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Interfaces of phase-separated systems roughen in time due to capillary waves. Due to fluxes in
the bulk, their dynamics is nonlocal in real space and is not described by the Edwards-Wilkinson
or Kardar-Parisi-Zhang equations, nor their conserved counterparts. We show that in the absence
of detailed balance, the phase-separated interface is described by a new universality class that we
term |q|KPZ. We compute the associated scaling exponents via one-loop renormalization group,
and corroborate the results by numerical integration of the |q|KPZ equation. Deriving the effective
interface dynamics from a minimal field theory of active phase separation, we finally argue that the
|q|KPZ universality class generically describes liquid-vapor interfaces in two and three dimensional
active systems.

PACS numbers: ???

The roughening of interfaces is among the best-studied
problems in statistical mechanics [1, 2]. Early theoret-
ical investigations [3–5] were concerned with the Eden
model [6], proposed to describe the shape of cell colonies,
and with the ballistic deposition model [7]. Kardar,
Parisi and Zhang (KPZ) [8] discovered an important uni-
versality class for growing rough interfaces, by adding
the lowest order nonlinearity to the continuum Edwards-
Wilkinson (EW) model in which height fluctuations are
driven by nonconserved noise and relax diffusively [9].
Despite its fame, KPZ does not describe all roughen-
ing interfaces: in the presence of conservation laws, the
KPZ nonlinearity can be forbidden and novel universality
classes arise [1, 10, 11].

A notable category of interfaces, that stands out from
all these well-known universality classes, are those arising
in phase-separated systems, which roughen due to ther-
mally activated capillary waves [12–16]. There, because
of fluxes in the bulk phases, liquid-vapor or liquid-liquid
interfaces have nonlocal dynamics in real space [17, 18].
In the absence of fluid motion, small amplitude capillary
waves with wavenumber q relax by diffusion at a rate
τ−1 = σ|q|3, with σ proportional to the interfacial ten-
sion [17]. We consider in the following phase separation
in d + 1 dimensions and we denote by ĥ(x, t) the height
of the resulting interface above a d-dimensional plane.
(This notation is standard for interface problems such
as KPZ). The dynamics becomes, in Fourier variables
h(q, t),

∂th(q, t) = −σ|q|3 h(q, t) +
√

2D|q|η(q, t), (1)

where η is a Gaussian white noise such that

〈η(q1, t2)η(q2, t2)〉 = δ(q1 + q2)δ(t1 − t2) . (2)

The linear evolution equation (1) can be written in real
space as ∂tĥ = G?∇2ĥ+ηR where ? stands for the spatial

convolution, 〈ηR(x1, t1)ηR(x2, t2)〉 ∼ 2DG(x1−x2)δ(t1−
t2) and the kernel G is long-ranged: G(x) ∼ |x|−d−1 at
large distances.

The interface in passive phase-separated fluids must be
described, at least in the stationary state, by an equation
that respects detailed balance. In this case the interface
is a subset of degrees of freedom within a thermally equi-
librated state of the full, phase-separated, system and
hence is itself in equilibrium. The fluctuation-dissipation
theorem then means that any nonlinearity that enters
Eq. (1) is of the form |q| δFI/δhq for some free energy
functional FI [h]. A simple dimensional analysis argu-
ment then shows that there exists no nonlinearity cor-
recting Eq. (1) which is relevant in the renormalization
group (RG) sense, for interfaces of dimension d = 1, 2.
Hence the stationary dynamics of diffusive (i.e., with-
out momentum conservation) interfaces between phase-
separated passive liquids is described by mean-field scal-
ing exponents. Dimensional analysis [19] of Eq. (1) then
gives z = 3 and χ = (z−d−1)/2, in terms of which spatial
and temporal correlations scale as 〈ĥ(x, t)ĥ(x′, t)〉 ∼ |x−
x′|2χ and 〈ĥ(x, t)ĥ(x, t′)〉 ∼ |t − t′|2χ/z, while the static
structure factor S = 〈|h(q, t)|2〉 scales as S ∼ |q|−d−2χ
for small |q|.

We shall show in the following that this conclusion
changes in phase-separated systems that lack detailed
balance. Important examples are found in active matter,
where elemental units such as self-propelled colloids, bac-
teria or cells, extract non-thermal energy from the envi-
ronment and dissipate it to self-propel [20]. Active liquid-
vapor systems are known to display a phenomenology
impossible in equilibrium [21]; for example, phase sepa-
ration arises even in the absence of any attraction among
particles [22–25]. Moreover, steady-state currents can be
present [26], and phase-separated states can be sustained
even when the interfacial tension is negative [26–29]. In
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the simplest cases their large-scale interfacial properties
are nonetheless similar to those in passive fluids [25, 30–
34]. In this situation, it was recently assessed on the basis
of numerical simulations of particle models [35, 36], and
field-theoretical analysis [27], that capillary wave theory
holds. Indeed, some of us have recently shown that small
amplitude, long wavelength capillary waves obey Eq. (1),
although activity changes the capillary interfacial tension
(and can make it negative in some parameter regimes, not
considered here) [27].

