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Learning a many-body Hamiltonian from its dynamics is a fundamental problem in physics. In
this work, we propose the first algorithm to achieve the Heisenberg limit for learning an interacting
N -qubit local Hamiltonian. After a total evolution time of O(ε−1), the proposed algorithm can
efficiently estimate any parameter in the N -qubit Hamiltonian to ε-error with high probability. Our
algorithm uses ideas from quantum simulation to decouple the unknown N -qubit Hamiltonian H
into noninteracting patches and learns H using a quantum-enhanced divide-and-conquer approach.
The proposed algorithm is robust against state preparation and measurement error, does not require
eigenstates or thermal states, and only uses polylog(ε−1) experiments. In contrast, the best existing
algorithms require O(ε−2) experiments and total evolution time. We prove a matching lower bound
to establish the asymptotic optimality of our algorithm.

Learning an unknown Hamiltonian H from its dynam-
ics U(t) = e−iHt is an important problem that arises in
quantum sensing/metrology [1–9], quantum device engi-
neering [10–15], and quantum many-body physics [16–
23]. In quantum sensing/metrology, the Hamiltonian H
encodes signals that we want to capture. A more efficient
method to learn H implies the ability to extract these sig-
nals faster, which could lead to substantial improvement
in many applications, such as microscopy, magnetic field
sensors, and positioning systems. In quantum comput-
ing, learning the unknown Hamiltonian H is crucial for
calibrating and engineering the quantum device to design
quantum computers with lower error rates. In quantum
many-body physics, the unknown Hamiltonian H charac-
terizes the physical system of interest. Obtaining knowl-
edge of H is hence crucial to understanding microscopic
physics. A central goal in these applications is to find
the most efficient approach for learning H.

In this work, we focus on the task of learning many-
body Hamiltonians describing a quantum system with a
large number of constituents. For concreteness, we con-
sider an N -qubit system with geometrically-local inter-
actions. Given any unknown N -qubit geometrically-local
Hamiltonian H, we can represent H as

H =

M∑
a=1

λaEa. (1)

Here λ1, . . . , λM are the unknown parameters and S =
{E1, . . . , EM} ⊆ {I,X, Y, Z}⊗N is a subset of N -qubit
Pauli operators. Each Pauli operator Ea acts nontriv-
ially on at most k = O(1) qubits, and each qubit is
acted on by O(1) of the Pauli operators in S. Many-
body Hamiltonians with nearest-neighbor interactions on
one-dimensional chains, two-dimensional square lattices,
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three-dimensional cubic lattices are all special cases of
geometrically-local Hamiltonians. The goal is to learn
the parameters λa in the unknown Hamiltonian H. In
previous works on learning many-body Hamiltonians [24–
35], in order to reach an ε precision in estimating the
parameters λa, the number of experiments and the total
time required to evolve the system have a scaling of at
least ε−2. However, the ε−2 precision scaling is likely not
the best-possible scaling for learning an unknown many-
body Hamiltonian H.

In quantum sensing/metrology, the scaling of ε−2 for
learning an unknown parameter to ε error is known as the
standard quantum limit. For simple classes of Hamiltoni-
ans, such as a single-qubit Hamiltonian H = ωZ with un-
known parameter ω, one can surpass the standard quan-
tum limit using quantum-enhanced protocols [1, 3, 7, 36–
38]. The true limit set by the basic principles of quan-
tum mechanics is known as the Heisenberg limit, which
suggests a scaling of ε−1. There are two well-known ap-
proaches for achieving the Heisenberg limit for learning
H = ωZ. The first approach [3–5] considers evolving a
highly-entangled state over ` = O(ε−1) qubits of the sys-
tem under ` parallel Hamiltonian evolutions (e−iHt)⊗`

with t = O(1). The second approach [1, 39, 40] consid-
ers long-time coherent evolution e−iωtZ with t = O(ε−1)
over a single qubit. While the first approach was pro-
posed earlier, the second approach has the advantage of
requiring only a single qubit without entanglement.

