the long-time limit t → ∞ replaces the thermody-
namic limit N → ∞, but unlike dynamical phase tran-
sitions, the discontinuity is not in the probability of ob-
serving a rare-event, but rather in the average direction
of the relaxation to equilibrium. Similar to level crossing
in quantum systems [26], this phase transition requires
some symmetry in the system, otherwise, small perturba-
tions make the exact crossing turn into avoided crossing.
However, even avoided crossing is a sufficient condition
to explain the appearance of other anomalous relaxation
phenomena, like the Mpemba effect (ME) [27–40]. We
demonstrate our results in two systems: first, in the sim-
plest system that can exhibit exact eigenvalue crossing
– a four-state system with Arrhenius rates, but where
every perturbation results in avoided crossing. Then we
consider the 1D antiferromagnet Ising chain, where the
thermodynamic limit can be taken analytically, showing
that the effect exists even in macroscopic many-body sys-
tems. Moreover, the two symmetries of the antiferro-
magnet Ising model protect the crossing against small
perturbations.

It is instructive to start by considering why there are no
equilibrium phase transitions in finite systems. One way
to argue this is to use a detailed-balance Markovian rate
matrix R whose steady-state distribution is the Boltz-
mann equilibrium distribution, e.g., using Glauber rates
for the dynamics [41]. In this case, the equilibrium dis-
tribution is the eigenvector corresponding to the largest
eigenvalue of the matrix eRt for any t. The Perron-
Frobenius theorem [42] ensures that the largest eigen-
value of eRt is non-degenerate, and therefore there can-
not be an eigenvalue crossing for any value of the param-
eters. This implies that for rates that are analytic in the
external parameters, the steady state, which is the null
eigenvalue eigenvector of R, is also an analytic function
of these parameters, and there is no phase transition in
the system. This argument does not hold for an infinite
system since the Perron-Frobenius theorem cannot be ap-
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plied for the corresponding Markovian operator [42], and
hence a phase transition is possible in the thermodynamic
limit. A key point in our analysis is that for relaxation
processes, it is not the largest eigenvalue of the Marko-
vian matrix that controls the process (it only controls the
final state), but rather the rest of them. Specifically, the
long-time limit of the relaxation process is controlled by
the second eigenvalue, and as discussed below, a cross-
ing between the second and third eigenvalues generates
a singularity in the relaxation dynamics.

To observe eigenvalue crossing, we have to track how
they change as a function of some parameter. For con-
creteness, we choose to use here the external bath tem-
perature Tb, but a similar analysis can be performed for
any other external parameter. Limiting our discussion
to discrete setups for simplicity, the system is described
by a vector pi, indicating the probability of observing
the system in a certain microscopic configuration i. The
evolution of the system is stochastic, and the probability
distribution pi evolves by the master equation

∂t~p(t) = R(Tb)~p(t), (1)

where R(Tb) is the rate matrix containing all the spe-
cific details of the system and its coupling to the bath.
The off-diagonal elements Rij are the jump rates from
microstate j to i, while Rii = −

∑
j 6=iRji represent the

escape rates from the state i. Assuming that R is irre-
ducible and satisfies detailed balance, the system eventu-
ally relaxes towards the (unique) Boltzmann equilibrium
πi(Tb) = e−Ei/Tb/Z(Tb), where Ei is the energy of the
microstate i, and Z(Tb) =

∑
i e
−Ei/Tb is the partition

function (we use units in which kB = 1). Formally inte-
grating Eq. 1 with a Boltzmann equilibrium at temper-
ature T0 as initial condition gives

~p(t, Tb, T0) = ~π(Tb) +
∑
n>1

an(Tb, T0)eλn(Tb)t~vn(Tb) , (2)

where ~vn are the right eigenvectors of R with associated
real [43] eigenvalues 0 = λ1 > λ2 ≥ λ3 ≥ . . . and the
coefficients an correspond to the projections of the initial
state on the left eigenvectors. While λ1 = 0 is granted
to be non-degenerate in such systems, the same does not
apply to all the remaining eigenvalues.

The second eigenvalue represents the slowest dynam-
ics, setting an exponential timescale of the relaxation
∝ 1/|λ2|. Indeed, substituting the formal solution in the
master equation gives

e−λ2t∂t~p(t) = a2λ2~v2 +
∑
n>2

anλne
−∆λ2,nt~vn (3)

where we introduced the eigenvalue gaps ∆λ2,n = λ2 −
λn ≥ 0. If λ2 is not degenerate and a2 6= 0, the final stage
of the relaxation is in the direction of ~v2, and it changes
continuously with Tb. However, ~v2(Tb) can abruptly
change at some temperature T ∗ if at such temperature
there is an eigenvalue crossing, namely λ2(T ∗) = λ3(T ∗)
as in Fig. (1). This eigenvalue crossing is algebraically

identical to level crossing in the context of quantum sys-
tems [44, 45], though its implications are different: in
the t → ∞ limit, the crossing implies a jump in the fi-
nal direction of the approach to equilibrium; thus it can
be interpreted as a phase transition in the relaxation dy-
namics.

