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Determining capacities of quantum channels is a fundamental question in quantum information
theory. Despite having rigorous coding theorems quantifying the flow of information across quantum
channels, their capacities are poorly understood due to super-additivity effects. Studying these
phenomena is important for deepening our understanding of quantum information, yet simple and
clean examples of super-additive channels are scarce. Here we study a family of channels called
platypus channels. Its simplest member, a qutrit channel, is shown to display super-additivity of
coherent information when used jointly with a variety of qubit channels. Higher-dimensional family
members display super-additivity of quantum capacity together with an erasure channel. Subject
to the “spin-alignment conjecture” introduced in the companion paper [1], our results on super-
additivity of quantum capacity extend to lower-dimensional channels as well as larger parameter
ranges. In particular, super-additivity occurs between two weakly additive channels each with large
capacity on their own, in stark contrast to previous results. Remarkably, a single, novel transmission
strategy achieves super-additivity in all examples. Our results show that super-additivity is much
more prevalent than previously thought. It can occur across a wide variety of channels, even when
both participating channels have large quantum capacity.

Introduction. A central aim of quantum information
theory is to find out how much information a noisy quan-
tum channel can transmit reliably—to find a quantum
channel’s capacity [2, 3]. In fact, a quantum channel has
many capacities, depending on what sorts of information
are to be transmitted and what additional resources are
on hand. The primary capacities of a quantum channel
are the classical [4–6], private [7–9], and quantum capac-
ities [9–14]. This paper focuses on unassisted capacities,
when no additional resources (such as free entanglement)
are available.

The theory of quantum capacities is far richer and more
complex than the corresponding classical theory [15, 16].
This richness includes many synergies and surprises:
super-additivity of coherent information [17–31], private
information [32–34], and Holevo information [35], super-
activation of quantum capacity [36–40], and private com-

munication at a rate above the quantum capacity [41, 42].
Over the past two decades, there have been numerous
exciting discoveries about these phenomena, but they re-
main mysterious. As a result, we don’t have a theory of
how to best communicate with quantum channels, and
can’t answer many of the sorts of questions classical in-
formation theory does. For example, in quantum infor-
mation theory random codes can be suboptimal, and we
can only evaluate capacities in special cases [43–51]. Our
understanding of error correction in the quantum setting
is thus incomplete, whether the data is classical, private,
or quantum.

Any quantum channel B can be expressed as an isome-
try J : A 7→ BE followed by a partial trace over the envi-
ronmentE: B(ρ) = TrE(JρJ

†). Physically, it means that
quantum noise arises from sharing the unclonable quan-
tum data with the environment which is subsequently
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lost (i.e., traced out). Therefore, to understand quan-
tum transmission we must also consider the environ-
ment’s view of the channel, known as the complementary
channel: Bc(ρ) = TrB(JρJ

†). Together, the channel and
its complement allow us to define the coherent informa-
tion of a channel B on an input state ρ as ∆(B, ρ) :=
S
(

B(ρ)
)

− S
(

Bc(ρ)
)

, where S(σ) = − tr(σ log σ) is the
von Neumann entropy of σ. Mathematically, the co-
herent information signifies how much more information
about the input is available in system B than in sys-
tem E. Operationally, a random coding argument shows
that indeed, for any input state ρ, the quantity ∆(B, ρ) is
an achievable rate for quantum transmission [9, 11–14].
Maximizing over all inputs ρ gives the channel coherent
information Q(1)(B).
If the channel coherent information is additive, that is,

Q(1)(B1 ⊗ B2) = Q(1)(B1) + Q(1)(B2) for any two chan-
nels B1 and B2, then the theory of quantum capacity will
resemble its classical analogue. However, a rich theory
of quantum capacity originates from two distinct notions
of nonadditivity: violations of weak additivity and viola-
tions of strong additivity.
We first discuss violations of weak additivity. The

quantum capacity can be expressed as [9, 11–14, 52]

Q(B) = lim
n→∞

1

n
Q(1)(B⊗n), (1)

where B⊗n is the n-fold tensor product of B. If
Q(1)(B⊗n) = nQ(1)(B) for all n ∈ N, we say that B
has weakly additive coherent information, in which case
Q(B) = Q(1)(B). However, there are channels B for
which Q(1)(B⊗n) > nQ(1)(B) holds for some n [17–
21, 23–26, 28–30]. Thus, the n → ∞ limit is in general
required in the above regularized expression for the quan-
tum capacity. When a channel does not have weakly ad-
ditive coherent information, special quantum codes can
outperform the classical-inspired random coding strat-
egy achieved by Q(1). This unbounded optimization also
means that we can rarely determine the quantum capac-
ity of a quantum channel.
The second notion of nonadditivity, violations of strong

additivity, can be phrased as follows. For two channels
B1 and B2, we have the general inequality