The ε−1 scaling underlying the two approaches corre-
sponds to the total evolution time. If a protocol uses J ex-
periments, where the j-th experiment uses the unknown
Hamiltonian evolution e−iHtj,1 , . . . , e−iHtj,Kj , then the
total evolution time is defined as

T ,
J∑
j=1

Kj∑
k=1

tj,k. (2)

In the first approach, each experiment uses O(ε−1) con-
stant time Hamiltonian evolutions in parallel, while the
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Figure 1. Algorithms for learning many-body Hamiltonians.
(a) Our algorithm for achieving the Heisenberg limit ε−1: We
perform long-time coherent evolutions interleaved with ran-
dom Pauli operators. The effective Hamiltonian is decoupled
into non-interacting patches and can be efficiently learned.
The algorithm only needs O(polylog(ε−1)) experiments and
a total evolution time of O(ε−1). (b) Previous algorithms for
achieving the standard quantum limit ε−2: Previous methods
[26, 29, 33, 34] repeatedly run a short-time evolution for many
times. One needs O(ε−2) experiments and a total evolution
time of O(ε−2). (c) Symbols: The symbols used in (a, b).
The unknown Hamiltonian evolution is U(t) = e−iHt.

second approach uses O(ε−1) constant time Hamiltonian
evolutions sequentially resulting in a single long time evo-
lution. Both quantum sensing approaches result in a to-
tal evolution time of O(ε−1).

These quantum-enhanced approaches could be applied
to non-interacting systems as studied in multi-parameter
quantum sensing [41–44]. However, they are challenging
to apply in interacting systems with a large system size
N and many unknown parameters. The difficulty stems
from the many-body interactions in the Hamiltonian H.
As time t becomes larger, the entanglement growth in
e−itH will cause all the unknown parameters in H to tan-
gle with one another. The many-body entanglement can
be seen as a form of decoherence, which kills the quantum
enhancement. To prevent the system from becoming too
entangled, prior work on learning many-body Hamiltoni-
ans focuses on a short time t, which loses the quantum
enhancement and obtains, at best, an ε−2 scaling.

In this paper, we propose the first learning algorithm
to achieve the Heisenberg limit for learning interacting
many-body Hamiltonian. Figure 1 illustrates our algo-
rithm. We prove the following performance guarantee.

Theorem 1. There is an algorithm robust to state prepa-
ration and measurement (SPAM) error [45] that achieves
the following: For any unknown N -qubit geometrically-

local Hamiltonian H =
∑M
a=1 λaEa with |λa| ≤ 1, after

a total evolution time T = O(ε−1 log(δ−1)), the learn-

ing algorithm can obtain estimates λ̂a from the exper-

iments, such that Pr
[∣∣∣λ̂a − λa∣∣∣ ≤ ε] ≥ 1 − δ for all

a ∈ {1, . . . ,M}.

In quantum sensing and metrology, one often considers

the standard deviation of the estimate. We can show that

to ensure the standard deviation

√
E[|λ̂a − λa|2] ≤ ε, we

only need a total evolution time of T = O(ε−1). This is

because each estimate λ̂a comes from a linear combina-
tion of O(1) eigenvalue estimates through a Hadamard
transform, as shown in [46, Eq. (25)]. Each eigenvalue
estimate has standard deviation at most O(ε) as guar-
anteed by [40, Theorem I.1]. Consequently, their linear

combination λ̂a also has a standard deviation that scales
as O(ε). Hence, our algorithm saturates the Heisenberg
limit in terms of the standard deviation. Our algorithm
has the additional advantage of not requiring eigenstates
or thermal states of the Hamiltonian H. Each of our
experiments consists of the preparation of a noisy all-
zero state |0N 〉, the evolution under the Hamiltonian H
interleaved with single-qubit Clifford gates, and a noisy
Z-basis measurement. The total number of experiments
is only O

(
polylog

(
ε−1
))
, which is significantly smaller

than Θ(ε−1). After running the experiments, the classi-
cal computational time to estimate all parameters is only
O(Npolylog(ε−1)). Detailed statements can be found in
[46, Theorems 13 and 21]. We note that our result gen-
eralizes to all low-intersection Hamiltonians as given in
[46, Definition 2].

