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We show that interlayer current induces topological superconductivity in twisted bilayers of nodal
superconductors. A bulk gap opens and achieves its maximum near a “magic” twist angle θMA.
Chiral edge modes lead to a quantized thermal Hall effect at low temperatures. Furthermore, we
show that an in-plane magnetic field creates a periodic lattice of topological domains with edge
modes forming low-energy bands. We predict their signatures in scanning tunneling microscopy.
Estimates for candidate materials indicate that twist angles θ ∼ θMA are optimal for observing the
predicted effects.

Controlling the Bogoliubov-de Gennes (BdG) excita-
tions in superconductors (SC) is crucial for realizing
many coveted quantum phases of matter. For example,
topologically nontrivial BdG bands [1] hold the promise
of hosting exotic Majorana fermion excitations [2] that
can be used to perform topological quantum computa-
tion [3]. However, despite many considered materials [4–
7] and nanostructure setups [8], the controlled realization
of topological phases of the BdG quasiparticles remains
an open problem. Fundamentally, low-energy BdG quasi-
particles are charge neutral combinations of particles and
holes [9, 10], making the electric-field based control used
in various semiconductor applications ineffective.

Recently, a new paradigm in the engineering of cor-
related and topological phases has emerged, known as
“twistronics” [11–13] or moiré materials [14], that utilizes
stacking of two-dimensional materials with an interlayer
rotation (i.e., twist as in Fig. 1) to achieve novel prop-
erties. In particular, recent studies [15, 16] have shown
that twisted bilayers of nodal superconductors can spon-
taneously break time-reversal symmetry at certain twist
angles (45◦ for d-wave superconductors) [17–19], poten-
tially leading to topological states. The cuprates [15] are
such a candidate available in monolayer form [20, 21].
Recent experiments on interfaces between twisted finite-
thickness flakes [22–24] are also consistent with d-wave
pairing. However, the topological properties would be
suppressed for twist angles near 45◦ by the symmetry
of the orbitals [25] (although incoherent tunneling have
been suggested to reduce this effect [26]).

In this Letter, we demonstrate that twisted bilayers of
two-dimensional nodal superconductors (TBSCs) (Fig. 1)
realize topological phases on application of current or
magnetic field at any nonzero twist angle. An inter-
layer Josephson current opens a topological gap that is
maximal at a value of the twist angle much smaller than
the one required for spontaneous time-reversal breaking

[15, 17–19] and is gradually suppressed for large twist
angles (Fig. 2(a)). We also show that an in-plane mag-
netic field creates a network of topological domains with
alternating Chern numbers and chiral edge modes be-
tween them (Fig.3(a)). We demonstrate the fingerprints
of these tunable topological phases in thermal Hall effect
(Fig. 2(b)) and local density of states (Fig. 4).
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FIG. 1. (a) Momentum-space schematic of a twisted nodal
superconductor exemplified by a d-wave superconductor with
a sign-changing gap (from blue to red). Near the nodes (KN

and K̃N ) the BdG quasiparticles of the two layers have a Dirac
dispersion shifted by a vector QN (= θKN ) with respect to one
another. (b) Interlayer current leads to opening of a bulk Z
topological gap with gapless chiral edge modes (Fig. 2).

Low-energy model of a twisted nodal superconductor bi-
layer: We first construct a momentum space low-energy
model of a TBSC (illustrated in Fig. 1(a)). The rel-
ative rotation of the layers is reflected in the single-
particle dispersion ε(K)τ3 → ε(K∓θ/2)τ3 and pairing
∆(K)∆̂ → ∆(K∓θ/2)∆̂ terms (where Kθ denotes K ro-
tated by θ, and τi are Pauli matrices in Gor’kov-Nambu
space). Here we will focus on the singlet case ∆̂ = τ1
[27]. At low twist angles the twist can be approxi-
mated in the vicinity of the nodes by a momentum shift
K̃ ≈ kθ + [ẑ×KN ]θ ≡ kθ +QN . Assuming that the gap
nodes are not in proximity to the Brillouin zone boundary
and that the tunneling decays fast outside the first Bril-
louin zone [27], the interlayer tunneling amplitude can
be taken as a constant (t) between overlapping momenta
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in Fig. 1(a). This implies that the quasiparticles near
KN in one layer can tunnel to a vicinity of only a single
corresponding node K̃N in the other layer (Fig. 1(b)).
Such pairs of nodes stemming from the two layers form
approximately independent “valleys.”