Q(1)(B1 ⊗ B2) ≥ Q(1)(B1) +Q(1)(B2) . (2)

Letting B1 be a fixed channel, if equality in (2) holds
for all channels B2, we say that B1 has strongly additive
coherent information. In this case, the quantum capac-
ity satisfies Q(B1 ⊗ B2) = Q(B1) + Q(B2). Note that
strong additivity implies weak additivity. Violations of
strong additivity imply that two different channels can
have strictly superadditive coherent information, or even
capacity. As a result, not only do we not know the ca-
pacity of most quantum channels, we also do not know
when two channels used jointly can have capacity ex-

ceeding the sum of the individual channels. A more gen-
eral notion of a channel’s capability to transmit quantum
data thus depends on the details of other resources avail-
able [36, 53, 54], and does not necessarily coincide with
its capacity, a drastic deviation from the classical theory.

Similar to the quantum capacity, a channel’s private
and classical capacities can be defined as the highest
rates of faithful transmission of private and classical in-
formation, respectively; expressions analogous to (1) are
known [5, 6, 8, 9]. Both capacities require regularized ex-
pressions [35, 55], and the private capacity can be shown
to be non-additive for some channels [32, 56].

For classical capacity, the underlying information
quantity is the Holevo information, which was con-
jectured to be additive for a long time. In fact,
strong additivity was proved for certain channels
such as entanglement-breaking [44], depolarizing, [46],
Hadamard [48, 49], and unital qubit channels [45]. As
a result, for these channels the classical capacity com-
pletely characterizes their ability to faithfully send clas-
sical information. Furthermore, the only known proofs
of violation of weak additivity of the Holevo information
[35, 57, 58] are based on random channel constructions
and no explicit example has been found yet [3, 35]. It is
still open if the classical capacity can be non-additive. It
is furthermore unclear if additivity is more prevalent for
classical data transmission, or if proofs are simply harder
to come by since the Holevo information involves a more
complex optimization compared to coherent information.

The situation for quantum information transmission is
quite different. There is a plethora of concrete channels
with super-additive coherent information [17–20, 23–30].
The only known class of channels with strongly addi-
tive coherent information are the entanglement-breaking
channels, but they are somewhat trivial – their quan-
tum capacity is zero. Degradable channels [47, 59] have
weakly additive coherent information, and two degrad-
able channels have additive coherent information, yet
surprisingly degradability does not imply strong addi-
tivity for a channel. Even weakly additive channels like
some (anti-)degradable [47] and PPT channels [60] may
have super-additive quantum capacity in combination
with suitable channels [36, 39, 56]. A common feature in
these violations of strong additivity is that one or both of
the channels are manifestly noisy, that is, with vanishing
or small quantum capacity. Most of these proofs come
from a qualitative inability for the channels to transmit
quantum data; in addition, nearly noiseless channels are
indeed limited in their non-additivity [61].

In this paper, we provide qualitatively new examples of
super-additivity of quantum capacity. The phenomenon
seems prevalent, does not involve channels engineered to
exhibit the effect, and can involve pairs of channels with
large quantum capacity. Our findings show an even more
complex landscape of non-additivity than hitherto appre-
ciated. Yet, our channels and the proofs are simple, and
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thus we hope they improve our understanding of the sub-
ject.

Main results. Our first main result is that a simple
qutrit ‘platypus channel’, defined via eq. (3) below, vio-
lates strong additivity of coherent information when used
together with a variety of simple and well-known qubit
channels such as the erasure, amplitude damping, depo-
larizing, and even randomly constructed qubit channels.
Even more remarkably, the same simple code achieves
non-additivity in all cases. Our findings strongly suggest
that super-additivity is much more prevalent and generic
than previously thought.

Second, as proved in our companion paper [1], platy-
pus channels have weakly additive coherent information
if the spin alignment conjecture introduced in [1] holds.
As the erasure channel and the amplitude damping chan-
nel also have weakly additive coherent information, we
have an example of non-additivity of quantum capacity
between two weakly additive channels. The only known
prior example revolves around superactivation [36], and
requires substantial fine-tuning to demonstrate the effect.
In contrast, our channel requires no such tuning, and
both channels exhibit non-additivity over a wide range of
parameters, including regimes where both channels have
substantial capacity themselves.

Third, we show that higher-dimensional platypus chan-
nels have similar non-additive behavior. In particu-
lar, when used jointly with a higher-dimensional erasure
channel, it exhibits super-additivity of quantum capacity
unconditionally, i.e., without relying on the spin align-
ment conjecture. The underlying mechanism at work
achieving all of these non-additivity results is qualita-
tively different from previous results in [36, 39, 56], as
explained in the Discussion section.