To establish the optimality of the proposed algorithm,
we prove a matching lower bound.

Theorem 2. Suppose there is a learning algorithm ro-
bust to SPAM error that achieves the following. For any
unknown N -qubit geometrically-local Hamiltonian H =∑M
a=1 λaEa with |λa| ≤ 1, after a total evolution time T ,

the learning algorithm can obtain estimates λ̂a from the

experiments, such that Pr
[∣∣∣λ̂a − λa∣∣∣ ≤ ε] ≥ 1− δ for all

a ∈ {1, . . . ,M}. Then, T = Ω(ε−1 log(δ−1)).

Thus, there is no algorithm that can perform asymp-
totically better than the one given in Theorem 1. More-
over, the lower bound can be seen as an algorithmic
proof of the Heisenberg limit with the failure probability
δ taken into account. It holds not only for algorithms
with a fixed set of experiments but also for adaptive ex-
periments that use information from previous experiment
outcomes, following the set-up in [47–50].

In the following, we provide the ideas for designing the
proposed learning algorithm and establishing the proof of
the main results. All parts except for the last are devoted
to Theorem 1. The last part is Theorem 2.

Reshaping an unknown Hamiltonian: A key technique
used throughout the design of our learning algorithm
is the idea of reshaping an unknown Hamiltonian using
Hamiltonian simulation techniques. Recall that given a
set of Hamiltonians H1, . . . ,HK and the ability to im-
plement the unitaries e−itH1 , . . . , e−itHK , many Hamil-
tonian simulation techniques allow one to approximately

implement the unitary e−it
∑K

k=1Hk . Note that these
approximation formulas are valid for unitaries and no
knowledge of the underlying Hamiltonian is required. As



3

such, they are applicable to the learning problem consid-
ered here.

For example, a randomized Hamiltonian simulation al-
gorithm known as qDRIFT [51–53] considers an approx-
imation (as a quantum channel) given by

e−it
∑K

k=1Hk ≈ e−i(t/r)Hkr . . . e−i(t/r)Hk1 , (3)

where r is an integer that sets the approximation error,
k1, . . . , kr are independent random variables sampled ac-
cording to some probability distribution over {1, . . . ,K}.
Alternatively, we can also use the second-order Trotter-
ization method [54–56] in our algorithm to reduce the
asymptotic scaling of the number of Clifford gates re-
quired. Higher-order Trotterizations are not used be-
cause they require evolving backward in time.

Now, consider the unknown N -qubit Hamiltonian H
which we hope to learn. We want to reshape it into the
following Hamiltonian to facilitate learning:

H̃ ,
K∑
k=1

wkHk, (4)

where Hk , wkUkHU
†
k and Uk is a unitary for each

k = 1, 2, · · · ,K. The weights wk ≥ 0. Any choice
of unitaries Uk and weights wk can be used. Later, to
achieve the Heisenberg limit, we will choose specific Uk
and wk to ensure H̃ disentangles the many-body sys-
tem into noninteracting patches involving few qubits and
has known eigenvectors irrespective of what H is. Our
choice for each Uk will be a tensor product of Pauli op-
erators. Using either qDRIFT or Trotterization, we only
need to implement e−iHk , which can be done through

e−iHkt = Uke
−i(wkt)HU†k . To be more specific, we can im-

plement e−iHKt by first applying the unitary U†k , letting
the system evolve for time wkt, and then applying Uk.
Using Hamiltonian simulation techniques, we can evolve

under the N -qubit unitary e−itH̃ . This reshaping tech-
nique is related to experimental approaches for engineer-
ing Hamiltonians through pulse sequences or strong fields
[57–63]. Similar ideas have also been used to project H
into the quantum Zeno subspace [64, 65]. The reshaping
will lead to a small approximation error, which we dis-
cuss later (for a detailed discussion, see [46, Sections IV
and VI]).