At the same time, the setup in Fig. 1(a) constitutes a
Josephson junction for weak tunneling. Application of a
current lower than a critical one (Ic) between the layers
(Fig. 1(b)) therefore creates a phase difference between
the order parameters of two layers ∆1 → ∆1e

iϕ/2,∆2 →
∆2e

−iϕ/2. The current-phase relation [28] at low twist
angles takes the form I(ϕ) ≈ Ic sin(ϕ) [27]. We proceed
by neglecting rotation of k, which is appropriate for a
circular Fermi surface [27] and does not affect qualita-
tive results (see below). The low-energy Hamiltonian of
TBSC takes the form H(k, ϕ) = H1(k, ϕ) +H2(k, ϕ),

H1(k, ϕ) = vF k‖τ3 + v∆k⊥ cos(ϕ/2)τ1

−αt cos(ϕ/2)τ1σ3 + tτ3σ1

H2(k, ϕ) = −v∆k⊥ sin(ϕ/2)τ2σ3 + αt sin(ϕ/2)τ2,

(1)

where vF , v∆ are the Fermi and gap velocities (∆(K) ≈
v∆k⊥), k‖(k⊥) are momenta along vF (v∆), σi are Pauli

matrices in layer space and α = v∆θKN

2t . Without current
(ϕ = 0) H2(k, ϕ) vanishes, while H1(k, ϕ) has a gapless
spectrum [27]. For ϕ 6= 0 a finite spectral gap opens

∆J(ϕ) =

{
2|tα sinϕ/2|, |α| < cosϕ/2
|t sinϕ|√
α2+sin2 ϕ

2

, |α| > cosϕ/2,
(2)

for any α 6= 0 (i.e. θ 6= 0). The gap vanishes for zero
interlayer current I(ϕ), i.e. for ϕ = 0, π. In Fig. 2(a),
we present the maximal value of the current-induced gap
∆J(ϕ = ϕMax) (for ϕ between 0 and π/2 corresponding
to the stable supercurrent branch) as a function of the
twist angle. The maximal gap value is equal to t and is
reached at θ = θMA/

√
2, where θMA = 2t

v∆KN
. To assess

the influence of non-circular Fermi surface geometry on
the gap we also calculate the spectral gap for a tight-
binding Fermi surface appropriate for Bi2Sr2CaCu2O8+y

[29, 30] (Fig. 2(a), red dots). The circular Fermi surface
approximation (dashed line) is in excellent quantitative
agreement at θ � θMA. At larger θ, the result can be
well-captured by expanding k±θ/2 to the lowest order in θ
(solid line) [30]. One observes that the gap does not close
as a function of twist angle and has an appreciable value
for a range of twist angles. For Bi2Sr2CaCu2O8+y, the
ab initio estimates suggest t ≈ 1 meV [27, 29, 30], leading
to a peak gap value of around 0.8 meV. This value is
several times larger than those reported by several other
topological superconductivity platforms [31, 32].

