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Due to its speed after training, machine learning is often envisaged as a solution to a manifold of
the issues faced in gravitational-wave astronomy. Demonstrations have been given for various appli-
cations in gravitational-wave data analysis. In this work, we focus on a challenging problem faced by
third-generation detectors: parameter inference for overlapping signals. Due to the high detection
rate and increased duration of the signals, they will start to overlap, possibly making traditional

parameter inference techniques difficult to use.

Here, we show a proof-of-concept application of

normalizing flows to perform parameter estimation on overlapped binary black hole systems.

INTRODUCTION

Over the last few years, the improved sensitivity of the
LIGO [I] and Virgo [2] detectors has made the detec-
tion of gravitational waves (GWs) originating from com-
pact binary coalescences (CBCs) more and more com-
mon, with over 90 detections reported after the third ob-
servation run [3]. Soon, the upgrade of the current detec-
tors and the addition of KAGRA [4H8] and LIGO India [9]
to the network of ground-based interferometers will lead
to even more detections. In addition, the passage from
second-generation (2G) to third-generation (3G) detec-
tors (Einstein Telescope (ET) [10, II] and Cosmic Ex-
plorer (CE) [12HI4]) will lead to an important increase
in the number of observed CBCs. These detectors are
also projected to have a reduced lower frequency cut-
off [15], leading to longer signal durations. Therefore,
CBC signals will overlap in 3G detectors [I6H20].

Analyzing one of the overlapping signals without ac-
counting for the presence of the other can lead to biases
in the recovered posteriors, especially when the merger
times of the two events are close [I7H2I]. These could
impact any direct science case for CBCs (e.g. tests of
general relativity [22]), but also indirectly related ones
such as the hunt for primordial black holes [23H28]. In
Ref. [29], the authors demonstrate on two overlapped bi-
nary black holes (BBHs) how adapted Bayesian infer-
ence can help reduce the biases. In particular, they per-
form joint parameter estimation, where the two signals
are analyzed jointly. While accounting for all the noise
characteristics, their analysis also suffers from some in-
stabilities, and further upgrades are needed for it to be
entirely reliable. An issue also mentioned in this work
is the computational time. With hundreds of thousands
of CBC mergers expected in the 3G era [I7], analyses
taking several weeks are not a realistic alternative.

Even if traditional methods can be sped-up [30-33], or
quantum computing [34] could potentially be used in the
future, the development of frameworks capable of doing

complete analyses in short timescales is crucial for the
development of 3G detectors. Therefore, in this work,
we propose the first step in that direction, showing how
overlapping BBHs can be analyzed with a normalizing
flow (NF) approach [35H37].

MACHINE LEARNING FOR OVERLAPPING
GRAVITATIONAL WAVES

The use of machine learning (ML) in GW data analysis
has been growing over the last years, having a wide range
of applications [38]. A subset of these methods fall un-
der the umbrella of simulation-based inference [39], and
are being developed to perform parameter estimation for
CBCs [40H47]. Refs.[43H45] use NFs to get posterior dis-
tributions for BBH parameters, obtaining results close to
those from traditional Bayesian methods. Our approach
is somewhat similar to theirs, with some notable differ-
ences explained below.

Our approach uses continuous conditional NFs [48],[49]
(CCNFs), a variant of NFs suited for probabilistic model-
ing and Bayesian inference. Due to the recursive and con-
tinuous nature of these models, their memory footprint
can be quite small [50], allowing for extensive training on
home-grade GPUs while retaining the ability to capture
complex distributions.

NFs are a method in ML through which a neural net-
work can learn the mapping from some simple base dis-
tribution p,(u) to a more complex final distribution ¢(8).
This is done through a series of invertible and differen-
tiable transformations, summarized by a function g(8).
However, in our case, the final distribution we seek de-
pends on the GW data to analyze. Therefore, we use con-
ditional NFs [51], where the transformation functions are
dependent on the data d (hence, g = g(0,d)). A major
difference with [51] is that our base distributions are kept
static. Thus our model g(8,d) is a trainable conditional
bijective function transforming a simple 30-D Gaussian



into a 30-D complex distribution. The bijectivity allows
us to express and sample ¢(68|d) in terms of ¢(6,d) and

pu () via:
¢(6]d) = [det(Jz-1(8,d))[pu(g7(0,d)), (1)

where det(J,-1(0,d)) is the determinant of the Jacobian
Jg-1(0,d) of the transformation. We train the model by
minimizing the forward KL-divergence, which is equiva-
lent to maximum likelihood estimation [37],52]. As noted
by [45], ¢(@|d) should cover the actual (Bayesian) poste-
rior p(0|d), and asymptotically approach it as training
progresses due to the mode-covering nature of the for-
ward KL divergence.