In the following paragraphs we discuss our main re-
sults; see the Supplementary information [62] for addi-
tional details. MATLAB and Python code used to ob-
tain the numerical results mentioned above will be made
available at [63].

The qutrit platypus channel. The qutrit ‘platypus
channel’ Ns is defined by the following isometry Fs :
Ha 7→ Hb ⊗Hc:

Fs|0〉 =
√
s|0〉 ⊗ |0〉+

√
1− s|1〉 ⊗ |1〉

Fs|1〉 = |2〉 ⊗ |0〉
Fs|2〉 = |2〉 ⊗ |1〉,

(3)

where 0 ≤ s ≤ 1/2, and the input Ha, output Hb and
environment Hc have dimension 3, 3, and 2, respectively.
This channel [28, 64] is extensively studied in the com-
panion paper [1]. From [1, 28], the channel coherent
information is always positive and can be attained on
inputs of the form σ(u) := (1− u)|0〉〈0|+ u|2〉〈2|:

Q(1)(Ns) = max
u∈[0,1]

∆(Ns, σ(u)) > 0.

Conditioned on the spin-alignment conjecture (SAC)
formulated in [1], the channel coherent information
Q(1)(Ns) can be proved to be weakly additive, and thus
Q(Ns) = Q(1)(Ns). Without the SAC, we have the upper
bound Q(Ns) ≤ log(1 +

√
1− s).

Violation of strong additivity. We find that Ns dis-
plays super-additivity in the strong sense,

Q(1)(Ns ⊗K) > Q(1)(Ns) +Q(1)(K), (4)

when used with just about any small channel K. Since
Q(1)(Ns) > 0, the additional channel K is said to amplify
Q(1)(Ns). We consider various well-known and physi-
cally relevant channels K, such as the qubit erasure chan-
nel, Eλ(ρ) = (1 − λ)ρ + λTr(ρ)|e〉〈e| with erasure prob-
ability λ ∈ [0, 1], the qubit amplitude damping chan-

nel, Aγ(ρ) = N0ρN
†
0 +N1ρN

†
1 with damping probability

γ ∈ [0, 1] and Kraus effects N0 = |0〉〈0| + √
1− γ|1〉〈1|

and N1 =
√
γ|0〉〈1|, and the qubit depolarizing channel,

Dp(ρ) = (1−4p/3)ρ+2p/3I with depolarizing parameter
p ∈ [0, 1]. For erasure and amplitude damping channels
the quantum capacity equals the channel coherent infor-
mation [43, 47, 65]. The amplification in (4) not only
occurs when each of the channels Eλ,Aγ , and Dp has
zero coherent information (see Fig. 1), but it persists for
a wide range of channel parameters 0 ≤ s ≤ 1/2, λmin ≤
λ ≤ λmax, γmin ≤ γ ≤ γmax, and pmin ≤ p ≤ pmax (see
Supplementary material [62]).
Remarkably, the amplification of Q(1)(Ns) by all three

channels Eλ, Aγ , and Dp can be achieved by a single
input state ansatz for Ns ⊗K,

ρ(ǫ, r1, r2) = r1|00〉〈00|+ r2|01〉〈01|
+ (1 − r1 − r2)|χǫ〉〈χǫ|, (5)

where |χǫ〉 =
√
1− ǫ|20〉 + √

ǫ|11〉, and the parameters
satisfy the constraints ǫ, r1, r2, r1+r2 ∈ [0, 1]. In more
detail, we find that ∆∗(Ns ⊗ Kx) := maxǫ,r1,r2 ∆

(

Ns ⊗
Kx, ρ(ǫ, r1, r2)

)

exceeds Q(1)(Ns) + Q(1)(Kx) where Kx

is one of Eλ, Aγ , or Dp. Since all three channels Eλ, Aγ ,
and Dp have well known symmetries, one may suspect
that the amplification strategy (5) coincides because of
these symmetries. We find this not to be the case. Nu-
merics reveal that amplification of Q(1)(N1/2) using (5)
occurs even when K is defined in terms of a random qubit
channel. Super-additivity occurs both when Q(1)(K) > 0
or when the coherent information of K itself vanishes.
Unconditional super-additivity of quantum capacity.