However, for θ � θMA the gap is strongly suppressed.
For example, in Bi2Sr2CaCu2O8+y θMA ≈ 2.8◦ [27, 30],
which suggests that already at θ ≈ 15◦ the gap would be
below 0.025 meV. In our calculation, we also included the
∝ cos(2θ) dependence of the interlayer tunneling [30] due

to the d-wave symmetry of Cu orbitals [25]. In the clean
case, it vanishes for θ close to 45◦, where a spontaneous
generation of the phase difference was predicted [15, 33].
This suggests that the value of the topological gap at
low twist angles will be more than order of magnitude
larger than in the vicinity of 45◦. The suppression of the
gap with θ has been demonstrated also in the presence
of strong electronic correlation effects [25], where larger
θ > 7.8◦ ≈ 2.5θMA were studied.
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FIG. 2. (a) Maximal value of the current-induced gap as
a function of twist angle. Dashed line is for the circular
Fermi surface (Eq. (2)), red dots - for a tight-binding model of
Bi2Sr2CaCu2O8+y [29, 30], green line - low-θ expansion for a
non-circular Fermi surface [30]. (b) Temperature dependence
of the electronic thermal Hall conductivity for different twist
angles and ϕ = π/2. For θ = 0, κH(T ) vanishes identically.

On a qualitative level, the opening of a spectral gap at
the nodes in TBSC can be understood to result from
a simultaneous breaking of two symmetries: the mir-
ror symmetry of the bilayer (by the twist) and time-
reversal symmetry (by the current). Taking the exam-
ple of a dx2−y2 SC (relevant for a number of unconven-
tional superconductors [34]), the breaking of these sym-
metries allows a mixing of the dx2−y2 and the dxy or-
der parameters with a relative phase between them, i.e.
dx2−y2 → dx2−y2 + eiΦxydxy. This argument can be sim-
ilarly generalized to other unconventional superconduct-
ing states, i.e. for a triplet px superconductor – under a
twist and an applied interlayer current a px+ipy topologi-
cal superconductor emerges [16, 27]. The resulting states
in all cases are expected to be topological [27, 35, 36].

To study the topological properties of our system, we
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rely on the simpler model of Eq. (1) appropriate for
θ � 1. Let us consider the spectrum near the Dirac
points of H1(k, ϕ) at α� 1, where H2(k, ϕ) can be con-
sidered as a perturbation. As the gap does not close with
increasing α, the topological characteristics apply to all
α 6= 0. Around k±‖ = ±

√
1− α2 cos2(ϕ/2)t/vF , k⊥ = 0,

projecting the Hamiltonian Eq. (1) to the zero-energy
eigenstates of H1(k, ϕ) one obtains two identical Dirac
Hamiltonians:

Heff = ṽF (ϕ)k‖ζ3 + αt sin
(ϕ

2

)
ζ2 + ṽ∆(ϕ)k⊥ζ1, (3)

where ṽF (ϕ) =
√

1− (α cos[ϕ/2])2; ṽ∆(ϕ) =√
1− (α cos[ϕ/2])2 cos[ϕ/2]. The Chern number of a sin-

gle valley with two gapped Dirac points is then equal to
±1 [37]; the expression valid for arbitrary ϕ is:

C = sgn[v∆θ sin(ϕ)]. (4)

Moreover, one can demonstrate that the Chern num-
bers of different valleys are the same. Consider two ad-
jacent nodes on a single layer’s Fermi surface [Fig. 1(a)].
While the Fermi velocity changes smoothly between the
two and does not vanish anywhere in between (i.e., vF
does not change sign), v∆ has to pass through a zero,
leading to v∆ → −v∆ and α → −α (after a coordinate
rotation) in Eq. (1). Consequently, at the Dirac points in
Eq. (3), the last two terms change sign. This results in
the Chern number of two adjacent valleys being the same.
The total Chern number is then given by Ctot = NvC,
where Nv is the number of valleys - equal to the number
of nodes in a single layer.

We have proven that the interlayer current transforms
nodal TBSCs into a topological state characterized by a
Z topological invariant belonging to the C and D Altland-
Zirnbauer symmetry classes [1] for singlet and triplet
SCs, respectively. The topological nature of these states
produces gapless neutral chiral (Majorana for the equal-
spin triplet pairing case) modes at the edges of the system
[Fig. 1(b)], expected to result in a quantized electronic
thermal (and spin, for the singlet case) Hall conductance
κH = nT (π/6)k2

B/~ at low temperatures [35, 38], where
n is integer. We note that the presence of phonons can
modify this prediction, leading to deviations of the quan-
tized value of κH/T below a sample-size dependent tem-
perature [39, 40].

