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Anomalous high-harmonic generation (HHG) arises in certain solids when irradiated by an intense
laser field, originating from a Berry-curvature-induced perpendicular anomalous current. The obser-
vation of pure anomalous harmonics is, however, often prohibited by contamination from harmonics
stemming from interband coherences. Here, we fully characterize the anomalous HHG mechanism,
via development of an ab-initio methodology for strong-field laser-solid interaction that allows a
rigorous decomposition of the total current. We identify two unique properties of the anomalous
harmonic yields: an overall yield increase with laser wavelength; and pronounced minima at cer-
tain laser wavelengths and laser intensities around which the spectral phases drastically change.
Such signatures can be exploited to disentangle the anomalous harmonics from competing HHG
mechanisms, and thus pave way for the experimental identification and time-domain control of pure
anomalous harmonics, as well as reconstruction of Berry curvatures.

When a charge carrier in a crystal with a nonvanish-
ing Berry curvature is perturbed by a weak electric field,
it acquires an anomalous perpendicular velocity compo-
nent [1–5] and a corresponding anomalous current. Such
anomalous velocities and Berry curvatures are ubiquitous
in modern physics and are e.g. responsible for various
Hall effects [6, 7]. With the advancements in light-source
technologies [8, 9] and the availability of intense laser
pulses, it is now possible to induce highly nonperturba-
tive anomalous currents that are sources for anomalous
high-harmonic generation (HHG) [10–14]. The broaden-
ing of our understanding of the anomalous current from
the conventional low-energy condensed-matter physics to
the extreme nonperturbative regime [15–18] is of utmost
importance for both fundamental and application pur-
poses.

In the strong-field regime, it is a challenge to extract
detailed information from experiment and theory, given
the multitude of nonperturbative phenomena that are
driven simultaneously in a material. Such a situation
is sketched in Fig. 1, in which a linearly polarized laser
field induces two perpendicular currents: an anomalous
current and an interband current [19]. An open ques-
tion is which of these contributions dominate, a sub-
ject that has been under contention in recent interpreta-
tions of HHG experiments: the measured perpendicular-
polarized harmonics have been attributed entirely to ei-
ther Berry curvatures [10–12, 14] or interband coherences
[20–24]. Similarly, no theoretical studies on the nonper-
turbative anomalous current have fully characterized its
competition with the other generation mechanisms [25–
27]. A theoretical framework that can facilitate the rigor-
ous isolation of the anomalous HHG, and provide signa-
tures and guidelines for their experimental identification
is highly desired.

The generation and identification of pure anomalous
currents and high harmonics are, besides the fundamen-
tal aspects, also relevant for application and spectroscopy
purposes. It is well-known that different generation

mechanisms exhibit distinct characteristics in the spec-
tral and temporal domains, where e.g. distinct sub-cycle
emission features had previously aided experiments in
determining the underlying HHG mechanisms in quartz
as intraband [28, 29], and in ZnO as interband [30, 31].
Determining similar characteristics for anomalous HHG
would aid in the understanding of phase-matching condi-
tions for the development of new light sources [16, 29, 32],
as well as the optical control of electronic currents at
the petahertz rates [28, 33–36]. Additionally, generating
pure anomalous harmonics is a prerequisite for Berry-
curvature high-harmonic spectroscopy [11, 14], which
adds to the already burgeoning field of high-harmonic
spectroscopy [12, 13, 28–31, 37–49].
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FIG. 1. In a crystal, a strong laser field F(t), polarized at
an angle α relative to the mirror axis of a hexagonal crystal,
induces nonperturbative perpendicular currents janom(t) and
jpol(t) that are sources for anomalous and interband HHG.
The insets sketch the underlying generation mechanisms.

In this letter, we characterize the unique properties of
the anomalous HHG current, allowing us to distinguish
it from the other contributions through its intensity-
and wavelength dependence as well as its subcycle emis-
sion dynamics. For this purpose, we develop an ab-
initio methodology for strong-field light-matter interac-
tion that allows a rigorous decomposition of the total cur-
rent into its Bloch-gauge-invariant constituents, without
the explicit need for the construction of a globally smooth
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and periodic Bloch gauge [7, 50–55]. We consider mono-
layer MoS2 as our specific target system for HHG, due
to its potential technological applications [56–58] and the
absence of propagation effects. We identify two main sig-
natures of the anomalous harmonics: (i) a yield increase
with laser wavelength and dominance over the interband
harmonics below a threshold harmonic energy; (ii) char-
acteristic minima in the yield for certain laser wave-
lengths or intensities around which the sub-cycle time
structure drastically changes. We employ a semiclassical
model to extract the underlying physics, whereby sig-
nature (ii) is traced to a π-jump of the harmonic spec-
tral phase. Our results add to the fundamental under-
standing of nonperturbative anomalous currents, provide
a guide towards experimental identification and control
of pure anomalous harmonics, and resolve an open debate
on the origin of perpendicular-polarized high harmonics
in solids [10–12, 14, 20–24].