Learning a few-qubit Hamiltonian. We now show how
the Hamiltonian reshaping technique is useful in learn-
ing Hamiltonians. We begin with a simple question: how
to learn a few-qubit Hamiltonian on O(1) qubits with
Heisenberg-limited precision scaling? If we naively ap-
ply quantum process tomography [49, 66–72] to learn
the unknown Hamiltonian, we would have an ε−2 de-
pendence in the number of measurements needed, where
ε is the desired precision of the Hamiltonian parameters.
Current methods with a Heisenberg-limited scaling typi-
cally require the Hamiltonian to be of a simple form, e.g.,
H = λX [1–9, 39, 40]. Therefore we need to consider a
different method.

We show that for a few-qubit Hamiltonian, we can
learn all the parameters involved using O(ε−1 log(δ−1))
total evolution time, and O(polylog(ε−1) log(δ−1)) num-
ber of experiments. As an example, let us consider an
arbitrary two-qubit Hamiltonian

H =
∑

P,P ′∈{I,X,Y,Z}

λPP ′P ⊗ P ′ (5)

with |λPP ′ | ≤ 1. Suppose we want to estimate the pa-
rameter λXZ . Then we can consider reshaping the un-
known Hamiltonian H using U1 = I, U2 = X1, U3 =
Z2, U4 = X1Z2 and w1 = w2 = w3 = w4 = 1

4 . The new
unknown Hamiltonian, after reshaping, is given by

H̃ ,
1

4
(H +X1HX1 + Z2HZ2 +X1Z2HX1Z2)

= λXZX1Z2 + λXIX1 + λIZZ2.
(6)

The second equality is because the linear combination
over the four terms eliminates all Pauli terms in H that
do not have I or X on the first qubit and I or Z on the
second qubit.

This new unknown Hamiltonian H̃ gives us one cru-
cial advantage: we have access to its eigenstates. This

is because in H̃, for each qubit, there is only one (non-
identity) Pauli operator associated with it. The eigenba-

sis for the new unknown Hamiltonian H̃ is always given
by {|+〉 |0〉 , |+〉 |1〉 , |−〉 |0〉 , |−〉 |1〉} regardless of the val-
ues of the unknown coefficients. We can use this informa-
tion, together with the robust phase estimation algorithm
in [40], to estimate the differences between pairs of eigen-
values, which in turn yield the parameters λXZ , λXI , λIZ
through a Hadamard transform. The procedure for ap-
plying random Pauli operators and obtaining parame-
ters from eigenvalue estimation are described in detail in
[46, Sections II.B and III.B]. By using different choices of
U1, . . . , U4 to reshape H, we can get all the parameters
λPP ′ in the two-qubit Hamiltonian H. The same idea
generalizes to arbitrary Hamiltonians on O(1) qubits.

Learning a many-qubit Hamiltonian through divide and
conquer. If we want to learn a many-qubit Hamiltonian
by directly applying the above method, the total evo-
lution time will scale exponentially with the number of
qubits. Here, we present a divide-and-conquer approach
to address this problem. To illustrate the proposed ap-
proach, let us consider a simple example of an inhomoge-
neous Heisenberg model on N qubit with a Hamiltonian
given by,

H =

N−1∑
α=1

(
λαxXαXα+1 + λαyYαYα+1 + λαzZαZα+1

)
(7)

where λαx , λ
α
y , λ

α
z are the unknown parameters, and

Xα, Yα, Zα are the Pauli operators acting on qubit α.
Suppose we want to learn the parameter λ1x on the first
two qubits. In order to achieve this, we reshape the
unknown Hamiltonian H with U1 = I, U2 = X3, U3 =
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Y3, U4 = Z3 and w1 = w2 = w3 = w4 = 1
4 . The new

unknown Hamiltonian after the reshaping is given by

H̃ =
1

4
(H +X3HX3 + Y3HY3 + Z3HZ3)