We have calculated the electronic κH(T ) [30]
for Eq. (1) using the expressions in Refs. [41–
43]. In Fig. 2(b), we present κH(T ) normalized to
−CT (π/6)k2

B/~ [30]. For all nonzero twist angles, the
quantization occurs, albeit at temperatures considerably
lower than the gap. The temperature at which κH(T )
becomes appreciable does not strongly depend on θ,
and is around 0.3t, i.e. 3K using values appropriate for
Bi2Sr2CaCu2O8+δ.

Topological domains induced by an in-plane field: We
now consider the quasiparticles in TBSC in presence of
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FIG. 3. (a) In-plane magnetic field generates a periodic (along
x) Josephson vortex lattice leading to a pattern of gapped do-
mains with edge modes forming bands. (b) and (c) Quasipar-
ticle energies along x (a) and y (b) direction in the presence
of an in-plane field parallel to k⊥ for l = 4λJ . A narrow
band (red) is formed within the spectral gap (b). Inset shows
the bandwidth W (blue), gap ∆H (brown), Zeeman energy
(black dashed line) and a rough estimate for the gap based
on size quantization (orange line) as a function of vortex lat-
tice period l. Dispersion along ky (c) for l = 6λJ shows the
low-energy bands crossing zero with a well-defined chirality.
Contributions to the LDOS from the marked momenta are
shown in Fig. 4(b). In (b,c), α = 0.5, vF

tλJ
= 0.5.

an in-plane magnetic field instead of a current. Extend-
ing the analogy with Josephson junction, one expects
the emergence of a periodic modulation of the phase dif-
ference and current between layers [44, 45]—a lattice of
Josephson vortices (Fig. 3(a)). The alternating current
pattern along x (Fig. 4(a)) suggests that quasiparticles
should be gapped apart from lines (along y) where the
current vanishes and current-induced gap ∆J changes
sign. These lines form domain walls between domains
with Chern number equal to ±Ctot.

To study the dispersion of the quasiparticles in the
presence of magnetic field, we obtain the BdG Hamilto-
nian in real space from Eq. (1) by ϕ → ϕ(r), f(r)ki →
1
2{(−i∂i − e/cAi(r)), f(r)} [46], where {·, ·} denotes the
anticommutator. The form of ϕ(x) is determined by
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the solution of Josephson equations ∂2ϕ(x)
∂x2 = 1

λ2
J

sinϕ(x)

[47] (where λ2
J = c|Φ0|s′

8π2|jc|(2λ2
ab)

, λab being the penetration

depth, Φ0 = π~c
e , jc - the critical current density and s′

-thickness of a single layer) [30]. The solution is a peri-
odic function with period l = Φ0/(|H|s), where s is the
distance between layers and H is the applied field [30]. In
addition, for a singlet superconductor, the magnetic field
will lead to a Zeeman splitting of ±gµBH/2 for all states
[27]. We note that trapped vortices can exist in zero ex-
ternal field [48, 49]. This allows one to avoid the Zeeman
effect, as the field generated by vortices is negligible for
atomically thin bilayers [30].

We will now focus on the case k‖ ‖ x, k⊥ ‖ y, with
results for different field orientations being qualitatively
similar [30]. ky remains a good quantum number, while
kx is folded into a Brillouin zone kx ∈ (0, 2π/l). In
Fig. 3(b) an example of the quasiparticle dispersion along
x (note that the bands are additionally folded twofold due
to the numerical solution procedure [30]). One observes
a narrow band inside a gap ∆H (there is another one
at a negative energy). Inset demonstrates that both the
width of the narrow band W and the gap ∆H scale as a
function of lattice period l inversely proportional to the
magnetic field. At low fields (large l), Josephson vortices
are well separated and the quasiparticle energies can be
estimated from size quantization of Eq. (3) with ϕ = 0,

i.e. ∆H ∼ 2πṽF (0)
l . This estimate (see orange line in Fig.

