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We demonstrate that for a rigid and incompressible network in mechanical equilibrium, the mi-
croscopic stress and strain follows a simple relation, σ = pE, where σ is the deviatoric stress, E is
a mean-field strain tensor, and p is the hydrostatic pressure. This relationship arises as the natural
consequence of energy minimization or equivalently, mechanical equilibration. The result suggests
not only that the microscopic stress and strain are aligned in the principal directions, but also
microscopic deformations are predominantly affine. The relationship holds true regardless of the
different (foam or tissue) energy model considered, and directly leads to a simple prediction for the
shear modulus, µ = 〈p〉 /2, where 〈p〉 is the mean pressure of the tesselation, for general randomized
lattices.

INTRODUCTION

Soft network materials, such as liquid foams and ep-
ithelial tissues, are drawing increasing attention due to
broad applications in the materials, physical, and biolog-
ical contexts [1, 2]. Control of constituting cells (in the
broad sense) in the network enables complex macroscopic
behavior, and cellular properties often dictate global pro-
cesses such as rigidity transition, flow, and embryonic
morphogenesis [3–5]. Among the considerations the me-
chanical state and properties are of particular impor-
tance. For liquid foams, they are essential properties that
directly impact industrial applications [6], and a body of
literature exists in analyzing and predicting the moduli
and general rheological behavior [7–11]. For biological
tissue mechanical cues and feedbacks drive cell rearrange-
ments, direct morphogenesis, and help establish tension
homeostasis [3, 4, 12, 13]. Prior efforts tackled tissue
mechanics using specific energy models, and significant
progress have been made by various studies [4, 14–18].
On the other hand, quantitative understanding remains
limited due to challenges in mathematical analysis.

Despite the disordered nature and complexity of the
networks, one can often explore consistent patterns and
correlations, such as the classical Lewis and Weaire-
Aboav laws, and more recently universal distributions in
cell shapes [19–22]. These findings provide both strong
mathematical-physical insights and system constraints,
which can be harnessed to advance analysis. Here we
illuminate one such embedded correlation, between the
microscopic, cell-wise stress and strain in planar tessel-
lated networks. This relationship is valid within the rigid
regime where the network is more similar to an elas-
tic solid in mechanical responses, which includes most
foam structures and biological tissue with lower adhe-
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sion strengths. We demonstrate that it is a natural con-
sequence of energy minimization, and furthermore, that
microscopic deformations are predominantly affine. On
the macroscopic level, an average of the local strain quan-
titatively predicts the global deformation, whereas the
stress-strain relation immediately leads to a simple, uni-
fying formula for the shear modulus of randomized lat-
tices. We verify all results with numerical simulations.

RESULTS

We begin by introducing the microscopic, cell-wise
strain tensor, E, following our prior work [22]. In the
schematic (Fig. 1), a regular n-polygon with the same
geometric center (point O) and area, PR, is chosen as
the reference for each polygon P. Note that this refer-
ence is chosen for each individual polygon to quantify
their deviation from a regular shape, and the PRs alto-
gether do not tessellate the plane. The strain tensor E
is obtained via best approximating the deformation from
PR to P under least-square minimization. While we pre-
viously derived E in terms of coordinates of the vertices,
in the current work it is convenient to express E with
respect to the edge vectors,

E =
1

nl20

n∑
k=1

(δlk ⊗ l0k + l0k ⊗ δlk), (1)

where l0k and lk are the edge vectors of P and PR, re-
spectively, defined in counter-clockwise manner. δlk is
their difference, δlk := lk − l0k. l0 is the edge length of
PR. We will show below that on the tesselation level E is
equivalent to the texture strain [10] and reflects the true
strain.

For stress we use the well-established virial stress [14,
15, 23–26]; the microscopic, cell-wise version is written
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FIG. 1. (a) A schematics of polygon deformation. P is a polygon from a tessellation, PR is the reference regular n-gon with
the same area and geometric center (O). (b) Edge displacement vector decomposition. (c) An undeformed tessellation in
mechanical equilibrium. Two different types of shear are applied to the tessellation: (d) Shear Type-1 (simple shear), and (e)
Shear Type-2 (pure shear).

as

τ =
1

A

n∑
k=1

λ
lk
lk
⊗ lk. (2)

Here A is polygon area, lk := |lk|, and λ is the tension as-
signed to each polygon (further specified below). In the
current case because the network is static and in equi-
librium, summation of τA over the tesselation and nor-
malized by total area provides the true mechanical stress
[15]. The relationship between τ and E becomes evident,
and via a Taylor expansion we have (Supplemental Infor-
mation):

τ =
λP0

2A
(I + E + E⊥) +O(δ2), (3a)

