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Excitonic Bose-Einstein condensation (EBEC) has drawn increasing attention recently with the
emergence of 2D materials. A general criterion for EBEC, as expected in an excitonic insulator (EI)
state, is to have negative exciton formation energies in a semiconductor. Here, using exact diagonal-
ization of multi-exciton Hamiltonian modelled in a diatomic Kagome lattice, we demonstrate that
the negative exciton formation energies are only a prerequisite but insufficient condition for realizing
an EI. By a comparative study between the cases of both a conduction and valence flat bands (FBs)
versus that of a parabolic conduction band, we further show that the presence and increased FB
contribution to exciton formation provide an attractive avenue to stabilize the EBEC, as confirmed
by calculations and analyses of multi-exciton energies, wave functions and reduced density matrices.
Our results warrant a similar many-exciton analysis for other known/new candidates of EIs, and
demonstrate the FBs of opposite parity as a unique platform for studying exciton physics, paving
the way to material realization of spinor BEC and spin-superfluidity.

Excitonic Bose-Einstein condensate (EBEC), first pro-
posed in 1960s [1–4], has drawn recently increasing in-
terest with the emergence of low-dimensional materials
where electron screening is reduced leading to increased
exciton binding energy (Eb) [5, 6]. In 1967, Jerome, et.
al. [7], theoretically presented the possibility of an ex-
citonic insulator (EI) phase in a semi-metal or a nar-
row gap semiconductor [7–10]. It was shown that the
hybridization gap equation for excitonic condensate or-
der parameter has non-trivial solutions, when Eb exceeds
the semiconductor/semi-metal band gap (Eg). In deep
semi-metallic regime with strong screening of Coulomb
potential, this gap equation can be solved in analogy
to Bardeen-Cooper-Schiffer (BCS) superconductor the-
ory [7, 11]. On the other hand, in a semiconductor regime
with low screening, preformed excitons may condense to
form a BEC at low temperatures [7, 11].

This has led to significant theoretical [6, 12–19] and ex-
perimental [20–32] investigations into finding an EI state
in real materials. Especially, the EI state in a semicon-
ductor provides an alternative route to realizing EBEC
instead of targeting materials with long-lifetime excitons,
such as optically inactive excitons in bulk Cu2O [33–38]
and indirect excitons in coupled quantum wells [5, 39, 40].
It is worth mentioning that excitonic condensation has
been reported in double layer 2D heterostructures [41–
51], where electrons and holes are separated into two lay-
ers with a tunneling barrier in between, and double-layer
quantum Hall systems [52–56] have been shown to ex-
hibit excitonic condensation at low temperature under a
strong magnetic field. On the contrary, EIs are intrinsic,
i.e., excitonic condensate stabilizes spontaneously at low
temperature without external fields or perturbations.

However, experimental confirmation of EI state re-
mains controversial [20–32], mainly because candidate EI
materials are very limited. On the other hand, some po-

tential candidate EIs have been proposed by state-of-the-
art computational studies [6, 12–19], based on calculation
of single exciton formation energy. It is generally per-
ceived that if single exciton Eb exceeds the semiconduc-
tor Eg, the material could be an EI candidate. But the
original mean-field two-band model studied in Ref. [7]
includes inter/intra band interactions, leading to a non-
trivial condensation order parameter, which indicates the
importance of multi-exciton interactions. Hence, in or-
der to ultimately confirm new EI candidates, it is ut-
most necessary to analyze and establish the stabilization
of multi-exciton condensate with quantum coherency in
the parameter space of multiple bands with inter/intra
band interactions, beyond just negative formation energy
for single or multiple excitons.