3 (b), inset) qualitatively captures the behavior of ∆H(l)
for a range of l/λJ . Interestingly, the Zeeman splitting

(black dashed line) gµBH
t ≈ 2µB |Φ0|/(sλJ )

t(l/λJ ) is much smaller

than ∆H(l) for these parameters [30] and therefore can
not close the gap separating the in-gap band from the
rest. The dispersion of the in-gap bands along y-direction
is shown in red in Fig. 3(c). They cross zero energy and
merge with other bands afterwards, reminiscent of the
edge states in a topological state.

Indeed, this analogy can be confirmed by analyzing the
local density of states (LDOS) at zero energy (Fig. 4(b));
a quantity that can be measured in scanning tunnel mi-
croscopy experiments. We plot the LDOS of one layer
of TBSC as in an experiment, only LDOS of the layer
closest to the tip will be probed. The position of two
peaks in LDOS corresponds exactly to points (Fig. 4(a)),
where the current between the layers vanishes. Further-
more, the contributions of states that have opposite chi-
rality (marked by green and purple lines in Fig. 3(b))
are localized at different positions. This confirms the ex-
pectation from Fig. 3(a), that the adjacent domain walls
host modes moving with opposite velocity along y.

Additional insight can be obtained by analyzing the
Hamiltonian in the vicinity of the points where interlayer
current vanishes (Fig. 4(a)). Taking only the two states
closest to zero energy, in analogy to Eq. (3) the Hamil-
tonian can be brought to the form of a Dirac equation in

a linear confining potential [30]:

H(x ≈ x0[xπ]) = [α]vF (−i∂x)ζ3+[−]v∆kyζ1+
αq0[π]xt

2
ζ2,

(5)
where q0,π = ϕ′(x0,π) and the effect of the vector po-
tential has been absorbed into a momentum shift. This
Hamiltonian has a localized (in x) solution with a linear
dispersion along y E0[π](ky) = [−]v∆ky, in agreement with
Fig. 3(c). The spatial extent of the corresponding eigen-
functions ψ0,π(x, ky), i.e.

√
〈ψ0[π]|(x− x0[π])2|ψ0[π]〉 is

independent of ky and equal to
√
vF /(αtq0) around x0

and
√
αvF /(tqπ) around xπ. Noting that qπ > q0 and

α < 1 ψπ should be localized much stronger, as is indeed
the case in Fig. 4(b).
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FIG. 4. (a) Interlayer current in the presence of an in-plane
field (Fig. 1 (d)) over one period l = 6λJ of the Josephson
vortex lattice with period. (b) Local density of states (LDOS)
at zero energy at the top layer. Green and purple lines show
contributions of low-energy modes with different chirality (see
Fig. 3(b)). (c) Symmetrized energy dependence of LDOS at
the peak position: for finite θ LDOS is constant below within
the intra-domain gap.

We now compare the results with the case θ = 0,
where the topological gap vanishes (Eq. 2). The spa-
tially resolved zero-energy LDOS has only a single peak
(Fig. 4(b)). More importantly, the LDOS exhibits
strikingly different energy dependence (Fig. 4(c)). In



5

Fig. 4(c), the symmetrized energy dependence of the
LDOS at the left peak is shown: for energies within the
gap ∆H , the LDOS is constant for θ/θMA = 0.5, but not
for θ = 0, where the spectrum is gapless. This behavior is
generic and can be also observed at other positions [30].