Our ab-initio methodology starts with the calcula-
tion of the monolayer MoS2 band structure Ek

n and mo-
mentum coupling matrix elements pk

mn, employing den-
sity functional theory [59] with ONCV pseudopotentials
[60, 61] and PBE functionals [62]. Atomic units are
used throughout this work unless indicated otherwise.
The Brillouin zone is sampled with N = 8100 points
in a Monkhorst-Pack mesh. For the dynamics, we solve
the time-dependent equations for the density matrix el-
ements ρkmn(t) in the velocity gauge [53, 55, 63], taking
into account 90 bands. At every 5th step of the time
propagation, we transform into an adiabatic basis [55]
to include a dephasing time T2 = 10 fs, and decompose
the total current into four Bloch-gauge-invariant terms,
j(t) = jtra(t) + jpol(t) + janom(t) + jmix(t), where

jtra(t) = −N−1
∑
nk

p̃k
nn(t)ρ̃knn(t), (1a)

jpol(t) = −N−1∂t
∑

m6=n,k

d̃k
mn(t)ρ̃knm(t), (1b)

janom(t) = −N−1
∑
nk

[
F(t)× Ω̃k

n(t)
]
ρ̃knn(t), (1c)

jmix(t) = −N−1
∑
µ=x,y

Fµ(t)
∑

m6=n,k

[
d̃kµ,mn(t)

]
;k
ρ̃knm(t),

(1d)

with jtra(t) the intraband current, jpol(t) the interband
(polarization) current, janom(t) the anomalous current,
and jmix(t) the mixture current originating in the cou-
pling between the intraband and interband position op-
erators [27, 55, 64, 65]. The tildes in Eq. (1) indi-
cate quantities evaluated in the adiabatic basis. After
calculation of the current decomposition at time t, we
transform back into the Bloch basis and continue with
the time-dependent propagation of ρkmn(t). We evalu-
ate the dipole matrix elements d̃k

mn(t), generalized gra-
dients

[
d̃kµ,mn(t)

]
;k

[65, 66], and Berry curvatures Ω̃k
n(t)

entirely in terms of Ẽk
n(t) and p̃k

mn(t) by using relevant
sum-rules [65–67]. The key advantage of this method-
ology is that it does not require the construction of a
globally smooth and periodic gauge for the Bloch states,
in contrast to previous methods that decompose the cur-
rent [27, 65, 68], but instead requires more bands for
convergence (see Supplemental Material (SM) [63]). The
electric field, F(t) = −∂tA(t), is linearly polarized in the
plane of the monolayer, and the vector potential A(t) has
a total duration of 12 optical cycles and a cos2-envelope.
Since janom(t) ⊥ F(t), we focus our attention on the har-
monic spectra polarized perpendicular to the laser field,
S(ω) = ω2 |j(ω) · ê⊥|2, with j(ω) =

∫∞
−∞ dteiωtj(t). Note

that excitonic effects have been neglected in this work.
Although this is appropriate for the system/regime we
are in according to [15, 63], it is an ongoing effort in
the community to understand excitonic effects on HHG
[69, 70].

We highlight that we do not label the anomalous
current as an intraband contribution: even though
janom(t) in Eq. (1c) does not depend on the time-
dependent coherences, the Berry curvature for the nth
band arises from the residual coupling between the other
bands [6, 63, 67]. In addition, it can be easily shown
that the oft-used expression for the “interband” current
N−1

∑
m 6=n,k p̃k

mn(t)ρ̃knm(t) equals jpol(t) + janom(t) +

jmix(t). In this sense, the experimentally measured per-
pendicular harmonics interpreted as “interband” [20–24]
likely already contains the anomalous contribution, while
in this work interband current refers to jpol(t) of Eq. (1b)
[71]. Considering janom(t) as a stand-alone contribution
to the total current facilitates a link between the weak-
field condensed matter community, where Berry curva-
tures and anomalous velocities are ubiquitous, and the
strong-field community. As we will see, the anomalous
high harmonics exhibit unique characteristics separating
them from other HHG contributions.