In the previous section we showed super-additivity of the
coherent information of Ns when used in parallel with
other channels such as Eλ or Aγ . The latter channels
are known to satisfy Q(Eλ) = Q(1)(Eλ) and Q(Aγ) =
Q(1)(Aγ). Moreover, conditioned on the spin alignment
conjecture (SAC) [1], we also have Q(1)(Ns) = Q(Ns).
Hence, the super-additivity of Q(1) in (4) can be elevated
to super-additivity of the quantum capacity Q, provided
the SAC is true.
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FIG. 1. Amplification of coherent information for the chan-
nel Ns and various additional channels. We plot Q(1)(Ns ⊗

K) − Q(1)(Ns) for K = E1/2 (solid magenta), K = A1/2

(solid blue), and K = Dp∗ (solid green). Here, E1/2 and
A1/2 are the symmetric erasure and amplitude damping chan-
nels respectively, Dp∗ is the qubit depolarizing channel with
p∗ ≈ 0.1893, so that all three channels have zero coherent
information Q(1)(K) = 0. We also plot R̂α(Ns) − Q(1)(Ns)

(dashed orange), where R̂α(·) with α = 1 + 2−5 is the upper
bound (UB) on the quantum capacity Q(·) derived in [66].

We now show that, remarkably, this result can be
strengthened to an unconditional super-additivity of
quantum capacity. To this end, we consider a channel
Md introduced in [1] that generalizes N1/2 to d input
and output dimensions, and d−1 environment dimen-
sions, with d ≥ 3. The isometry G : Ha → Hb ⊗ Hc

acts on an orthonormal input basis {|i〉}d−1
i=0 as

G|0〉 = 1√
d− 1

d−2
∑

j=0

|j〉 ⊗ |j〉,

G|i〉 = |d− 1〉 ⊗ |i− 1〉 for i = 1, . . . , d− 1,

(6)

and defines the channel Md(·) := trc(G ·G†).
Comparing (6) to the isometry (3) for N1/2, we

see that M3 = N1/2, and hence Md is indeed a d-
dimensional generalization of N1/2. The coherent infor-

mation Q(1)(Md) is evaluated in [1], and similar to N1/2

we have Q(Md) = Q(1)(Md) modulo (a generalized ver-
sion of) the spin alignment conjecture. However, we do
not make use of this (conjectured) identity here and in-
stead use the following upper bound on the quantum ca-
pacity of Md derived in [1]:

Q(Md) ≤ log

(

1 +
1√
d− 1

)

≤ 1

ln 2

1√
d− 1

. (7)

This upper bound follows from evaluating the “transposi-
tion bound” on the quantum capacity of a quantum chan-
nel [67]. It is phrased in terms of the diamond norm and
can be evaluated using semidefinite programming tech-
niques.
The quantum capacity ofMd+1 is super-additive when

used together with the d-dimensional erasure channel
Eλ,d where λ ∈ [0, 1]. More precisely, we show that

Q(Md+1 ⊗ Eλ,d) > Q(Md+1) +Q(Eλ,d) (8)

for suitable λ and d in two steps: First, using the upper
bound (7) on Q(Md) and the fact that the quantum ca-
pacity of Eλ,d is given by Q(Eλ,d) = max{(1−2λ) log d, 0}
[43], we obtain an upper bound

u(λ, d) := log
(

1 + 1/
√
d
)

+max{(1− 2λ) log d, 0} (9)

on the right-hand side of (8). Second, letting Ha and
Ha′ be the input Hilbert spaces for Md+1 and Eλ,d, re-
spectively, we find an input state ρaa′ with coherent in-
formation ∆(Md+1 ⊗ Eλ,d, ρaa′) exceeding u(λ, d),

Q(Md+1) +Q(Eλ,d) ≤ u(λ, d)

< ∆(Md+1 ⊗ Eλ,d, ρaa′)

≤ Q(Md+1 ⊗ Eλ,d). (10)

This chain of inequalities proves (8).
The input state achieving (10) is ρaa′ = Trrr′ [ψ]ara′r′ ,

where for w ∈ [0, 1] we define

|ψ〉ara′r′ =
√
1− w |0〉r|0〉a

1√
d

d−1
∑

i=0

|i〉r′ |i〉a′

+
√
w |1〉r|0〉r′

1√
d

d
∑

i=1

|i〉a|i− 1〉a′ , (11)

and the reference spaces Hr and Hr′ have dimensions
two and d, respectively. The pure state |ψ〉ara′r′ is a
superposition of two orthogonal ‘pieces‘ with amplitudes√
1− w and