Effects of disorder: Gapped topological states are ex-
pected to be robust to weak perturbations [1, 38]. To
illustrate this general principle we have analyzed Eq. 3
in the presence of a random potential 〈Vimp(r)Vimp(r′)〉 =
nu2

0, n being impurity concentration and u0 - scattering
strength, in the Born approximation [30]. For ϕ = 0,
at arbitrarily weak disorder strength, density of states
becomes nonzero at zero energy [30, 50]. In contrast to
that, for a finite ϕ, DOS remains zero for weak scatter-
ing nu2

0 � 4πvF v∆/ log(∆0/αt sin(ϕ/2)), showing that
the topology of the state is robust to weak disorder. In a
magnetic field, scattering between edge modes with dif-
ferent vy could be important. However, their separation
in real space (Fig. 4(b)) reduces the scattering rate that
is proportional to |ψ0(ximp)ψπ(ximp)|2, where ximp is the
position of the impurity. For parameters used in Fig. 4,
one obtains averaging over ximp a factor of 3 reduction
compared to scattering between plane waves [30].

Conclusion: To conclude, we have shown that twisted
bilayers of nodal superconductors can realize topologi-
cal superconductivity of the neutral BdG quasiparticles
“on demand” with present-day experimental techniques
and systems. Applying an interlayer current bias opens
a topological gap in the system that manifests itself in
quantized thermal Hall response [Fig. 2(b)]. The gap
value is maximized [Fig. 2(a)] near the “magic” value of
the twist angle. Similarly, the orbital effect of an in-
plane magnetic field creates a network of chiral domains
separated by Josephson vortex cores hosting chiral one-
dimensional modes [Fig. 3(a)]. With several candidate
materials proposed to observe these effects [27], twisted
bilayers of nodal superconductors offer a realistic, tun-
able platform for topological superconductivity.

ACKNOWLEDGMENTS

We thank Philip Kim for insightful discussions. P.A.V.
J.H.W. and J.H.P. acknowledge the Aspen Center for
Physics where part of this work was performed, which is
supported by National Science Foundation grant PHY-
1607611. P.A.V. was by a Rutgers Center for Materi-
als Theory Abrahams Fellowship and J.H.P. is partially
supported by the Air Force Office of Scientific Research
under Grant No. FA9550-20-1-0136, the NSF CAREER
Grant No. DMR-1941569, and the Alfred P. Sloan Foun-
dation through a Sloan Research Fellowship. The Flat-
iron Institute is a division of the Simons Foundation.

∗ pv184@physics.rutgers.edu
[1] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Lud-

wig, Classification of topological insulators and super-
conductors in three spatial dimensions, Phys. Rev. B 78,
195125 (2008).

[2] M. Sato and Y. Ando, Topological superconductors: a
review, Rep. Prog. Phys. 80, 076501 (2017).

[3] S. D. Sarma, M. Freedman, and C. Nayak, Majorana
zero modes and topological quantum computation, npj
Quantum Inf. 1, 1 (2015).

[4] R. Nandkishore, L. S. Levitov, and A. V. Chubukov,
Chiral superconductivity from repulsive interactions in
doped graphene, Nat. Phys. 8, 158 (2012).

[5] F. Liu, C.-C. Liu, K. Wu, F. Yang, and Y. Yao, d + id′

chiral superconductivity in bilayer silicene, Phys. Rev.
Lett. 111, 066804 (2013).

[6] M. H. Fischer, T. Neupert, C. Platt, A. P. Schnyder,
W. Hanke, J. Goryo, R. Thomale, and M. Sigrist, Chiral
d-wave superconductivity in SrPtAs, Phys. Rev. B 89,
020509 (2014).

[7] P. Zhang, Z. Wang, X. Wu, K. Yaji, Y. Ishida, Y. Ko-
hama, G. Dai, Y. Sun, C. Bareille, K. Kuroda, T. Kondo,
K. Okazaki, K. Kindo, X. Wang, C. Jin, J. Hu,
R. Thomale, K. Sumida, S. Wu, K. Miyamoto, T. Okuda,
H. Ding, G. D. Gu, T. Tamegai, T. Kawakami, M. Sato,
and S. Shin, Multiple topological states in iron-based su-
perconductors, Nature Physics 15, 41 (2019).

[8] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P.
Bakkers, and L. P. Kouwenhoven, Signatures of Majo-
rana fermions in hybrid superconductor-semiconductor
nanowire devices, Science 336, 1003 (2012).