In this Letter we show that when the underlying dy-
namics breaks detailed balance, as happens generically
in active systems, a new universality class describes the
roughening of the liquid-vapor interface. This is because
a new nonlinearity, which is RG-relevant for interfacial
dimension d ≤ 2, can appear in Eq. (1). We study the
ensuing equation, that we term |q|KPZ, by one-loop RG
analysis perturbatively for small ε = 2− d. We compute
the scaling exponents and confirm our conclusions by nu-
merical simulations of the |q|KPZ equation in d = 1. We
further argue that the |q|KPZ universality class includes
the liquid-vapor interface of active systems undergoing
bulk phase separation. We do so by considering Active
Model B+ (AMB+) [26], a minimal continuum descrip-
tion of active systems undergoing phase separation, and
showing how |q|KPZ emerges as the associated equation
for the liquid-vapor interface. We thus predict the emer-
gence of a new universality class for the roughening of
liquid-vapor interface in two-dimensional active systems
(d+ 1 = 2), the setup in which they are most commonly
studied both theoretically [25] and experimentally [37–
39].

To assess which nonlinearities might modify Eq. (1),
let us first recall the symmetries that have to be re-
spected. First, we should impose invariance under ro-
tations and translations, as well as under a shift in
the origin of the reference frame, which translates to
h(q, t) → h(q, t) + (2π)dδ(q)C in Fourier space, for any
C ∈ R. Second, the total amounts of liquid and vapor do
not change during roughening, implying that the ‘total
height’

∫
x
ĥ is constant. We further assume that chiral

symmetry (invariance under x→ −x) is not broken. Un-
der these symmetries, the KPZ nonlinearity is forbidden,
as it does not conserve the total height. Moreover, the
nonlinearities captured in existing models of conserved
surface growth, such as cKPZ [1, 10] and cKPZ+ [11] are
found to be RG-irrelevant by dimensional analysis.

Inspecting Eq. (1) it appears that |q| plays the role of a
mobility in the linear description of capillary waves. This
thus suggests to consider nonlinearities in the form

|q|
∫
∑n

i=1 qi=q

g(q|q1, ...,qn)h(q1)...h(qn), (3)

where the integral is over q1, ...,qn with the constraint∑n
i=1 qi = q (nonlinearities depending on the frequencies

ω, ω1, ..., ωn could be considered as well without changing

Figure 1. One-loop diagrams for the renormalization of the
propagator (a), noise (b) and nonlinearity (c,d).

any conclusion). Note that the prefactor |q| ensures that
the total height of the interface is conserved. Assuming
that g is analytic in all its arguments, and imposing the
symmetries mentioned above, the most relevant nonlin-
earity that can modify Eq. (1) is g(q|q1,q2) = λ1iq1 ·iq2.
This term is relevant for d < dc = 2. We are thus led to
investigate the following equation, that we term |q|KPZ:

∂th = −σ|q|3 h+
λ1
2
|q| F [|∇ĥ|2] +

√
2D|q|η, (4)

where F [·] stands for the Fourier transform. It is worth
noting that Eq. (4) differs from the KPZ equation en-
dowed with long-range interactions [40, 41].

We next study the |q|KPZ equation by RG analysis to
one loop, perturbatively in ε = 2 − d > 0. Within the
Martin-Siggia-Rose formalism [19], the action S associ-
ated with Eq. (4) reads

S =

∫
Q

h̃(−Q)
(
G−10 (Q)h(Q) +A(Q)−D|q| h̃(Q)

)
(5)

where h̃ is a response field, Q = (ω,q), G0(Q)−1 = −iω+

σ|q|3 and A(Q) = (λ1/2)|q|
∫
Q1+Q2=Q

q1·q2h(Q1)h(Q2).
We show in Fig. 1 the one-particle-irreducible diagrams

to one loop associated with the action in Eq. (5) and com-
pute them in [42]. The diagram in Fig. 1(a) gives a non-
vanishing contribution that renormalizes σ, while that of
Fig. 1(b) only gives irrelevant contributions to the renor-
malization of the noise. Diagrams in Fig. 1(c) and 1(d)
exactly cancel, as suggested by generalizing the argument
of [43]. (We have confirmed this by explicitly compu-
tation.) We furthermore show in [42] that the |q|KPZ
equation is stable under one-loop perturbative RG flow:
any nonlinearity there generated is in the form of Eq. (3),
with g analytic in its arguments, and no linear term more
relevant than |q|3 h(q) is generated.