√
w, respectively. By itself, the first piece

only generates coherent information via Eλ,d, as the input
of Md+1 in Ha is in a product state with both the input
to Eλ,d and the reference. The second piece by itself
generates no coherent information, since the joint input
system Ha ⊗Ha′ is unentangled with the reference Hr ⊗
Hr′ .
Optimizing over the parameter w ∈ [0, 1], this superpo-

sition of coding strategies results in a coherent informa-
tion of the joint channel Md+1 ⊗ Eλ,d that exceeds the
upper bound u(λ, d) on Q(Md+1) + Q(Eλ,d). We first
show this numerically for λ ∈ [0.37, 0.57] and sufficiently
large d. This is summarized in Fig. 2, where we plot
the minimal values λQmin(d) (dashed blue) and λQmax(d)
(dashed magenta) of λ as a function of d such that (8)
holds numerically for all λ ∈ [λQmin(d), λ

Q
max(d)]. Note
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that Eλ,d has positive quantum capacity when λ < 1/2,
and hence for suitable d and λ we obtain super-additivity
of quantum capacity (8) for two channels, Md and Eλ,d,
each with strictly positive Q.

In Fig. 2 we also plot the minimal values λmin(d) (solid
blue) and λmax(d) (solid magenta) such that the coherent
information of Md+1 ⊗ Eλ,d is super-additive for all λ ∈
[λmin(d), λmax(d)]. While the interval [λmin(d), λmax(d)]
marks the ‘true’ extent of the super-additivity of quan-
tum capacity (modulo the spin alignment conjecture), we
stress once again that the super-additivity of quantum
capacity within the interval [λQmin(d), λ

Q
max(d)] is uncon-

ditional.

We can further strengthen the numerical results of
Fig. 2 by proving analytically that the super-additivity
of quantum capacity in (8) indeed holds for all λ ∈ (0, 1)
and sufficiently large d. The proof is based on a log-
singularity-like argument [28], and applied for any λ ∈
(0, 1), by a suitable choice of the parameter w in the
state (11). Details of this calculation can be found in the
Supplementary material [62].

Discussion. Interestingly, a single ansatz (11) is re-
sponsible for super-additivity of Q(1) when Ns is used
with a variety of other channels Eλ,Aγ ,Dp, and randomly
constructed qubit channels. A higher dimensional version
of this ansatz gives rise to super-additivity of quantum
capacity when Md is used with Eλ,d. The mechanism
and extent of this super-additivity is distinct from super-
activation, where the private capacity of a zero quantum
capacity channel N is transformed into quantum capac-
ity when used jointly with an anti-degradable channel A.
This transformation has efficiency at most 1/2, and thus
one obtains super-activation when 0 = Q(N ) < P(N )/2.
By contrast, Q(Ns) > P(Ns)/2 > 0, thus ruling out the
super-activation mechanism as the cause for our super-
additivity involving Ns; our protocol (11) employs a dif-
ferent mechanism.

Like super-activation our protocol works robustly [39]

when A = Eλ,d and λ is varied, but unlike super-
activation we find super-amplification, i.e., super-
additivity even when both channels Md and Eλ,d have
non-zero quantum capacity. Similar super-additivity
of quantum capacity arises in high-dimensional rocket
and half-rocket channels when used with zero capacity
channels [32, 42]. These noisy channels, carefully con-
structed to display super-additivity, have quantum ca-
pacity well below the dimensional bound r = Q/ log d≪
1. By contrast, Md is simply constructed by hybridiz-
ing a degradable qubit channel with a useless chan-
nel, with the goal to support weak additivity of Q(1).
Yet, it exhibits super-additivity of Q even when it has
modest input dimension and noise; for instance super-
additivity occurs at d = 5 and r > .2. Our result on
Md also contrasts with those obtainable by extending
super-activation via continuity arguments. The super-
activating channels can be perturbed to have positive ca-
pacities, but these capacities are necessarily very small.
Moreover, super-additivity involving Md occurs over a
wide range of erasure probabilities that is well beyond
what one may expect from such perturbations. For in-
stance, at d = 10, r ≃ .075, and super-additivity holds
over erasure probabilities .43 ≤ λ ≤ .53, and the era-
sure channel can have substantial capacity. Using Md

with a symmetric channel, S, of unbounded dimension
leads to super-additivity, Q(Md ⊗ S) ≥ Q(Md) +Q(S)
for any d ≥ 7 where P(Md)/2 > Q(Md) [1], since
Q(Md ⊗ S) > P(Md)/2 [36]. These super-additivity
results can be strengthened and simplified further if the
SAC is proven. The simplicity of the channels involved in
super-additivity here raises the question of whether qual-
itatively similar constructions are possible for investigat-
ing super-additivity of private and classical capacities.
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bounded number of channel uses may be required to detect quantum capacity,” Nature Communications 6, 6739 (2015),
arXiv:1408.5115 [quant-ph].