A distinctive choice of our method is the continuous
nature of the flow, which is linked to the transforma-
tion function itself. Neural ordinary differential equa-
tions (neural ODEs) [50] are the foundation of continu-
ous NFs; they are not represented by a stack of discrete
layers but by a hypernetwork [53]. Hypernetworks can
be understood as regular networks where ‘external’ in-
puts such as a time or depth variable smoothly change
the output of the network for identical inputs. They can
thus represent multiple transformations. In [50], hyper-
networks are used to represent ODEs and are trained by
using ODE-solvers and clever use of the adjoint sensitiv-
ity method. A continuous NF uses neural ODEs as its
transformations.

We will now explain the training of a continuous flow.
For clarity, we will use h to refer to a continuous trans-
formation and ¢ for a discrete one. If (t) represents the
samples from the distribution at a given time ¢, when
going from t; to to, the continuous NF obeys

do(t)
S = hit,00). (2)

The change in likelihood associated with this ‘step’ differs
slightly from Eq. due to the continuous nature of the
flow:

ty
log(p(6(11))) = log(p(6(t0))) ~ [ Tr[I(0()]. (3)
0
Assuming a non-stiff ODE the integration can be
performed rapidly with state-of-the-art ODZE-solvers,
MALI [54] in our case. In addition, we have to calculate a
trace instead of a determinant, speeding up the computa-
tion which reduces the complexity, going from O(D3) to
at most O(D?) with D being the dimensionality of poste-
rior space, speeding-up the computation [55], 56]. More-
over, using continuous NFs removes the need to use cou-
pling layers between transformations, instead, all param-
eter dimensions can be dependent on each other through-
out the flow. Combining the continuous and conditional
flows leads to CCNFs, where the conditional consists of
the GW d and the time ¢.
We also need a better data representation than the
raw strain to train and analyze the data. Therefore, we
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FIG. 1. Representation of our analysis framework. It is made
of a pre-processing part where we build an SVD basis to filter
the data, followed by a normalizing-flow-based neural net-
work.

follow a similar approach as in [41H45], using a single
value decomposition (SVD) [57] as summary statistics,
reducing the dimension and the noise content of the data
while retaining at least 99% of the original signal. Each
of the 256 generated basis vectors is used as a kernel in
1D convolutions used as an initial layer in a ten-layer
residual convolutional neural network (CNN), enabling
one to capture the time variance of the signal. There-
fore, we do not need to use a Gibbs sampler to estimate
the time of the signal as done in [43H45], and can sam-
ple over time like any other variable. The CCNF itself is
represented by two multi-layer perceptrons with 3 hidden
layers of 512 units. Furthermore, we use a different rep-
resentation for the angles. Instead of directly using their
values, we project them onto a sphere for the sky location
and onto a circle for the other angles. This makes for a
better-posed domain for these angles, and plays on the
strong interpolation capacities of the network, making
the training step easier.

In the end, our framework combines data representa-
tion as a hybrid between SVD and CNN, followed by the
CCNF network. A representation of our analysis frame-
work is given in Fig.[I] Our entire framework is relatively
small compared to the ones presented in [43], both the
residual network and CNF network. Therefore, it can
run on lower-end GPUs, but could also be limited in its
capacity to model the problem.