We thereby obtain in [42] the following RG flow for the
reduced coupling constant g = Dλ21/σ

3

Λ
dg

dΛ
= εg− 3

8
K2g

2, ε = 2− d. (6)
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where Λ is the momentum scale, Kd = Sd/(2π)d and
Sd = 2πd/2/Γ(d/2). As expected from dimensional anal-
ysis, the Gaussian fixed point (g? = 0) is the only one
of the RG flow for d ≥ 2: here the mean-field expo-
nents exactly describe the interface properties at large
scales. For d < 2, a new attractive fixed point emerges
at g? = 8ε/(3K2). At this fixed point, the scaling expo-
nents are

z = 3− ε

3
, χ =

ε

3
. (7)

These exponents describe the new |q|KPZ universality
class to one loop, that is, to first order in ε.

To test these predictions, we numerically integrate the
|q|KPZ in d = 1 using a pseudo-spectral code with 2/3
dealiasing procedure. The use of a pseudospectral code is
particularly convenient for the |q|KPZ equation because
it has computational complexity O(L logL), where L is
the system size, while, given its nonlocality in real space,
a finite difference code would have complexity O(L2).
The results presented were obtained with spatial dis-
cretization ∆x = 1, time discretization ∆t = 10−2. We
quantified the interfacial width via

W 2(t, L) =
1

L

∫
x

ĥ2(x, t), (8)

starting from a flat interface and averaging it over noise
realizations. Our RG analysis predicts that, while rough-
ening, W 2 ∼ t2χ/z and, for a system of finite size L,
W 2 eventually saturates in time to a value W 2

∞(L) ≡
W (∞, L)2 ∼ L2χ. Measuring the interfacial width as a
function of time and its saturated value as a function of
L allows us to extract both scaling exponents, z and χ.

In the case of the linear theory (λ1 = 0) we measure,
as expected, 2χ/z = 1/3 and 2χ = 1. We then perform
simulations with λ1 6= 0. In Fig. 2 we plot W 2(t, L)
as a function of time and various system-sizes both in
log-log and in a redressed plot (inset); the latter is a
stringent test of the scaling behavior. Our measurement
gives 2χ/z ' 0.28. We then plot the saturated value of
the interfacial width in Fig. 3 both for λ1 = 0 and λ1 = 2,
finding that 2χ = 1 for λ1 = 0 and 2χ ' 0.78 for λ1 =
2. The values of the measured scaling exponents should
be compared with those obtained from the one-loop RG
analysis, Eq. (7), which gives 2χ/z ' 1/4 and 2χ = 2/3
in d = 1. The agreement is very good, given that the RG
predictions are obtained to first order in ε, whereas ε = 1
in our simulations. These numerical results offer strong
evidence for the presence of a perturbatively accessible
fixed point for the |q|KPZ equation.

Our final task is to evidence that the |q|KPZ non-
linearity is indeed generically present for the dynamics
of interfaces in phase-separated active systems. To do
this, we consider continuum scalar field theories for ac-
tive phase separation [26, 30, 44]. These are general-
izations of Model B [17, 45, 46], the standard large-scale
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Figure 2. Interfacial width W 2(t) as a function of time for
different system sizes showing a roughening lawW 2(t) ∼ t0.28.
Parameters used σ = 1.0, D = 0.1, λ = 2.0, corresponding
to the reduced coupling constant g = 0.4. Each curve was
obtained by averaging over 500 noise realisations. The inset
contains the same data but rectified by t0.28.
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Figure 3. W 2
∞(L) ∼ L2χ as a function of system size L. Con-

tinuous lines: RG predictions either at the Gaussian (blue) or
|q|KPZ (red) fixed points. Points: results of numerical inte-
gration of the |q|KPZ equation with λ1 = 0 (blue) and λ1 = 2
(red), corresponding to bare coupling g = 0.4. Other param-
eters: σ = 1.0 and D = 0.1. Error bars are smaller than the
symbols’size. Dashed lines are power-law fits.

description of phase separation in diffusive passive fluids
(without momentum conservation). Like Model B they
address the dynamics of a conserved scalar density field φ
in d+ 1 dimensions which switches steeply from positive
to negative values on crossing the interface from liquid to
vapor. Unlike Model B, the active versions take into ac-
count that detailed balance is broken at the microscale.
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The ensuing minimal theory is called AMB+ [26, 31],
and includes all terms that break detailed balance up to
order O(∇4, φ2) [26]:

∂tφ = −∇ ·
(
J +
√

2DMΛ
)
, (9)

J/M = −∇µλ + ζ(∇2φ)∇φ, (10)

µλ[φ] =
δF

δφ
+ λ|∇φ|2. (11)

Here F =
∫
dr
[
f(φ) + K(φ)

2 |∇φ|
2
]
, f(φ) is a double-

well local free energy, and Λ is a vector of zero-mean,
unit-variance, Gaussian white noises. Standard Model B
is recovered at vanishing activity (λ = ζ = 0), unit mo-
bility M = 1 and constant noise level D [45]. Here we
shall retain the choiceM = 1, constant D and further as-

sume for simplicity that K is also constant. Our analysis
below assumes that the interfacial tensions determining
the Ostwald process [26] and the relaxation of capillary
waves [27], which in active systems can differ, are both
positive so that the system undergoes bulk phase sepa-
ration rather than microphase separation.