In this Letter, we perform multi-exciton wave function
analyses beyond energetics to directly assess EBEC for
a truly EI state, namely a macroscopic number of ex-
citons (bosons) condensing into the same single bosonic
ground state [57–60]. Especially, we investigate possible
stabilization of EBEC in a unique type of band structure
consisting of a pair of valence and conduction flat bands
(FBs) of opposite chirality. These so-called yin-yang FBs
were first introduced in a diatomic Kagome lattice [61, 62]
and have been studied in the context of metal-organic
frameworks [63] and twisted bilayer graphene [64]. Re-
cently, it was shown that such FBs, as modelled in a
superatomic graphene lattice, can potentially stabilize a
triplet EI state due to reduced screening of Coulomb in-
teraction [6]. However, similar to other previous com-
putational studies [16–19], the work was limited to il-
lustrating the spontaneity of only a single exciton for-
mation with a negative formation energy. Here, using
exact diagonalization (ED) of a many-exciton Hamilto-
nian based on the yin-yang FBs, in comparison with the
case of a parabolic conduction band, we demonstrate that
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“Eb > Eg” is actually only a necessary but insufficient
condition for realizing an EI state. While both systems
show negative multi-exciton energies, only the former was
confirmed with quantum coherency from the calculation
of off-diagonal long-rang order (ODLRO) of the many-
exciton Hamiltonian. Furthermore, we show that with
the increasing FBs contribution to exciton formation, the
excitons, usually viewed as composite bosons made of
electron-hole pairs, can condense like point bosons, as
evidenced from the calculated perfect overlaps between
the numerical ED solutions with the analytical form of
ideal EBEC wave functions.

A tight-binding model based on diatomic Kagome lat-
tice is considered for the kinetic energy part of the Hamil-
tonian, as shown in Fig. 1(a). Our focus will be on com-
paring the many-excitonic ground states of superatomic
graphene lattice (labelled as EISG), which is already
known to have a negative single exciton formation energy
[6], and the ground states of a model system (labelled as
EIPB) with a parabolic conduction band edge, in order
to reveal the role of FBs in promoting an EI state. The
interatomic hopping parameters for the two systems are:
t1 = 0.532 eV; t2 = 0.0258 eV; t3 = 0.0261eV for EISG,
benchmarked with density-functional-theory (DFT) re-
sults [6, 65], and t1 = 0.62 eV; t2 = 0.288 eV; t3 = 0.0
eV for EIPB . An interesting point to note here is that for
EISG, t2 < t3. This is an essential condition to realize
yin-yang FBs in a single-orbital tight-binding model as
has been discussed before, which can be satisfied in sev-
eral materials [61–63]. The insets in Fig. 1(c) and 1(d)
show the band structures for EISG and EIPB , respec-
tively. Coulomb repulsion between electrons is treated
using an extended Hubbard model as

H = Hkin +Hint =
∑
n

∑
<r,r′>n

tnc
†
rcr′+

+
∑
n

∑
<r,r′>n

Vnc
†
rcrc

†
r′cr′ , (1)

where tn is the nth nearest-neighbor (NN) hopping pa-
rameter, and Vn is nth NN Hubbard parameter. Each
of the Vn is calculated using the Coulomb potential,
U(r > ro) = e2/(4πεεor), with a very low dielectric con-
stant (ε ∼ 1.02) due to the presence of FBs in a 2D
lattice [6] and a cutoff (ro) for onsite interactions. The
Hubbard interaction terms are projected onto all three
conduction and valence bands. Spin indices in the Hamil-
tonian are omitted. We distinguish triplet and singlet
excitonic states by the absence and presence of excitonic
exchange interaction, respectively [65, 66]. The Hamilto-
nian is exactly diagonalized for a finite system size (2×3)
for converged results [65], which includes 36 lattice sites
(equivalent to a 6 × 6 trigonal lattice) with 18 electrons
for a half-filled intrinsic semiconductor. With Neh num-
ber of electrons (holes) in conduction (valence) bands,
exciton density (nex) is defined as Neh divided by the to-
tal area of finite system (i.e., Auc×2×3). Auc is the area
of unit-cell which we set to be same as for superatomic

graphene material with lattice constant a = 22.14Å as
obtained form DFT calculations [6]. Note that the nex
considered in this work is of the same order of magni-
tude (nex ∼ 1013cm−2) as the densities at which exci-
tonic condensate was recently observed in bilayer mate-
rials [32, 48]. For the ease of readability, we also some-
times use a dimensionless ñex = nex/(1013cm−2) in the
text. Throughout this work we focus on the ground state
of Eqn. 1 with varying nex.
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FIG. 1. (a) Schematic of diatomic Kagome lattice with first
three NN hopping integrals labelled as t1, t2, and t3, re-
spectively. (b) Single exciton Ef calculated using ED (blue
bars) compared with GW-BSE results [6] (red bars) for EISG.
(c), and (d) Triplet excitonic density of states for EISG, and
EIPB respectively. Excitonic states with negative and pos-
itive formation energies are shown in yellow and orange, re-
spectively. Inset shows the band excitation contributions to
the first triplet level, indicated by the width of bands in red
for EISG ((c)) and green for EIPB ((d)), respectively.