[22] Youngrong Lim and Soojoon Lee, “Activation of the quantum capacity of gaussian channels,”
Physical Review A 98, 012326 (2018), arXiv:1803.04230 [quant-ph].

http://dx.doi.org/10.1103/PhysRevA.56.131
http://dx.doi.org/10.1007/s11122-005-0002-x
http://dx.doi.org/10.1109/TIT.2004.839515
http://arxiv.org/abs/quant-ph/0304127
http://dx.doi.org/ 10.1103/PhysRevA.54.3824
http://arxiv.org/abs/quant-ph/9604024
http://dx.doi.org/10.1103/PhysRevA.55.1613
http://arxiv.org/abs/quant-ph/9604015
http://dx.doi.org/ 10.1103/PhysRevA.57.4153
http://arxiv.org/abs/quant-ph/9702049
http://dx.doi.org/10.1109/18.850671
http://arxiv.org/abs/quant-ph/9809010
https://www.msri.org/workshops/203/schedules/1181
http://dx.doi.org/ 10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/0471200611
http://arxiv.org/abs/quant-ph/9604006
http://dx.doi.org/ 10.1103/PhysRevA.57.830
http://arxiv.org/abs/quant-ph/9706061
http://dx.doi.org/ 10.1103/PhysRevA.78.062335
http://arxiv.org/abs/0708.1597
http://dx.doi.org/ 10.1103/PhysRevLett.98.030501
http://arxiv.org/abs/quant-ph/0604107
http://dx.doi.org/ 10.1038/ncomms7739
http://arxiv.org/abs/1408.5115
http://dx.doi.org/ 10.1103/PhysRevA.98.012326
http://arxiv.org/abs/1803.04230


7

[23] Felix Leditzky, Debbie Leung, and Graeme Smith, “Dephrasure channel and superadditivity of coherent information,”
Physical Review Letters 121, 160501 (2018), arXiv:1806.08327 [quant-ph].

[24] Johannes Bausch and Felix Leditzky, “Error thresholds for arbitrary pauli noise,”
SIAM Journal on Computing 50, 1410–1460 (2021), arXiv:1910.00471 [quant-ph].

[25] Johannes Bausch and Felix Leditzky, “Quantum codes from neural networks,” New Journal of Physics 22, 023005 (2020),
arXiv:1806.08781 [quant-ph].

[26] Vikesh Siddhu and Robert B Griffiths, “Positivity and nonadditivity of quantum capacities using generalized erasure
channels,” IEEE Transactions on Information Theory 67, 4533–4545 (2021), arXiv:2003.00583 [quant-ph].

[27] Vikesh Siddhu, “Leaking information to gain entanglement,” arXiv preprint (2020), arXiv:2011.15116 [quant-ph].
[28] Vikesh Siddhu, “Entropic singularities give rise to quantum transmission,” Nature Communications 12, 5750 (2021),

arXiv:2003.10367 [quant-ph].
[29] Sergey N Filippov, “Capacity of trace decreasing quantum operations and superadditivity of coherent infor-

mation for a generalized erasure channel,” Journal of Physics A: Mathematical and Theoretical 54, 255301 (2021),
arXiv:2101.05686 [quant-ph].

[30] Govind Lal Sidhardh, Mir Alimuddin, and Manik Banik, “Exploring super-additivity of coherent information of noisy
quantum channels through genetic algorithms,” arXiv preprint (2022), arXiv:2201.03958 [quant-ph].

[31] Seid Koudia, Angela Sara Cacciapuoti, and Marcello Caleffi, “How deep the theory of quantum communications goes:
Superadditivity, superactivation and causal activation,” arXiv preprint (2021), arXiv:2108.07108 [quant-ph].

[32] Graeme Smith and John A. Smolin, “Extensive nonadditivity of privacy,” Physical Review Letters 103, 120503 (2009),
arXiv:0904.4050 [quant-ph].

[33] Graeme Smith and John A. Smolin, “Can nonprivate channels transmit quantum information?”
Physical Review Letters 102, 010501 (2009), arXiv:0810.0276 [quant-ph].

[34] David Elkouss and Sergii Strelchuk, “Superadditivity of private information for any number of uses of the channel,”
Physical Review Letters 115, 040501 (2015), arXiv:1502.05326 [quant-ph].

[35] Matthew Hastings, “Superadditivity of communication capacity using entangled inputs,”
Nature Physics 5, 255–257 (2009), arXiv:0809.3972 [quant-ph].

[36] Graeme Smith and Jon Yard, “Quantum communication with zero-capacity channels,” Science 321, 1812–1815 (2008),
arXiv:0807.4935 [quant-ph].

[37] J. Oppenheim, “For quantum information, two wrongs can make a right,” Science 321, 1783–1784 (2008),
arXiv:1004.0052 [quant-ph].