Referring to the eigenvalues and eigenvectors that
dominate the long-time dynamics before and after T ∗

as λ±2 and ~v±2 (Fig. 1a), we characterize the singular
behavior in the long-time limit of Eq. 3 as

~v2 =


~v−2 Tb < T ∗

a−2 ~v
−
2 + a+

2 ~v
+
2 Tb = T ∗

~v+
2 Tb > T ∗

(4)

where a±2 are coefficients determined by the initial con-
ditions. Note that this singularity is not detectable in
the equilibrium steady state but rather in the relaxation
towards equilibrium. This is why eigenvalue crossing can
be linked with anomalous phenomena arising in the re-
laxation process [33, 46, 47].

In the original solution to the 2D Ising model, due
to Onsager, the phase transition temperature was found
through the point at which the largest eigenvalue of the
system’s transfer matrix becomes degenerate [5]. How-
ever, this degeneracy is not a crossing: the largest eigen-
value is degenerate for all temperatures below the critical
one, and the two degenerate eigenvectors correspond to
the two phases, as expected in a second-order phase tran-
sition. Therefore, we interpret the eigenvalue crossing in
the relaxation dynamics as a first-order phase transition.
In detailed balanced matrices, the eigenvalues are always
real and analytic in the parameters [48], therefore a sec-
ond order phase transition were two eigenvalues coalesce
is not possible. However, it is possible to have a second-
order phase transition in systems with broken detailed
balance [49, 50], when the rate matrix passes through
an exceptional point beyond which λ2 becomes complex-
valued and hence Re(λ2) = Re(λ3).

Algebraically, eigenvalue crossing is not stable since
the dimension of matrices with level crossing is smaller
than the dimension of all relevant matrices. Thus, un-
less some symmetry prevents perturbations in the rate
matrix in the direction that breaks the degeneracy, the
singular phase transition is not expected to be directly
observed. However, even in this case, the non-degeneracy
of the second eigenvalue induces a sharp – albeit non-
singular – transition across T ∗ in the approach to equi-
librium direction (see Fig. 1d). The timescale of the
slowest dynamics is then regulated by the relative differ-
ence δλ23 = −∆λ23/λ2 > 0, as it can be easily seen by
rescaling the time by λ2 in Eq. 3.

Let us present the minimal model that exhibits eigen-
value crossing in the dynamics: a four-state Markovian
system coarse-grained from an overdamped four-well en-
ergy landscape (Fig. 1b). Indeed, it can be proven that
any N -state system with an N − 1 degeneracy of λ2 at a
certain temperature T ∗ necessarily extends to a degener-
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FIG. 1. (a) A small change in the bath temperature Tb drastically changes the approach to equilibrium direction in the presence
of a level crossing (c) like the one observed in the four-wells setup shown in panel (b). The system exhibits a phase transition
in the dynamics at T ∗lc = 1, marked by a singularity of the components of ~v2 (numbered according to the 4 wells) shown in (f).
The 2nd and 4th component overlap before the singularity at T ∗lc, while the 1st and 3rd are both zero after the crossing. (d,g)
Breaking the energy degeneracy by setting E2 = −0.6 smoothens the transition, providing an avoided crossing at T ∗ac ∼ 0.93.
In this case, the relative eigenvalue difference δλ23 exhibits a minimum rather than a marked dip at the crossing temperature
(e).

acy for every bath temperature [51], ruling out eigenvalue
crossing in three-state systems. A general representation
of the rate matrix R is the Arrhenius form [48, 52]:

Rij(Tb) =

{
Γe−(Bij−Ej)/Tb i 6= j

−
∑
k 6=iRki i = j

(5)

where Γ (= 1 for simplicity) is a rate constant and
Bij = Bji denotes the energy barrier between state i
and j, set to be higher than the adjacent energy levels
E{i,j}. Given the low number of free parameters in a
four-state system, one can easily find an example with
eigenvalue crossing, as explained in the SM [51]. In our
specific example, all transitions are permitted through fi-
nite barriers with height Bij = 0 except for B24, which
separates the second and fourth (degenerate) wells with
energy E2 = E4 = −1/2. Setting B24 = +∞ implies
that there are no transitions between these states. In
addition we set E1 = −1, while E3 = − log(4

√
e − e) is

determined by the constraints of a crossing at T ∗ = 1.
This example exhibits a marked crossing (Fig. 1c) that
induces a phase transition in the relaxation dynamics at
T ∗, as we can see through the components of ~v2 depicted
in Fig. 1f. The singularity can also be characterized by
the relative eigenvalue difference δλ23, which exhibits a
marked dip at the crossing temperature (Fig. 1e).