We first calculate the energies and wavefunctions for
a single exciton, i.e., Neh = 1, to benchmark the single-
exciton results of EISG with those obtained using first-
principles GW-BSE method for this lattice [6]. Im-
portantly, our model calculation results, especially the
trends of exciton levels, match very well with GW-BSE
(Fig. 1(b), Fig. S2 [65]). One clearly sees in Fig. 1(b)
for EISG that the formation of triplet exciton is spon-
taneous with a negative formation energy (Ef ), while
that of singlet is positive. These key agreements vali-
date our model for further analysis. In Fig. 1(c) and
1(d), we plot triplet excitonic density of states for EISG

and EIPB , respectively. Both systems have a negative
lowest triplet Ef , indicative of the possibility that both
systems can be a triplet EI. The insets of Fig. 1(c) and
1(d) show the band excitation contribution to the lowest
triplet exciton level. For EISG (Fig. 1(c)), as has been
shown before by GW-BSE method [6], all three band ex-
citations contribute almost equally throughout the entire
Brillouin zone (BZ). In contrast, for EIPB (Fig. 1(d)),
the Γ-point excitation contributes the most due to the
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presence of parabolic conduction band edge with band
minimum at Γ. In this study, we will focus on triplet ex-
citons, which have negative Ef in both systems, so unless
otherwise specified, excitons below mean triplet excitons.

Next, we discuss many-exciton calculations. A BEC
superfluid flows with minimal dissipation [58]. Statis-
tically, the BEC state is characterized with a Poisson
particle distribution manifesting a non-interactive nature
[67]. In other words, even in the presence of interactions,
there should be a minimal change in the average forma-
tion energy (Ef ) of a superfluid when more particles are
condensed. To reveal such effect of exciton-exciton inter-
actions on spontaneity of exciton formation and conden-
sation, we exactly diagonalize ( 1) for Neh > 1. In Fig.
2(a), and Fig. 2(b), we show the average ground-state
Ef of excitons with increasing nex for EISG, and EIPB ,
respectively, namely the multi-exciton ground-state Ef

divided by Neh. Note that both plots have the same
scale to facilitate a direct comparison.

In both cases, the ground-state excitons have negative
formation energies at all nex, but importantly the nature
of exciton-exciton interactions are different. For EISG,
the excitons experience a very slight repulsive exciton-
exciton interaction, indicated by a very small positive
slope of their Ef curve (Fig. 2(a)). From ñex = 0.39

to ñex = 2.35, Ef increases by only 0.47%. Differently
for EIPB , excitons experience a strong effective repulsion
from each other (Fig. 2(b)); Ef increases by 21.9% from
ñex = 0.39 to ñex = 2.35. Consequently, we make the fol-
lowing inferences. First, the excitons in EISG are likely
forming a BEC superfluid in the ground state because
the effect of exciton-exciton interactions on Ef is neg-
ligible. In the sense of weak exciton-exciton repulsion,
the low-lying excitons for EISG appear like composite
bosons, similar to weakly repulsive bosons in helium-II
[68]. Secondly, the existence of negative exciton forma-
tion energy alone is possibly insufficient to establish a
coherent BEC state. The multi-excitonic ground state of
EIPB has also negative formation energies, but judging
from the strong exciton-exciton interaction excitons seem
to unlikely form a condensate. In order to confirm this
argument, however, one has to further assess directly the
nature of exciton-exciton interaction and confirm quan-
tum coherence of multi-exciton wavefunctions as we do
next.

Since excitons are composite bosons made of electron-
hole pairs like Cooper pairs of two electrons, we calcu-
late eigenvalues of reduced two-body density matrix as
a definitive signature of EBEC based on the concept of
off-diagonal long-range order (ODLRO), which was first
introduced to characterize superfluidity of Cooper pairs
[68, 69]. Similarly, the reduced two-body density matrix
for excitons can be written as [65],