DATA AND SETUP

To test our framework, we start with a simplified setup,
considering a network made of the two LIGO detec-
tors and the Virgo detector, at design sensitivity [2] 58],
and with a lower sensitive frequency of 20Hz. We gen-
erate stationary Gaussian noise from their power spec-
tral density (PSD) and inject two precessing BBH merg-
ers using the IMRPhenomPv2 waveform [59]. Our data
frames have an 8 seconds duration and are whitened af-



Parameter Function

Chirp mass (M)

Mass ratio (q)
Component masses (m1,2)
Luminosity distance (Dr)

U(10,100) M

4(0.125,1)

Constrained in [5, 100]Mg
Rescaled to follow SNR

SNR B(10, 50)
Coalescence time (tc) U (tres — 0.05, trer + 0.05)
Spin Amplitudes (a1,2) U(0,1)
Spin tilt angles (61,2) Uniform in sine
Spin vector azimuthal angle (¢;;) U(0, 2m)
Spin precession angle (¢12) U(0,2m)
Inclination angle (6;r) Uniform in sine
Wave polarization (i) u(o, )
Phase of coalescence (¢) U(0, 2m)
Right ascension (RA) U(0, 2m)

Declination (DEC) Uniform in cosine

TABLE I. Summary of the parameters considered and the
function used to generate the BBHs.

ter the signals are injected. The chirp mass (M, =
(M + M>)3/5 / (M, M3)'/?) and mass ratio (¢ = My /M>)
are sampled from uniform distributions, between 10M
and 100My and 0.125 and 1, respectively. The indi-
vidual component masses are constrained between 5M¢
and 100Mg. During the data generation, the luminos-
ity distance is kept fixed. It is then rescaled to re-
sult in a network signal-to-noise ratio value taken ran-
domly between 10 and 50 from a beta distribution with
a central value of 20. The coalescence time for the two
events is set randomly around a time of reference, with
te € [tref — 0.05, tyer + 0.05]s, ensuring that the two BBH
merge in the high bias regime [I8]. The other parame-
ters are drawn from their usual domain. Table [l gives an
overview of the parameters and the function from which
they are sampled.

During the training, we continuously generate data by
sampling the prior distributions for the events and mak-
ing a new noise realization for each frame. The training
is stopped when convergence is reached and before over-
fitting occurs. Our model was trained for about 12 days
on a single Nvidia GeForce GTX 1080.

RESULTS

To demonstrate the method’s reliability, a P-P plot for
the recovered parameters is shown in Fig. 2] It is con-
structed by sampling the posteriors of 1000 overlapped
eventsEI with parameters drawn from the distributions de-
tailed in Table. [ Since the cumulative density aligns

1 We refer the reader to Fig. 1 in Ref. [29] for an illustration of
overlapping BBH signals.
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FIG. 2. P-P plots for a subset of the recovered parameters
for the two events in the data. The parameters shown are
representative of all the BBH parameters for the two events.
In both cases, the lines align along the diagonal, showing that
our method can be trusted. The legend indicates which line
corresponds to which parameters. The parameters for event
1 (resp. 2) are noted P_1 (resp. P_2), where P are the
usual parameter symbols as presented in Table[] The values
between the brackets are the KS test statistic.

along the diagonal, our network is reliable. Comparing
this to the results given in [43] for single signals, there
is a broadening of the shell around the diagonal, show-
ing more variability in signal recovery, meaning our in-
ference is less accurate than for single signals. Possible
origins are the degenerate posteriors, increased complex-
ity of the problem, and the reduced size of our network.
This increased variability when going from single to joint
parameter estimation has also been noted in Bayesian
approaches [29].

While Bayesian methods have been developed in [29],
they are not yet fully stable and take a long time to an-
alyze a BBH system. Therefore, making a statistically
significant study comparing the two approaches seems a
bit premature at this stage. However, to have some sense
of the performances of our network compared to tradi-
tional methods, we make 15 injections complying with
our network’s setup and analyze them with the frame-
work presented in [29]. Using these analyses, we can
already identify some trends between the two pipelines.
The first is that our ML pipeline typically has broader
posteriors than the Bayesian approach. As mentioned
in Ref. [29], the classical joint parameter estimation ap-
proach can sometimes get overconfident —see Ref. [29] for
a discussion on the Bayesian algorithm—, where the recov-
ered injected value lies outside of the 90% confidence in-
terval. Our method is not confronted with this bottleneck
as the broader posterior encapsulates the injected value.
Fig. [3| illustrates the two representative situations: one