E⊥ :=
1

nl20

n∑
k=1

(δl⊥k ⊗ l0k + l0k ⊗ δl⊥k ), (3b)

where P0 = nl0 and is the perimeter of the reference
regular n-gon, and δl⊥k is the projection of δlk in the
direction normal to l0k, namely δl⊥k := δlk − (δlk · l0k)l0k/l0
(see Fig. 1b). Following convention we term δl⊥ non-
affine deformation [27–29]. We immediately realize that
the hydrostatic pressure is precisely of the Young-Laplace
form,

p = λ/R0, R0 = 2A/P0, (4)

with the effective radius of curvature R0 being half of
the two-dimensional Sauter mean diameter of the regu-
lar polygon PR. Note that by convention p assumes a
negative sign, but here we define p as a positive quan-
tity for convenience. A further key realization is that
for an energy-minimized tessellation in the rigid (versus
“floppy”) regime, |E⊥| � |E|, hence the deviatoric stress
is related to the strain as

σ = pE. (5)

In this work, we restrict to area-preserving (incompress-
ible) deformations and hence both σ and E are trace-free.
Equation (5) is a key result of the current work.

We validate these results with extensive numerical sim-
ulations using Surface Evolver [30]. Table I summarizes
the number of randomized tessellations, each subject to
different models and externally imposed deformation (for
two different shear types in Fig. 1). We test two different
energy models on each tessellation, namely,

Ef =
1

2

∑
α

βPα; (6)

Et =
∑
α

[Pα − (1 + γ/2)Pc,α]
2

2Pc,α
. (7)

Following literature, we term (6) the “foam model” [31–
35] and (7) the “tissue model” [36–42], reflected by the
subscripts. P is polygon perimeter, and α is polygon
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TABLE I. Tessellations are tested in numerical simulation,
with standard deviation of cell area cA denotes polydispersity
(standard deviation of cell area). Both foam and tissue models
are implemented on each tessellation for subsequent energy
minimization (Eqs (6), (7)). Subsets of load-free tesselations
are subject to macroscopic shears (Fig. 1d, e).

Polydispersity: Number of Generated Tessellations
cA = std (A) Load-free Shear Type-1 Shear Type-2

0 40 5 5
0.1 40 5 5
0.2 40 5 5

index. In (6) β is the constant edge tension, and λ = β/2
for (2). The factor of 1/2 arises as we distribute the
tension equally to neighboring polygons. For the tissue
model (7) γ represents adhesion, e.g., that mediated by
cadherins, and is normalized following [12]. Pc,α is a
reference perimeter for each polygon. (Note that Pc is
different than P0, the perimeter of the regular polygon;
see details in SI [43].) The contribution of each polygon
toward edge tension is

λα = Pα/Pc,α − 1− γ/2, (8)

and adding λα for the neighboring polygons sharing an
edge provides the total edge tension. Notably, Eqs. (6)
and (7) can be considered the (up to) first- and second-
order Taylor expansions of a more complex energy func-
tional, respectively [44]. Hence unless the involvement
of third-order terms or higher are strongly justified, they
encompass a broad class of situations. The justification
of using (7) to study biological tissue is presented else-
where [3, 4, 12, 14, 15, 21, 25, 36–38, 40–42, 44–52] and
not repeated here.

Figure 2 compiles results from all 600 simulations after
energy minimization, including three levels of polydisper-
sity, both the foam and tissue energy models, and all the
load-free and shear types. (details of cases included for
this and the following figures are described in SI [43]).
Polygon areas are kept at constant values during energy
minimization. For the tissue model, we restrict to the
rigid regime with γ = 0, 0.05, and 0.1. Behavior in the
so-called “floppy” regime is discussed later. Figure 2a
verifies the accuracy of Eq. (4), namely, the Laplace-
Young relation. Here p is computed directly by assessing
the isotropic part of tensor τ per (2) and compared with
λ/R0 for all individual polygons in all tessellations. The
panel shows results with the tissue model, whereas the
inset is with the foam model. Figure 2b validates the
deviatoric relation (5). Only the two components of the
tensors are shown. whereas the others are dependent via
trace-free condition and symmetry. Evidently, the slight
scatter is due to the higher-order fluctuations caused by
a small yet non-zero E⊥.