ρ(2)(k, k′; k, k
′
) =< Ψ|ψ†c(k)ψv(k′)ψ†v(k

′
)ψc(k)|Ψ >,

(2)

where ψ†c(v)(k) creates a conduction (valence) electron at

reciprocal lattice point k, and |Ψ > is the many-exciton
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FIG. 2. (a) Ef of the ground-state multi-triplet-exciton states
at multiple nex for EISG. (b) Same as (a) for EIPB . Scale of
plots in (a) and (b) is kept identical for comparison. (c) First
few largest normalized eigenvalues (λn) of reduced two-body
density matrix calculated for the ground-state multi-triplet-
exciton wave functions of EISG at nex ∼ 1.17 × 1013cm−2.
(d) Same as (c) for EIPB . (e) Ratio λ2/λ1 plotted at various
EPs as an indicator of fragmentation in the ground states of
EISG. (f) Same as (e) for EIPB .

wavefunction. We calculate the eigenvalues of ρ(2) and
normalize it by Neh as a function of nex, then the ex-
istence of a single normalized eigenvalue close to 1 is a
signature of EBEC [65]. We also calculate the ratio of
the first two eigenvalues to check for fragmentation [70] of
multi-exciton ground state. Ideally, this ratio should be
close to zero; if it is close to 1, it indicates fragmentation
of the condensate.

In Fig. 2(c), we plot the eigenvalue spectra (λn) of ρ(2)

for the many-body ground state of excitons for EISG at
ñex ∼ 1.17, in a descending order, i.e., λn being the nth

largest eigenvalue. Similar results are found for all nex
(see Fig. S4 [65]). Clearly, there appears a high degree of
condensation for ñex ∼ 1.17. It can also be seen from Fig.
2(e), where the ratio λ2/λ1, indicative of fragmentation
of the condensate, is very low for all nex. For comparison,
in Fig. 2(d), we plot the λn spectra for the many-body
ground state of excitons for EIPB at ñex ∼ 1.17. Again,
similar results are found for other nex (see Fig. S5 [65]).
The excitons in this case, however, are clearly not con-
densing even though they have also negative Ef as shown
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FIG. 3. (a) Same as Fig. 1(c) and 1(d) for EIFB . (b)
Overlaps of ED calculated wave function with the BEC wave
function of the form given by Eqn. ( 3) for the ground states
of EISG (red crosses), and EIFB (blue diamonds) at various
nex.

in Fig. 1(d) and 2(b). It can be seen from Fig. 2(f) that
the multi-exciton ground state is completely fragmented
as λ2/λ1 goes to 1 with the increasing nex. Therefore,
by examining the nature of multi-exciton wave functions
we conclude that the condition of “Eb > Eg”, as satisfied
in both cases, is only a necessary but insufficient condi-
tion for EI state. Also, it indicates that the superatomic
graphene can be a promising real candidate material for
realizing a true EI with excitonic coherence for all nex.

Moreover, the above comparative study suggests that
FB is preferable to enhance exciton coherence, as op-
posed to parabolic band. Interestingly, in our tight-
binding model of a diatomic Kagome lattice, it is possible
to increase the relative FB contribution to exciton forma-
tion by tuning the hopping parameters. Specifically, we
can reduce the band gap between the yin and yang FB
[65] to increase the contribution of FB excitations to the
lowest excitonic state, as exemplified in Fig. 3(a) us-
ing the hopping parameters: t1 = 1.92 eV; t2 = 0.0 eV;
t3 = 0.93 eV (labelled as EIFB), where we plot the single
excitonic energy levels and band excitation contributions
(inset) to the lowest triplet level of EIFB . Note that even
with a small Eg in this case, excitons have a large Eb be-
cause FBs host massive carriers, leading to a very small
dipole matrix element between them [6], which enables
a low-band-gap system to still have a very low screening
[71]. The lowest exciton level of EIFB has a negative Ef

and FB excitations contribute the most to this level.
Similar to the above analyses for EISG and EIPB ,

we have used ODLRO calculation to confirm that multi-
exciton ground state of EIFB is an EI state [65] with
a slight fragmentation at higher nex (see Fig. S6, S7
[65]). An interesting point to note here is the presence
of superfluidic excitonic order in FBs, implying mobile
FB excitons even though the individual electrons and
holes are inherently immobile due to localization of FB
wavefunctions and infinite effective mass of the carriers.
Similar behavior was recently theoretically studied for
FB Cooper pairs [72]. Detailed investigation into this
fascinating feature is left for future work. Here, we in-
stead provide another compelling evidence towards this
behavior. A general criterion for condensation in inter-

acting composite-bosonic system is the presence of one
large eigenvalue of ρ(2), as discussed above. On the other
hand, for non-interacting single-body bosons (free bo-
son gas), condensation implies macroscopic occupation of
the single-particle bosonic ground state. One can form
a similar non-interacting BEC wavefunction for excitons
[57, 58, 65, 67],

|φBEC >=
1

Ω
[b†exc]