= H̃1,2 + H̃≥4,

(8)

where

H̃1,2 = λ1,2x X1X2 + λ1,2x Y1Y2 + λ1,2x Z1Z2, (9)

and H̃≥4 only contains terms acting on qubits
4, 5, · · · , N . The second equality in (8) holds for
the following reason: For each Pauli operator P ∈
{I,X, Y, Z}⊗N , if it acts non-trivially on the third qubit,
then we can show that

1

4
(P +X3PX3 + Y3PY3 + Z3PZ3) = 0. (10)

On the other hand, for Pauli operator P that acts as
identity on the third qubit, we can show that

1

4
(P +X3PX3 + Y3PY3 + Z3PZ3) = P. (11)

Therefore from (8), after the reshaping, the new Hamilto-

nian H̃ does not generate entanglement between qubits
1, 2 and the rest of the system, and these two qubits

evolve under the Hamiltonian H̃1,2. This enables us to
apply the learning algorithm for few-qubit Hamiltonians

to H̃1,2 to estimate λ1x.
We can apply the above idea to learn every parameter

in the Hamiltonian with a number of experiments that
scales linearly in the system size N rather than expo-
nential in N . We show that one could do better than
linear scaling by a parallelization technique. In partic-
ular, we discuss how one could learn all the parame-
ters λ1x, λ

4
x, λ

7
x, · · · in parallel. Consider reshaping the

unknown N -qubit Hamiltonian H given in Eq. (7) us-
ing U1 = I, U2 = X3X6X9 . . . , U3 = Y3Y6Y9 . . . , U4 =
Z3Z6Z9 . . . , and w1 = w2 = w3 = w4 = 1/4. Then

the new Hamiltonian under reshaping is given by H̃ =

H̃1,2 + H̃4,5 + H̃7,8 + . . . , where H̃α,α+1 is supported on
qubits α and α+ 1 for all α = 1, 4, 7, . . .. Using a reshap-
ing based on four unitaries U1, . . . , U4, we have turned
the unknown N -qubit interacting Hamiltonian H into a

new Hamiltonian H̃ with many noninteracting patches of
two qubits. Each two-qubit patch is now evolving inde-
pendently from each others. This decoupling enables us
to estimate the parameters in parallel using the algorithm
for learning few-qubit Hamiltonians.

This divide-and-conquer method works for any local
Hamiltonian defined in (1). For this more general class
of Hamiltonians, we determine how the reshaping is done
by performing a coloring over its cluster interaction graph
(a graph consisting of clusters of qubits that are acted on
by a Pauli term in the Hamiltonian) [46, Lemma 5]. The
coloring enables us to choose qubits, on which we apply

random I,X, Y, Z operators to decouple clusters of the
same color from each other, thus enabling parallel esti-
mation of the parameters associated with these clusters.
For details, see [46, Sections I.B, II, and V]. A complete
description of our algorithm for general local Hamilto-
nians can be found in [46, Algorithm 2]. The cost of
the algorithm is summarized in [46, Theorem 13 and 21]
(for the randomization and Trotterization approaches, re-
spectively).

Characterizing approximation error in reshaping Hamil-
tonians. The estimation error of the proposed learning
algorithm depends on the quantum measurement error
as well as the approximation error when we reshape the
unknown Hamiltonian into other forms. One way to an-
alyze the approximation error is through the error anal-
ysis considered in [51] if we use qDRIFT to reshape or in
[73] when using the second-order Trotter formula. How-
ever, these analyses are concerned with the error in the
worst-case scenario over all possible input states and all
observables. For the learning task given here, it leads
to an overestimation of the approximation error as some
key properties of the problem are not incorporated.

Consider the example of learning an inhomogeneous
Heisenberg model on N qubits given in the previous sec-
tion. To evolve under the N -qubit Hamiltonian reshaped

H̃ for time t, the analysis in [51] shows that the ap-
proximation error of qDRIFT with r steps is given by

O(N2t2/r). Here, H̃ is decoupled into many two-qubit
patches that do not interact with each other, which pre-
vents errors from propagating across the entire N -qubit
system. We are interested only in the accuracy of evolv-
ing each patch, and the error from elsewhere in the sys-
tem should not affect estimations of local observables.
Similar considerations have been used to improve the er-
ror analysis of Hamiltonian simulation methods based on
observable and initial state information [74–78]. In our
case, a tighter analysis [79] using these facts shows that
the approximation error is given by O(t2/r) without an
N dependence. We give the improved analysis for re-
shaping Hamiltonians using the randomization approach
in [46, Section IV]. The improved analysis for using the
second-order Trotter formula is given in [46, Section VI].