A minor perturbation in the parameter values gener-
ally converts the singularity into avoided crossing. For in-
stance, breaking the energy degeneracy by setting E2 =
−0.6 results in the avoided crossing shown in Fig. 1d,
which nevertheless induces a sharp but continuous tran-
sition of ~v2 (Fig. 1g) provided that the dimensionless
timescale δλ23 � 1 (Fig. 1e). This feature is funda-
mental when considering experimental setups in which
one might want to detect this phenomenon. Indeed, the
parameters can be tuned only to within a certain pre-
cision depending on specific details of the experimental

apparatus. This result not only increases the chances of
observing the effect considerably but also opens up the
possibility of seeing it in even simpler setups as a three-
state system; see [51].

The sensitivity of the eigenvalue crossing to small per-
turbations is not important in highly symmetric mod-
els if the symmetry prevents perturbations that break
the degeneracy. An example of such a system is the 1D
Ising antiferromagnet chain. Consider a ring of N spins
σs = ±1, for which the Hamiltonian for any configuration
~σ of the 2N possible microstates reads

H(~σ) = −H
N∑
s=1

σs − J
N∑
s=1

σsσs+1 (6)

where H is the magnetic field, J < 0 is the antiferromag-
netic coupling constant and σN+1 ≡ σ1. We implement
single-spin Glauber dynamics [41], namely the rates con-
necting two microscopic configurations ~σ{i,j} with ener-
gies E{i,j} is

Rij =
δ1,dij

1 + e(Ei−Ej)/Tb
(7)

where dij =
∑
s δσi

s,−σ
j
s

and the Kronecker delta function

δ1,dij limits the transition to single-spin flips.
In the absence of magnetic field H = 0, an explicit

form for all the eigenvalues and eigenvectors was derived
by Felderhof [53]. Introducing the sets S+ = {π 2i−1−N

N }
and S− = {π 2i−N

N } with i = 1 . . . N , and considering all

the k-combinations ~qk ∈
(
S±

k

)
where S+ (S−) is chosen

for even (odd) values of k, we can express the 2N − 1
eigenvalues regulating the dynamics as

λ(~qk) = −k + γ

k∑
i=1

cos(qk,i) (8)
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FIG. 2. (a) Spectrum of an N = 8 Ising antiferromagnet at
zero magnetic field with Glauber dynamics (Eq. 7). High-
lighted in blue and red are the first two dominant eigen-
values which are relevant for the dynamics. They cross at
T ∗(N = 8) ∼ 5.45. (b) Eigenvalue difference δλ23 as a func-
tion of the reduced temperature t = (T − T ∗)/T∗, exhibit-
ing an excellent finite-size collapse ∝ |t|1 around the crossing
temperature. Inset: the distance from the asymptotic cross-
ing temperature T ∗∞ = 2/arctanh(1/3) decays quadratically.

where γ = tanh 2J/Tb. This system is invariant with
respect to symmetries that considerably reduce the num-
ber of eigenvalues relevant to the dynamics. The set of
all rate matrices, under global flipping and cyclic shifts
of the microscopic configurations is isomorphic to the
Z2 ×DN group [54]. Therefore, in the antiferromagnetic
case (J < 0), we find that the first eigenvalues of eigen-
vectors with even parity with respect to such symmetry
turn out to be λ−2 = −2+2γ cos

(
N−1
N π

)
and λ+

2 = −1+γ,
highlighted in Fig. 2a. The analytic expressions of the
eigenvalues enable us to formally study the phenomenon
in the thermodynamic limit: imposing λ−2 = λ+

2 , we find
that the crossing survives the N → ∞ limit, asymptoti-
cally approaching T ∗∞ = 2/arctanh(1/3) (Fig. 2b). The
eigenvalue difference exhibits also an excellent finite-size
multi-scale collapse [55] against the reduced temperature
t = (T − T ∗)/T ∗ with a dependence ∝ |t|1, while the
distance from the asymptotic crossing temperature T ∗∞
decays quadratically.