N |0 >, (3)

where b†exc is the creation operator for the single triplet
level obtained from ED with Neh = 1, Ω is the nor-
malization constant and N is the number of electrons
(holes) in conduction (valence) bands. Let |φED > be
the ED solution with N electrons (holes) in conduc-
tion (valence) bands. Next, we calculate the overlap,
OV = | < φBEC |φED > | for the multi-exciton ground
states (Fig. 3(b)), which can be considered as an indi-
cator of the one-body vs composite nature of excitons.
In other words, if OV is close to 1, excitons behave as
non-interacting single-body bosons, while if OV is much
smaller than 1, excitons behave as composite bosons.

In Fig. 3(b) we plot OV for the multi-exciton ground
state of EIFB , and EISG with increasing nex. The BEC-
ED overlaps are very close to one for the ground state of
EIFB at all nex (blue diamonds in Fig. 3(b)), indicat-
ing that when excitons are contributed predominantly
by FBs, they become mobile, condensing into a non-
interacting one-body superfluidic wavefunction given by
Eqn. 3. In contrast, for the general case of EISG where
in addition to FBs, parabolic bands contribute also to the
excitonic levels, the overlap monotonically decreases with
increasing nex (red crosses in Fig. 3(b)). It indicates the
interacting composite nature of excitons, implying a dif-
ferent form of excitonic condensate.

We point out that the presence and large contribu-
tion of FB excitations to the excitonic level appear to be
preferable for EBEC. This is clearly reflected by compar-
ing the three cases studied. In the case of EIPB with a
parabolic conduction band edge, the lowest triplet level
is largely contributed by only Γ-point excitation (Fig.
1(d)). Excitons fail to form a BEC at all nex (Fig. 2(d),
2(f) and Fig. S5 [65]) despite having negative formation
energies. In the case of EISG with both a flat valence
and conduction band edge, the lower level is contributed
by FBs at all k-points along with other parabolic bands
(Fig. 1(c)). Excitons condense into a composite form at
all nex (Fig. 2(c), 2(e) and Fig. S4 [65]), but lose the
coherence in the simple ideal form of Eqn. 3 as nex in-
creases (Fig. 3(b)). In the case of EIFB with further in-
crease of FB excitations to the ground-state exciton level
(Fig. 3(a)), exciton condense into the ideal form like
one-body bosons (Fig. 3(b)). In general, the presence of
FB appears to help in improving exciton coherency by al-
lowing excitons to behave as mobile single-body bosons,
as also noticed previously for FB Cooper pairs [72, 73].
We note that the FBs-enabled EBEC we show for EISG

and EIFB are representative cases of all effective param-
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eters producing the desired band structure with valence
and conduction FBs of opposite chirality, and hence is
general. We also do a similar many-excitonic analysis
for the conventional semiconductor case where both con-
duction and valence band edges are parabolic (Section V
in SM [65]). Our results indicate that a strong exciton-
exciton repulsion in this case leads to positive formation
energies of many-excitonic states even though a single
exciton has a negative formation energy implying an ex-
citonic instability. Also, at low exciton density, although
average exciton formation energy could still be negative,
analysis of ODLRO indicates fragmentation of the con-
densate.

Last but not least, the yin-yang FB model and the
material system of superatomic graphene studied in this
work has been recently experimentally realized (albeit
using a different name of triangulene-Kagome lattice),

where excitonic instability was confirmed using spectro-
scopic measurements [74]. Moreover, flat valence and
conduction bands are being increasingly realized experi-
mentally in moiré heterostructures [75]. Similarly, bilayer
FB materials could be interesting platforms to realize FB
EBEC by tuning the Fermi-level so that carriers in each
layer occupy a FB. In addition, the stabilization of triplet
EI state, as illustrated here for FBs of opposite chiral-
ity, paves the way towards material realization of exotic
phases like anomalous bilayer quantum Hall states [65],
fractional excited spin Hall effect [65], spin-1 bosonic con-
densate [76, 77] and spin superfluidity [78, 79].

This work is supported by US Department of
Energy-Basic Energy Sciences (Grant No. DE-FG02-
04ER46148). All calculations were done on the CHPC
at the University of Utah.
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