Establishing a matching lower bound. We prove a match-
ing lower bound of T = Ω(ε−1 log(δ−1)) on the total evo-
lution time T [80]. The optimality with respect to the
ε dependence is obtained by the Heisenberg limit. How-
ever, the optimality with respect to the failure proba-
bility δ has not been proven in the literature. We con-
sider any learning algorithm that can run new experi-
ments based adaptively on the outcomes of previous ex-
periments. In order to handle adaptivity, we consider
the rooted tree representation of the learning algorithm
[48, 50], and consider the task of distinguishing between
two distinct Hamiltonians H± = ±εZ.

We begin by considering how well one could use a sin-
gle experiment to distinguish H±, which is characterized
by the total variation (TV) distance between the proba-
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bility distribution over experimental outcomes under H±.
We characterize the TV distance in a single experiment.
Then we consider an induction over every subtree of the
learning algorithm to establish the TV distance over mul-
tiple experiments. A central technique is to control how
each additional experiment improves one’s ability to dis-
tinguish H±. The proof of the lower bound is given in
[46, Section VII].

Discussion. Our work shows that the Heisenberg limit
can be achieved in the task of learning a large class of
many-body local Hamiltonians with many unknown pa-
rameters. On the theoretical side, the central open ques-
tion is whether our result can be extended to learning
other classes of many-body Hamiltonians. For example,
in an N -qubit Hamiltonian with all-to-all two-body in-
teractions, our techniques achieve the Heisenberg limit
with a quadratic dependence on system size N by learn-
ing all pairwise interactions one by one. This gives rise
to the following question: can we achieve a scaling of
T = O(ε−1 log(δ−1)) for N -qubit Hamiltonians with all-
to-all interactions? In addition to the above example, can
we achieve the Heisenberg limit for learning fermionic or
bosonic many-body Hamiltonians? Answering this ques-
tion is important for applications such as reconstructing
the structure of large molecules or learning the interac-
tions in an exotic quantum material. Even more ambi-
tiously, can one achieve the above scaling for learning
the unknown parameters in an arbitrary N -qubit Hamil-

tonian without any structure? On the practical side, the
central question is how to achieve the Heisenberg limit
with minimal controllable quantum operations. For ex-
ample, could one achieve the scaling T = O(ε−1 log(δ−1))
for learning N -qubit local Hamiltonian H in a restricted
model where we cannot interleave the unknown Hamilto-
nian evolution with single-qubit gates, and can only con-
trol state preparation and measurement? Understanding
these questions will be crucial for physically achieving the
Heisenberg limit in learning many-body Hamiltonians.

Acknowledgments. The authors thank Matthias Caro,
Richard Kueng, Lin Lin, Jarrod McClean, Praneeth Ne-
trapalli, and John Preskill for valuable input and inspir-
ing discussions. HH is supported by a Google PhD fellow-
ship and a MediaTek Research Young Scholarship. YT is
supported in part by the U.S. Department of Energy Of-
fice of Science (DE-SC0019374), Office of Advanced Sci-
entific Computing Research (DE-SC0020290), Office of
High Energy Physics (DE-ACO2-07CH11359), and un-
der the Quantum System Accelerator project. Work
supported by DE-SC0020290 is supported by the DOE
QuantISED program through the theory consortium ”In-
tersections of QIS and Theoretical Particle Physics” at
Fermilab. The Institute for Quantum Information and
Matter is an NSF Physics Frontiers Center. DF is
supported by NSF Quantum Leap Challenge Institute
(QLCI) program under Grant No. OMA-2016245, NSF
DMS-2208416, and a grant from the Simons Foundation
under Award No. 825053.