The eigenvector directions associated with the crossing
eigenvalues have a clear physical meaning in this system.
The 2N -dimensional eigenvectors can be projected along
the magnetization and staggered magnetization vectors,
defined as (~m)i =

∑
s σ

i
s and (~ms)i = |

∑
s(−1)sσis| for

a given microscopic configuration ~σi [56]. In Fig. 3a we
show the projection of ~v2 along such directions, finding
that it is identically zero before (after) the crossing tem-
perature along ~m (~ms). This indicates that the approach
to equilibrium occurs along the staggered magnetization
for bath temperatures Tb < T ∗ and along the magnetiza-
tion for Tb > T ∗, while at Tb = T ∗ it follows along some
linear combination of ~m and ~ms depending on the initial
conditions. Any perturbation that does not break the two
symmetries associated with these eigenvectors – flipping
all the spins or translating the chain by a single spin po-
sition – would not split the eigenvalue crossing. However,

FIG. 3. (a) Projection of ~v2 onto the magnetization ~m and
staggered magnetization ~ms vectors. At H = 0 the relax-
ation is completely orthogonal to ~m (~ms) for all temperature
below (above) T ∗. (b) At H > 0 the transition becomes non-
singular. (c) The eigenvalue difference δλ23 highlights the
avoided crossing (white curved line) induced on the system
through a magnetic field perturbation. The horizontal white
line delimits the ferromagnetic phase (|H| < 2), where the
ME is found to be allowed in the right region, in which the
projection of ~v2 is larger on ~m than on ~ms. The opposite
holds for H > 2 (see [51]).

perturbing the system, for example, with a magnetic field
H > 0 breaks the singular behavior smoothing the transi-
tion, which can nevertheless be arbitrarily sharp for small
enough magnetic fields (Fig. 3b).

The eigenvalue crossing is one of the possible mech-
anisms by which the Mpemba parity index [29], which
is a topologically protected quantity, can neverthe-
less change. Indeed, in many variants of the anti-
ferromagnetic Ising model at H = 0 there is a sharp
transition at some temperature from zero to non-zero
Mpemba index [13, 29, 46, 47]. This was already pointed
out in Ref. [46], where an exact coarse-graining proce-
dure [57, 58] allowed to explore large-sized systems and
to argue that the effect survives in the thermodynamic
limit. In Fig. 3c we plot the eigenvalue difference δλ23 as
a function of both bath temperature and magnetic field
in the 1D antiferromagnetic Ising model. The antiferro-
magnetic phase for J = −1 is delimited by |H| < 2 (hor-
izontal white line), corresponding to the region in which
the external magnetic field is not strong enough to over-
come the negative nearest neighbor interaction among
the spins. The minima of δλ23 (curved white line) parti-
tion the parameters space, showing that the existence of
the ME is limited to the region in which the projection of
~v2 is larger on ~m than on ~ms. This is consistent with the
fact that for H < 2 the magnetization of an Ising antifer-
romagnet at equilibrium is a non-monotonous function of
the temperature (see Refs. [29, 46]). Having the slowest
relaxation occurring predominantly along the magneti-
zation vector ~m is therefore what enables geometrically
the emergence of relaxation shortcuts. Anomalous re-
laxation effects can also be observed in a limited region
above |H| > 2, in the area in which ~v2 has a larger com-
ponent along the staggered magnetization. Indeed, for
strong magnetic fields the roles are inverted [51]: it is ~ms

that is non-monotonous with respect to the bath temper-
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ature. Still, the appearance of the ME for 1D systems in
this region is related to finite size effects and is therefore
not expected to survive the thermodynamic limit [46].

Summarizing, we have shown how eigenvalue crossing
can be interpreted as a phase transition in the dynam-
ics of stochastic systems. Such a transition can dras-
tically change the direction from which the system ap-
proaches the bath temperature equilibrium, thereby ex-
plaining where anomalous relaxation effects can be ob-
served in terms of model parameters. It was shown that
eigenvalue crossing appears in the paradigmatic 1D Ising
antiferromagnet, and it survives in the thermodynamic
limit, with relaxation occurring along the staggered (to-
tal) magnetization before (after) the crossing. We have
shown how an external perturbation breaks the singular-
ity in the dynamics but nevertheless maintains a steep
jump related to a marked avoided crossing. This is im-
portant when attempting to observe this phenomenon in
simpler, single-body experimental setups, where model
parameters can be tuned only up to some finite preci-

sion. The four-state example we provided not only serves
as a pedagogical example but also provides the means to
characterize this phenomenon in small experimental se-
tups, such as the colloidal systems in which the ME was
recently observed [34, 35].
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anta, A. Maiorano, E. Marinari, et al., The mpemba
effect in spin glasses is a persistent memory effect, Pro-
ceedings of the National Academy of Sciences 116, 15350
(2019).

[38] A. Lapolla and A. c. v. Godec, Faster uphill relaxation
in thermodynamically equidistant temperature quenches,
Phys. Rev. Lett. 125, 110602 (2020).

[39] F. Carollo, A. Lasanta, and I. Lesanovsky, Exponentially
accelerated approach to stationarity in markovian open
quantum systems through the mpemba effect, Phys. Rev.
Lett. 127, 060401 (2021).
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