We next demonstrate that minimization of |E⊥| is a
consequence of energy minimization, and also that this

conclusion is particular to the rigid regime. Figure 3a
shows

〈
|δl⊥|2

〉
/
〈
|δl|2

〉
as a function of iteration step dur-

ing the energy minimization process for both the foam
model and for γ = 0.05, 0.15, and 0.25 with the tissue
model, with and without deformation (n = 11 each).
The brackets 〈·〉 indicate averaging over the tessellation.
The initial step represents the non-minimized original
lattice. For the foam and tissue models with γ ≤ 0.15,〈
|δl⊥|2

〉
/
〈
|δl|2

〉
rapidly decreases to a small value as it-

eration proceeds; whereas for γ = 0.25 it remains at a rel-
atively larger value. Figure 3b shows similar trends with〈
|E⊥|2

〉
/
〈
|E|2

〉
; the agreement with

〈
|δl⊥|2

〉
/
〈
|δl|2

〉
is

expected per definitions of E⊥ and E.
On the other hand, these trends are only true in the so-

called rigid regime. Figure 3c demonstrates the behavior
of the non-affine displacement as a function of γ, the ad-
hesion strength which mediates rigidity transition. We
observe that the magnitude of δl⊥ in general increases
with cA, but nevertheless remains small and relatively
constant for γ ≤ 0.15. Beyond γ = 0.15 the increase
substantially for all cA values. The transition from rigid
to floppy regime concurs with prior work quantitatively
[12, 36] and in the latter the line tension becomes effec-
tively 0 (Fig. S2).

Taken together, these results lead to two important
observations, that (i) in mechanical equilibrium the de-
formations are mostly affine; namely, the edges primarily
stretch along the directions of the reference regular poly-
gon edges (see SI for further details [43]), and (ii) the
microscopic stress and strain are aligned in the principal
directions. We interpret these results via a detailed ex-
amination of the polygon perimeter. Writing P in Taylor
expansion with respect to regular polygon P0 and con-
sidering the trace-free condition,

∑n
k=1 δlk · l0k = 0, we

have (SI [43]) for each polygon

P = P0

(
1 +

1

2nl20

n∑
k=1

|δl⊥k |2
)
. (9)

Since P0 is a constant given a constant polygon area,
minimization of an energy functional based on perime-
ter hence necessarily leads to the minimization of |δl⊥k |,
which subsequently leads to that of |E⊥|. The different
behavior in the floppy regime, on the other hand, can be
explained following the work of Damavandi et al. [53],
where the presence of floppy modes allows further de-
grees of freedom for the non-affine displacements to “jig-
gle around” and to achieve greater magnitude, instead
of settling down to defined minima. (Note that our def-
inition of δl⊥ is similar to that in [53] but with a subtle
difference in the reference framework.) In this sense, the
non-affine modes are analogous to thermal fluctuations
in a solid-liquid phase (rigidity) transition.

In the next part, we show that the above results im-
mediately lead to predictions on macroscopic mechanical
properties. On the tessellation level, the deviatoric part
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FIG. 2. (a) The isotropic (hydrostatic) stress obeys the Young-Laplace relation, p = λ/R0. Results from the foam model is
shown as inset due to the difference in value range. (b) The deviatoric tensors obey σ = pE. The dashed line represents 1 : 1.
The off-diagonal component is shifted artificially downward for better visualization and otherwise the two data sets completely
overlap.

FIG. 3. (a) In the rigid regime the relative magnitude of non-affine displacement, δl⊥ decreases as energy minimizes, which
leads to (b) a similar decrease in that of E⊥. In the floppy regime, however, they remain significant or even increase. (c)
Non-affine displacement as a function of adhesion strength, γ, demonstrating regime transition. The stars represent data from
a foam model with the same tessellation.

of the virial stress, Σ, is related to σ as

Σ =
1

Atot

∑
α

Aασα,

where α is an index for polygon, and Atot is the total
tessellation area. For simplicity, we first consider a mono-
dispersed isotropic foam, where λ is constant and Σ =
〈pE〉. For this case, p only depends on n, the number
of polygon edges. If we assume that p and E are not
correlated, then Σ ≈ 〈p〉 〈E〉, and the shear modulus, µ,
is obtained as

µ = 〈p〉 /2. (10)

Note we can also similarly derive the Youngs modu-
lus, Y = 2 〈p〉, which is consistent with the relationship
Y = 4µ for 2D incompressible elastic solids (SI [43]).
Here we assume that 〈E〉 provides the macroscopic strain,
which is to be verified below. In case of a regular hon-

eycomb structure, the result recovers precisely the clas-
sical result of Princen [24, 54]: the prediction of µ is
0.931λ/

√
A and 0.930λ/

√
A from (10) and [54], respec-

tively (SI [43]). Eq. (10) is also consistent with [55] where
the result is derived assuming also a regular honeycomb
structure and infinitely compliant edges. However, in our
theory the assumption that p and E are not (in actuality,
weakly) correlated is readily generalized, which general-
izes (10) in the broadest sense, namely, for all random-
ized, polydispersed, and isotropic/moderately-anisotropic
lattices. This we numerically validate.