The linear description of capillary waves, Eq. (1),
has been classically derived for passive fluids starting
from Model B [17], and more recently for active fluids
starting from AMB+ [27]. This is done by assuming
that φ evolves quasi-statically with respect to fluctua-
tions of the interfacial height, equivalent to an ansatz
φ(x, y, t) = ϕ(y− ĥ(x, t)), which is exact at leading order
in h and q [27]. As detailed in [42], we extend this proce-
dure to obtain the nonlinear terms that correct Eq. (1):

∞∑
n=0

∫
q1,x,x1

(−1)n
(ĥ(x)− ĥ(x1))n

2n!
|q1|n

{
An(q1)∂tĥ(x) + ζDn(q1)∇2

xĥ
}
e−iq·x1−iq1·x1+iq1·x = −σλq2hq + χq, (12)

where the Stratonovich convention is used, expressions
for the h-independent factors An(q), Dn(q), σλ are given
in [42], and χq can be found as a sum of Gaussian
noises [42]. An(q) and Dn(q) have been defined to make
clear the reading of the dimension of the nonlinearities,
given the fact that the dimension of An(q)∂tĥ(x) and
Dn(q)∇2

xĥ is at least O(|q|2 ĥ). To leading order in h
and q, Eq. (12) reduces to Eq. (1), where the interfacial
tension σ is proportional to the capillary-waves interfa-
cial tension σcw [27].

Notably, the λ1-term of Eq. (4) is not present at bare
level in Eq. (12). Furthermore, Eq. (12) contains nonlin-
earities in the form of Eq. (3) with g singular. In order
to perform the RG analysis of Eq. (12), we transform it
to the Ito convention in [42], following a standard proce-
dure [47–49]. We then find the canonical dimension of the
nonlinear terms and show that the singular nonlinearities
in Eq. (12) are all RG-irrelevant [42]. Moreover, by com-
puting one-loop diagrams we further show in [42] that
λ1 6= 0 is generated under RG from the nonlinearities of
Eq. (12). These results strongly suggest that the liquid-
vapor interface of AMB+ belongs to the |q|KPZ univer-
sality class. However a complete proof would require us
to derive the analog of Eq. (12) allowing for a dependence
of φ on interfacial curvature, and then show that no rele-
vant singular nonlinearity is generated by the associated
RG flow. This goes beyond the scope of this Letter. Pre-
liminary numerical simulations of AMB+, which will be
presented elsewhere, do however indicate that the inter-
face roughens accordingly to W 2(t) ∼ t0.28 as expected
from the |q|KPZ universality class.

In conclusion, we have introduced a minimal field the-
ory, termed the |q|KPZ equation, to describe the rough-
ening of interfaces in nonequilibrium phase-separated
systems lacking momentum conservation. The |q|KPZ
equation differs from the standard description of rough-
ening interfaces (either EW, KPZ or their conserved
counterparts) because diffusive fluxes in the bulk cause
the interfacial dynamics to be nonlocal in real space. We
discovered a nontrivial fixed point of the RG flow for in-
terfacial dimension d < 2. This should control active,
phase-separated interfaces in d+ 1 = 2 bulk dimensions.
We characterized this new universality class, comput-
ing its scaling exponents by one-loop RG and numerical
simulations. We finally gave evidence that the |q|KPZ
class includes interfacial roughening in phase-separated
active systems, by explicitly deriving the effective inter-
face equation from a scalar active field theory for the
particle density in d + 1 bulk dimensions, and showing
that the |q|KPZ nonlinearity thereby emerges.

Previous studies of roughening of the liquid-vapor in-
terface in active particle models concluded that z ∼ 2 as
in the Edwards-Wilkinson universality class [35, 50, 51].
We speculate that such disagreement might arise if these
particle models undergo bubbly phase separation [26] in-
stead of bulk phase separation as addressed here. (No-
tably, in [51], vapor bubbles are indeed visible in the liq-
uid phase). Local events in which a vapor bubble ‘pops’
through the interface do not conserve the total height∫
x
ĥ, and also create overhangs, evading our descrip-

tion – at least on scales smaller than the largest bubbles
present. More work is needed to clarify this aspect. Be-
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yond active systems, our results might also describe the
roughening of interfaces in other nonequilibrium phase-
separating systems, such as granular materials [52].
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