[1] M. de Burgh and S. D. Bartlett, Quantum methods
for clock synchronization: Beating the standard quan-
tum limit without entanglement, Physical Review A 72,
042301 (2005).

[2] A. Valencia, G. Scarcelli, and Y. Shih, Distant clock
synchronization using entangled photon pairs, Applied
Physics Letters 85, 2655 (2004).

[3] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton,
J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and
D. J. Wineland, Toward heisenberg-limited spectroscopy
with multiparticle entangled states, Science 304, 1476
(2004).

[4] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J.
Heinzen, Optimal frequency measurements with maxi-
mally correlated states, Physical Review A 54, R4649
(1996).

[5] H. Lee, P. Kok, and J. P. Dowling, A quantum Rosetta
stone for interferometry, Journal of Modern Optics 49,
2325 (2002).

[6] K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C.
Buchler, and P. K. Lam, Experimental demonstration of
a squeezing-enhanced power-recycled michelson interfer-
ometer for gravitational wave detection, Physical review
letters 88, 231102 (2002).

[7] M. Holland and K. Burnett, Interferometric detection of
optical phase shifts at the heisenberg limit, Physical re-
view letters 71, 1355 (1993).

[8] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. Moore,
and D. J. Heinzen, Spin squeezing and reduced quan-
tum noise in spectroscopy, Physical Review A 46, R6797
(1992).

[9] C. M. Caves, Quantum-mechanical noise in an interfer-
ometer, Physical Review D 23, 1693 (1981).

[10] N. Boulant, T. F. Havel, M. A. Pravia, and D. G. Cory,
Robust method for estimating the Lindblad operators of
a dissipative quantum process from measurements of the
density operator at multiple time points, Physical Review
A 67, 10.1103/PhysRevA.67.042322 (2003).

[11] L. Innocenti, L. Banchi, A. Ferraro, S. Bose, and
M. Paternostro, Supervised learning of time-independent
Hamiltonians for gate design, New Journal of Physics 22,
10.1088/1367-2630/ab8aaf (2020).

[12] E. Ben Av, Y. Shapira, N. Akerman, and R. Ozeri, Di-
rect reconstruction of the quantum-master-equation dy-
namics of a trapped-ion qubit, Physical Review A 101,
10.1103/PhysRevA.101.062305 (2020).

[13] M. D. Shulman, S. P. Harvey, J. M. Nichol, S. D. Bartlett,
A. C. Doherty, V. Umansky, and A. Yacoby, Suppressing
qubit dephasing using real-time Hamiltonian estimation,
Nature Communications 5, 10.1038/ncomms6156 (2014).

[14] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gam-
betta, Procedure for systematically tuning up cross-
talk in the cross-resonance gate, Physical Review A 93,
10.1103/PhysRevA.93.060302 (2016).



6

[15] N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan,
P. Jurcevic, and J. M. Gambetta, Reducing Unitary and
Spectator Errors in Cross Resonance with Optimized
Rotary Echoes, PRX Quantum 1, 10.1103/PRXQuan-
tum.1.020318 (2020).

[16] N. Wiebe, C. Granade, C. Ferrie, and D. Cory,
Quantum hamiltonian learning using imperfect quan-
tum resources, Physical Review A 89, 10.1103/phys-
reva.89.042314 (2014).

[17] N. Wiebe, C. Granade, C. Ferrie, and D. G. Cory,
Hamiltonian learning and certification using quantum
resources, Physical Review Letters 112, 10.1103/phys-
revlett.112.190501 (2014).

[18] G. Verdon, J. Marks, S. Nanda, S. Leichenauer, and
J. Hidary, Quantum hamiltonian-based models and
the variational quantum thermalizer algorithm (2019),
arXiv:1910.02071 [quant-ph].

[19] D. Burgarth and A. Ajoy, Evolution-Free Hamilto-
nian Parameter Estimation through Zeeman Mark-
ers, Physical Review Letters 119, 10.1103/Phys-
RevLett.119.030402 (2017).