We first demonstrate that the tessellation-level mean
of E indeed represents the microscopic strain. Fig. 4a
shows 〈δE〉 as a function of ε, where all cases pertain-
ing to both shear types from Table 1 are included. Both
foam model and tissue model with γ = 0.05 are included.
Here δE = E−E0, where the subscript denotes strain in
the un-deformed state. Although E0 ≈ 0 for the initial
isotropic state, the small numerical residue is corrected
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FIG. 4. (a) The averaged strain magnitude 〈δE〉 captures the macroscopic strain, ε in the linear regime. As a reference, 〈δU〉
is the so-called “texture strain” from [10]. (b) Stress-strain relation, where piso denotes pressure evaluated in the un-deformed,
isotropic state. (c) Validation of (10) against numerically evaluated modulus for both isotropic (〈E〉 = 0 ) and anisotropic
(〈E〉 > 0 ) lattices; inset shows foam model where the lattices has much greater moduli.

for rigor. The scalar E is taken to be Exy for shear type-
1 and Exx for type-2, respectively. For reference, we also
show the same components of U, which is historically
known as the “texture” tensor [10]. The results demon-
strate that both 〈E〉 and 〈U〉 well-captures the macro-
scopic strain ε, in particular in the small-deformation
regime. Indeed, we can demonstrate that these two
strains are equivalent to leading order (SI [43]). How-
ever, the simple and concise form of E (Eq. (1)) pro-
vides convenience in both computation and understand-
ing. Between ε = 0.2 and 0.4, the system transitions
to the plastic regime where externally imposed shear no
longer induces commensurate microscopic strain.

Fig. 4b shows δΣ/ 〈piso〉 against ε for both shear types,
where δΣ is similarly defined as δE. Here 〈piso〉 denotes
pressure evaluated in the isotropic state, namely, prior
to shear application, which therefore is a constant that
does not vary with ε. For rigid lattices (γ = 0, 0.05, 0.1)
again two clear regimes are observed as ε increases: linear
elastic, followed by plastic which demonstrates approx-
imate constant stress [42]. For floppy lattices γ & 0.15
no definitive stress-strain relationship is observed due to
fluid-like behavior. Importantly, the linearity for rigid
tessellations confirms that 〈piso〉 /2 is a good representa-
tion of shear modulus for both isotropic and moderately
anisotropic lattices; results show that deviation becomes
appreciable for ε & 0.3. This trend is better observed
in Fig. 4c, where we compare numerically obtained (by
evaluating ∂Σ/2∂ε) modulus, µnum, against µ, evaluated
from 〈piso〉 /2. For isotropic lattices, the agreement is
near perfect. For anisotropic lattices, theoretical predic-
tions are great for 〈E〉 up to 0.1. Note that here we switch
to 〈E〉 as it is directly computable given any tessella-
tion while ε is externally imposed, and the correponding
values are marked as yellow circles in Fig. 4a. We ob-
serve that 〈E〉 =0.15 is in the transition zone, whereas
〈E〉 =0.2 is well in the plastic regime. Prediction of mod-
ulus in these regimes are of greater complexity and will
be explored in future work.

Some technicality is involved in evaluating piso: while
in our simulations the isotropic lattice is known, how does
one “back”-calculate piso given any anisotropic lattice?
This is done by utilizing P ≈ Piso(1 + (|E|2− |Eiso|2)/4)
which was obtained in our prior work via Taylor expan-
sion [22] (c.f. Eq. (2) in [42] which was obtained em-
pirically). Namely, the relative difference in perimeter
due to isochoric deformation is given by δ|E|2/4 to the
leading order. Utilizing these relations for p, we obtain

〈piso〉 ≈ 〈p〉 −
〈
P0P

8PcA

〉
|E|2, (11)

assuming |Eiso|2 ≈ 0. Figure S3 demonstrates that (11)
provides a very good approximation for piso, hence also
for µ up to moderate anisotropy.

CONCLUSION

In summary, we have unveiled a general correlation
embedded in tessellated systems in the rigid regime: on
the grain level, the main mode of deformation is affine,
and stress and strain behave very similarly to linear elas-
tic material despite the disordered nature of the system.
On the tessellation level, we present a simple, physically
meaningful, and unifying formula for the elastic modulus
that is broadly applicable to tessellated systems. Note
that although we did not include an areal change term
as in prior work [12, 14, 36, 38, 46], such term would only
contribute an additional component in the isotropic part
of the stress, and does not alter the quantitative results
above. Evidently, the non-affine displacement δl⊥ is an
indicating quantity that behaves distinctively different in
the rigid and floppy regimes, and we intend to further in-
vestigate its behavior and pertinence to phase transition
in future work. Last but not least, although the current
work only investigated planar tessellations, we imagine
similar patterns may persist in three-dimensional, space-
partitioned structures.
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[46] R. Farhadifar, J. Röper, B. Aigouy, S. Eaton, and
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