where the Bayesian approach finds the event correctly,
and one where we see that our ML approach covers the in-
jected values while it does not for the classical approach.
Bias in the posterior, similar to the one noted in Ref. [29],
can exist in our method and would not be seen because
of the broad posteriors. However, because we are using
the forward KL divergence, we expect the posteriors to
have some support for the injected values. The origin of
the larger posterior, which is not observed in the single
parameter estimation machine learning-based methods,
is probably due to the increased complexity of the prob-
lem combined with the small residual and CNF network
sizes. One possible avenue is applying importance sam-
pling after the normalizing flow [45] [60]. However, such
methods can be tricky, and additional modifications to
our network could be needed.

Finally, an important advantage of our method is its
speed. After being trained, it can analyze two overlap-
ping BBH signals in about a second, to compare with
O(20days) reported in [29]. While it is difficult to esti-
mate the time gain for other CBC signals, we can expect
the inference time after training not to be significantly
larger than for BBHs. Since computational time is a cru-
cial aspect of studies in the 3G era, ML approaches seem
to be more suited to study realistic scenarios for these
detectors.

CONCLUSIONS AND PERSPECTIVES

In this work, we have presented a proof-of-concept ma-
chine learning-based method to analyze overlapping BBH
signals. We focused on a 2G detector scenario with the
two LIGO, and the Virgo detectors at design sensitivity,
with a lower frequency cutoff of 20Hz. Our approach is
based on continuous normalizing flows.

While also using normalizing flows, as in [4IH45], we
bring extra modifications that seem to help in the in-
ference task. We represent the data through a mixture
of SVD and convolutions, enabling us to sample directly
over the events’ arrival time, retaining the ability to ac-
cess the likelihood of a sample. We also move to contin-
uous conditional normalizing flows, reducing the compu-
tational cost of the method as we need to solve a trace
instead of a determinant when going from one step to the
other in the transformation. Finally, we also use a par-
ticular representation of the angles, projecting them onto
circles (for the phase, the polarization, ...) and spheres
(for the sky location). We believe that these modifica-
tions make our network more flexible, enabling it to deal
with overlapping signals even in a reduced form.

With this simplified setup, we have shown that our ap-
proach is reliable, with posteriors consistent with the in-
jected values. Our method takes about one week to train
on a single GPU. After that, it only takes about a sec-
ond to analyze two overlapped BBHs. While, in reality,

other types of CBC mergers can happen, their inference
after training should not be significantly longer than for
BBHs. We also compared our machine learning method
with classical Bayesian methods for overlapping signals.
While our scheme leads to wider posteriors, it can cor-
rectly recover the injected values, even when the Bayesian
approach gets overconfident and misses the injection. A
possibility to correct for the widened posteriors is to use
importance sampling.

Our method’s combined reliability and speed show that
machine learning is a viable approach to analyzing CBC
mergers in the 3G era. More interestingly, it would even
be possible without needing to account for the develop-
ment of more powerful computational means and could
enable some science-case studies for ET and CE soon.
For example, once trained for all possible BBH systems,
it could help study the BBH mass function in the 3G era.

Still, one should note that extra improvements are
needed before using our method in realistic 3G scenar-
ios. One would first need to change our setup to the 3G
detectors, where a lower frequency cutoff and extreme
SNRs could be encountered. In addition, a wider range
of objects should be accounted for. One should include
higher-order modes and eccentricity as they could play
a crucial role in the 3G era. Other modifications could
also be implemented. Additionally, we need to account
for the change in noise realization from one event to the
other. Some of these steps, like changing the detector
configuration, should be relatively easy. Others are more
complex, as it is hard to perform parameter inference for
long-lasting mergers due to the computational burden.
So, extra developments in parameter estimation using
machine learning would be required to get to the realis-
tic 3G scenario. For overlapping signals, one would also
benefit from developments in the classical study of the
3G scenario, such as how to deal with the noise charac-
terization or the types of other events that could come
into the data.

In the end, there is still work to be done before machine
learning can be used in realistic 3G scenarios. However,
we believe that this work shows it is an interesting avenue
and could be practical on a relatively short time scale.
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