[20] J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gen-
tile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity,
A. Laing, and et al., Experimental quantum hamiltonian
learning, Nature Physics 13, 10.1038/nphys4074 (2017).

[21] H. Y. Kwon, H. G. Yoon, C. Lee, G. Chen, K. Liu, A. K.
Schmid, Y. Z. Wu, J. W. Choi, and C. Won, Magnetic
Hamiltonian parameter estimation using deep learning
techniques, Science Advances 6, 10.1126/sciadv.abb0872
(2020).

[22] D. Wang, S. Wei, A. Yuan, F. Tian, K. Cao, Q. Zhao,
Y. Zhang, C. Zhou, X. Song, D. Xue, and S. Yang, Ma-
chine Learning Magnetic Parameters from Spin Config-
urations, Advanced Science 7, 10.1002/advs.202000566
(2020).

[23] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many
properties of a quantum system from very few measure-
ments, Nat. Phys. 16, 10501057 (2020).

[24] Z. Li, L. Zou, and T. H. Hsieh, Hamiltonian tomography
via quantum quench, Physical review letters 124, 160502
(2020).

[25] L. Che, C. Wei, Y. Huang, D. Zhao, S. Xue, X. Nie, J. Li,
D. Lu, and T. Xin, Learning quantum hamiltonians from
single-qubit measurements, Physical Review Research 3,
023246 (2021).

[26] J. Haah, R. Kothari, and E. Tang, Optimal learning
of quantum hamiltonians from high-temperature gibbs
states, arXiv preprint arXiv:2108.04842 (2021).

[27] W. Yu, J. Sun, Z. Han, and X. Yuan, Practical and
efficient hamiltonian learning (2022), arXiv:2201.00190
[quant-ph].

[28] D. Hangleiter, I. Roth, J. Eisert, and P. Roushan, Precise
hamiltonian identification of a superconducting quantum
processor (2021), arXiv:2108.08319 [quant-ph].

[29] D. S. Franca, L. A. Markovich, V. Dobrovitski, A. H.
Werner, and J. Borregaard, Efficient and robust es-
timation of many-qubit hamiltonians, arXiv preprint
arXiv:2205.09567 (2022).

[30] A. Zubida, E. Yitzhaki, N. H. Lindner, and E. Bairey,
Optimal short-time measurements for hamiltonian learn-
ing, arXiv preprint arXiv:2108.08824 (2021).

[31] E. Bairey, I. Arad, and N. H. Lindner, Learning a local
hamiltonian from local measurements, Physical review
letters 122, 020504 (2019).

[32] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, Ro-
bust online hamiltonian learning, New Journal of Physics
14, 103013 (2012).

[33] A. Gu, L. Cincio, and P. J. Coles, Practical black box
hamiltonian learning, arXiv preprint arXiv:2206.15464
(2022).

[34] F. Wilde, A. Kshetrimayum, I. Roth, D. Hangleiter,
R. Sweke, and J. Eisert, Scalably learning quantum
many-body hamiltonians from dynamical data (2022).

[35] S. Krastanov, S. Zhou, S. T. Flammia, and L. Jiang,
Stochastic estimation of dynamical variables, Quantum
Science and Technology 4, 035003 (2019).

[36] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in
quantum metrology, Nature photonics 5, 222 (2011).

[37] S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Achieving
the heisenberg limit in quantum metrology using quan-
tum error correction, Nature Communications 9 (2017).

[38] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum
sensing, Reviews of modern physics 89, 035002 (2017).

[39] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wise-
man, and G. J. Pryde, Entanglement-free heisenberg-
limited phase estimation, Nature 450, 393 (2007).

[40] S. Kimmel, G. H. Low, and T. J. Yoder, Robust calibra-
tion of a universal single-qubit gate set via robust phase
estimation, Physical Review A 92, 062315 (2015).

[41] M. Skotiniotis, P. Sekatski, and W. Dür, Quantum
metrology for the ising hamiltonian with transverse mag-
netic field, New Journal of Physics 17, 073032 (2015).

[42] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański,
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