[38] Graeme Smith, John A. Smolin, and Jon Yard, “Quantum communication with gaussian channels of zero quantum
capacity,” Nature Photonics 5, 624–627 (2011), arXiv:1102.4580 [quant-ph].

[39] Fernando G. S. L. Brandão, Jonathan Oppenheim, and Sergii Strelchuk, “When does noise increase the quantum capacity?”
Physical Review Letters 108, 040501 (2012), arXiv:1107.4385 [quant-ph].

[40] Youngrong Lim, Ryuji Takagi, Gerardo Adesso, and Soojoon Lee, “Activation and superactivation of single-mode gaussian
quantum channels,” Physical Review A 99, 032337 (2019), arXiv:1901.03147 [quant-ph].

[41] Karol Horodecki, Micha l Horodecki, Pawe l Horodecki, and Jonathan Oppenheim, “Secure key from bound entanglement,”
Physical Review Letters 94, 160502 (2005), arXiv:quant-ph/0309110.

[42] Debbie Leung, Ke Li, Graeme Smith, and John A Smolin, “Maximal privacy without coherence,”
Physical Review Letters 113, 030502 (2014), arXiv:1312.4989 [quant-ph].

[43] Charles H. Bennett, David P. DiVincenzo, and John A. Smolin, “Capacities of quantum erasure channels,”
Physical Review Letters 78, 3217–3220 (1997), arXiv:quant-ph/9701015.

[44] Peter W. Shor, “Additivity of the classical capacity of entanglement-breaking quantum channels,”
Journal of Mathematical Physics 43, 4334–4340 (2002), arXiv:quant-ph/0201149.

[45] Christopher King, “Additivity for unital qubit channels,” Journal of Mathematical Physics 43, 4641–4653 (2002),
arXiv:quant-ph/0103156.

[46] Christopher King, “The capacity of the quantum depolarizing channel,” IEEE Transactions on Information Theory 49, 221–229 (2003),
arXiv:quant-ph/0204172.

[47] Igor Devetak and Peter W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and
quantum information,” Communications in Mathematical Physics 256, 287–303 (2005), arXiv:quant-ph/0311131.

[48] Christopher King, “An application of the lieb-thirring inequality in quantum information theory,” in
XIVth International Congress on Mathematical Physics (2006) pp. 486–490, arXiv:quant-ph/0412046.

[49] Christopher King, Keiji Matsumoto, Michael Nathanson, and Mary Beth Ruskai, “Properties of conjugate
channels with applications to additivity and multiplicativity,” Markov Process and Related Fields 13, 391–423 (2007),
arXiv:quant-ph/0509126.

[50] Graeme Smith, “Private classical capacity with a symmetric side channel and its application to quantum cryptography,”
Physical Review A 78, 022306 (2008), arXiv:0705.3838 [quant-ph].

[51] Shun Watanabe, “Private and quantum capacities of more capable and less noisy quantum channels,”
Physical Review A 85, 012326 (2012), arXiv:1110.5746 [quant-ph].

[52] Benjamin Schumacher and M. A. Nielsen, “Quantum data processing and error correction,”
Physical Review A 54, 2629–2635 (1996), arXiv:quant-ph/9604022.

[53] G. Smith, J.A. Smolin, and A. Winter, “The quantum capacity with symmetric side channels,”
IEEE Transactions on Information Theory 54, 4208–4217 (2008), arXiv:quant-ph/0607039.