[9] S. A. Kivelson and D. S. Rokhsar, Bogoliubov quasipar-
ticles, spinons, and spin-charge decoupling in supercon-
ductors, Phys. Rev. B 41, 11693 (1990).

[10] Y. Ronen, Y. Cohen, J.-H. Kang, A. Haim, M.-T. Rieder,
M. Heiblum, D. Mahalu, and H. Shtrikman, Charge of a
quasiparticle in a superconductor, Proc. Natl. Acadm.
Sci. U.S.A. 113, 1743 (2016).

[11] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H.
Castro Neto, Graphene bilayer with a twist: Electronic
structure, Phys. Rev. Lett. 99, 256802 (2007).

[12] R. Bistritzer and A. H. MacDonald, Moiré bands in
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[57] Francois Gygi and M. Schlüter, Self-consistent electronic
structure of a vortex line in a type-ii superconductor,
Phys. Rev. B 43, 7609 (1991).

[58] H. Suematsu, M. Machida, T. Koyama, T. Ishida,
and M. Kato, Finite element method for bogoliubov–de
gennes equation: application to nano-structure super-
conductor, Physica C: Superconductivity 412-414, 548
(2004), proceedings of the 16th International Symposium
on Superconductivity (ISS 2003). Advances in Supercon-
ductivity XVI. Part I.

[59] K. Halterman and O. T. Valls, Local density of states and
order parameter configurations in layered ferromagnet-
superconductor structures, Physica C: Superconductivity
420, 111 (2005).

[60] M. H. Hettler and P. J. Hirschfeld, Scattering by
impurity-induced order-parameter “holes” in d-wave su-
perconductors, Phys. Rev. B 59, 9606 (1999).

[61] T. Pereg-Barnea and M. Franz, Magnetic-field depen-
dence of quasiparticle interference peaks in a d-wave
superconductor with weak disorder, Phys. Rev. B 78,
020509(R) (2008).

[62] A.A. Abrikosov L.P. Gorkov, I.E. Dzyaloshinskii, Quan-
tum Field Theoretical Methods in Statistical Physics
(Pergamon Press, 1965).

[63] P. Van Mieghem, Theory of band tails in heavily doped
semiconductors, Rev. Mod. Phys. 64, 755 (1992).

[64] V. P. Mineev and K. Samokhin, Introduction to uncon-
ventional superconductivity (CRC Press, 1999).

https://doi.org/10.1103/PhysRevLett.78.1548
https://doi.org/10.1103/PhysRev.164.538
https://doi.org/10.1103/PhysRev.164.538
https://doi.org/https://doi.org/10.1016/S0167-2789(98)00131-6
https://doi.org/https://doi.org/10.1016/S0167-2789(98)00131-6
https://doi.org/10.1103/PhysRevB.80.224507
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1088/1367-2630/12/10/105008
https://doi.org/10.1088/1367-2630/12/10/105008
https://doi.org/10.1103/PhysRevLett.82.2179
https://doi.org/10.1103/PhysRevLett.82.2179
https://doi.org/https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1103/PhysRevB.63.144525
https://doi.org/10.1103/PhysRevB.46.350
https://doi.org/10.1103/PhysRevLett.77.932
https://doi.org/10.1103/PhysRevLett.77.932
https://doi.org/10.1103/PhysRevB.43.7609
https://doi.org/https://doi.org/10.1016/j.physc.2004.02.197
https://doi.org/https://doi.org/10.1016/j.physc.2004.02.197
https://doi.org/https://doi.org/10.1016/j.physc.2005.02.004
https://doi.org/https://doi.org/10.1016/j.physc.2005.02.004
https://doi.org/10.1103/PhysRevB.59.9606
https://doi.org/10.1103/PhysRevB.78.020509
https://doi.org/10.1103/PhysRevB.78.020509
https://doi.org/10.1103/RevModPhys.64.755