http://dx.doi.org/ 10.1103/PhysRevLett.121.160501
http://arxiv.org/abs/1806.08327
http://dx.doi.org/ 10.1137/20M1337375
http://arxiv.org/abs/1910.00471
http://dx.doi.org/ 10.1088/1367-2630/ab6cdd
http://arxiv.org/abs/1806.08781
http://dx.doi.org/10.1109/TIT.2021.3080819
http://arxiv.org/abs/2003.00583
http://arxiv.org/abs/2011.15116
http://dx.doi.org/ 10.1038/s41467-021-25954-0
http://arxiv.org/abs/2003.10367
http://dx.doi.org/ 10.1088/1751-8121/abfd61
http://arxiv.org/abs/2101.05686
http://arxiv.org/abs/2201.03958
http://arxiv.org/abs/2108.07108
http://dx.doi.org/10.1103/PhysRevLett.103.120503
http://arxiv.org/abs/0904.4050
http://dx.doi.org/ 10.1103/PhysRevLett.102.010501
http://arxiv.org/abs/0810.0276
http://dx.doi.org/10.1103/PhysRevLett.115.040501
http://arxiv.org/abs/1502.05326
http://dx.doi.org/10.1038/nphys1224
http://arxiv.org/abs/0809.3972
http://dx.doi.org/10.1126/science.1162242
http://arxiv.org/abs/0807.4935
http://dx.doi.org/ 10.1126/science.1164543
http://arxiv.org/abs/1004.0052
http://dx.doi.org/ 10.1038/nphoton.2011.203
http://arxiv.org/abs/1102.4580
http://dx.doi.org/ 10.1103/PhysRevLett.108.040501
http://arxiv.org/abs/1107.4385
http://dx.doi.org/ 10.1103/PhysRevA.99.032337
http://arxiv.org/abs/1901.03147
http://dx.doi.org/ 10.1103/PhysRevLett.94.160502
http://arxiv.org/abs/quant-ph/0309110
http://dx.doi.org/10.1103/PhysRevLett.113.030502
http://arxiv.org/abs/1312.4989
http://dx.doi.org/ 10.1103/PhysRevLett.78.3217
http://arxiv.org/abs/quant-ph/9701015
http://dx.doi.org/10.1063/1.1498000
http://arxiv.org/abs/quant-ph/0201149
http://dx.doi.org/10.1063/1.1500791
http://arxiv.org/abs/quant-ph/0103156
http://dx.doi.org/ 10.1109/TIT.2002.806153
http://arxiv.org/abs/quant-ph/0204172
http://dx.doi.org/10.1007/s00220-005-1317-6
http://arxiv.org/abs/quant-ph/0311131
http://dx.doi.org/10.1142/9789812704016_0047
http://arxiv.org/abs/quant-ph/0412046
http://math-mprf.org/journal/articles/id1123/
http://arxiv.org/abs/quant-ph/0509126
http://dx.doi.org/10.1103/PhysRevA.78.022306
http://arxiv.org/abs/0705.3838
http://dx.doi.org/10.1103/PhysRevA.85.012326
http://arxiv.org/abs/1110.5746
http://dx.doi.org/ 10.1103/PhysRevA.54.2629
http://arxiv.org/abs/quant-ph/9604022
http://dx.doi.org/10.1109/TIT.2008.928269
http://arxiv.org/abs/quant-ph/0607039


8

[54] D. Yang and A. Winter, “Potential capacities of quantum channels,” IEEE Transactions on Information Theory 62, 1415–1424 (2016),
arXiv:1505.00907 [quant-ph].

[55] Graeme Smith, Joseph M. Renes, and John A. Smolin, “Structured codes improve the bennett-brassard-84 quantum key
rate,” Physical Review Letters 100, 170502 (2008), arXiv:quant-ph/0607018.

[56] Ke Li, Andreas Winter, XuBo Zou, and GuangCan Guo, “Private capacity of quantum channels is not additive,”
Physical Review Letters 103, 120501 (2009), arXiv:0903.4308 [quant-ph].

[57] Motohisa Fukuda, Christopher King, and David K Moser, “Comments on hastings’ additivity counterexamples,”
Communications in Mathematical Physics 296, 111–143 (2010), arXiv:0905.3697 [quant-ph].

[58] Fernando GSL Brandao and Micha l Horodecki, “On Hastings’ counterexamples to the minimum output entropy additivity
conjecture,” Open Systems & Information Dynamics 17, 31–52 (2010), arXiv:0907.3210 [quant-ph].

[59] Toby S. Cubitt, Mary Beth Ruskai, and Graeme Smith, “The structure of degradable quantum channels,”
Journal of Mathematical Physics 49, 102104 (2008), 10.1063/1.2953685, arXiv:0802.1360 [quant-ph].

[60] Pawe l Horodecki, Micha l Horodecki, and Ryszard Horodecki, “Binding entanglement channels,”
Journal of Modern Optics 47, 347–354 (2000), arXiv:quant-ph/9904092.

[61] Felix Leditzky, Debbie Leung, and Graeme Smith, “Quantum and private capacities of low-noise channels,”
Physical Review Letters 120, 160503 (2018), arXiv:1705.04335 [quant-ph].

[62] Supplemental Material has mathematical details that support various claims in the main text and includes additional
Ref. [68–77].

[63] “Github repository with supplementary code,” (2022), available at https://github.com/felixled/platypus .
[64] Xin Wang and Runyao Duan, “Separation between quantum Lovász number and entanglement-assisted zero-error classical

capacity,” IEEE Transactions on Information Theory 64, 1454–1460 (2018), arXiv:1608.04508 [quant-ph].
[65] Vittorio Giovannetti and Rosario Fazio, “Information-capacity description of spin-chain correlations,”

Physical Review A 71, 032314 (2005), arXiv:quant-ph/0405110.
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