Figure 2(a) shows the decomposed perpendicular-
polarized harmonic spectrum for a field with carrier
wavelength 7.4 µm, intensity 50 GW/cm2 and α = 30◦

(α defined in Fig. 1). Only even-order harmonics are ob-
served, with the interband and anomalous contributions
clearly competing: the interband harmonics dominate at
higher orders, even well below the band gap energy at
around harmonic 8 (H8) and H10; while the anomalous
harmonics dominate for the lowest orders at H2-H6. The
intraband and mixture currents contribute with yields
that are order(s) of magnitude lower.

Figures 2(b) and 2(c) show respectively the anoma-
lous and interband HHG spectra versus α. Our results
conform with the dynamical-symmetry selection rules for
HHG [72], where the D3h spatial point group of mono-
layer MoS2 together with the in-plane linearly-polarized
field prohibit the emission of all perpendicular harmonics
at α = n60◦ and odd-order harmonics at α = 30◦+n60◦,
with n an integer [10, 72–74]. The anomalous harmonics
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FIG. 2. Spectra for perpendicular-polarized harmonics in
monolayer MoS2 for a 7.4 µm driver. (a) Different current-
contributions to spectrum for α = 30◦. The (b) anomalous
and (c) interband harmonics versus α. The gray vertical lines
mark the gap energy.

in Fig. 2(b) only permit even orders for all α, since time-
reversal symmetry dictates Ω−km = −Ωk

m which leads to
janom(t + T

2 ) = janom(t), with T the optical period. In
Fig. 2(c), no symmetry rule prohibits the emission of in-
terband harmonics between α = 0◦ and α = 30◦, and
both even and odd orders are observed.
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FIG. 3. Decomposed harmonic yields versus laser wavelength
for α = 30◦. The arrows in (a)-(c) mark pronounced minima
in the anomalous harmonic yield. In each panel, the gray
shaded areas indicate that the harmonic energy is larger than
the band gap. Purple ticks on the wavelength axis mark the
harmonic energy 1 eV.

To further characterize the anomalous HHG mecha-
nism and its competition with the other generation mech-
anisms, we show in Fig. 3 the decomposed harmonic
yields for H2-H12 versus laser wavelength, fixing the
laser intensity at 50 GW/cm2 and α = 30◦. We focus
on the anomalous and interband contributions, which

are seen to dominate over the intraband and mixture
contributions for almost all wavelengths. At shorter
laser wavelengths, in the gray shaded regions of Fig. 3
where the harmonic energy is greater than the gap en-
ergy of 1.79 eV, the interband yield dominates over the
anomalous yield for all harmonic orders. With increas-
ing wavelength, the anomalous harmonic yield overall in-
creases, and begins to dominate over the interband yield
at around a harmonic energy of Eh = 1 eV (marked
by purple ticks on the wavelength axis). At the longest
wavelength in the figure, 19 µm, the anomalous harmon-
ics dominate completely – e.g. the anomalous H6 yield
at 19 µm is around 3 orders of magnitudes greater than
the interband yield. We judge the transition energy Eh
to be material dependent and governed by the particu-
lar band structure and coupling matrix elements of the
system, but nonetheless expect it to be generally smaller
than the gap energy, as above-band-gap harmonics gener-
ally proceeds via interband coherences [71, 75]. Figure 3
clears up the recent contention on the origin of the per-
pendicular harmonics in MoS2 in terms of either anoma-
lous [10, 76, 77] or interband harmonics [21–24, 76, 77]:
these two harmonic contributions dominate in different
laser-parameter and harmonic-energy regimes.

In Figs. 3(a)-3(c), the anomalous harmonic yield for
H2, H4 and H6 exhibit prominent minima marked by
blue arrows at 12.5 µm, 9 µm and 15.2 µm, respectively.
We performed additional HHG simulations using a fixed
laser wavelength of 7.4 µm and varying laser intensities,
and observed similar pronounced minima at specific in-
tensities (see SM [63]). These minima represent a striking
characteristic of the anomalous harmonics, which we now
characterize employing a semiclassical model.
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FIG. 4. Berry-curvatures: calculated from first princi-
ples (solid line); reconstructed from the HHG spectrum in
Fig. 2(b) (color plot), with the gray lines marking the excur-
sion regions of electrons and holes created at K and K′. (b)
Semiclassical numerical and analytical results (see text) for
the anomalous H4 and H6 yields versus wavelength.

We write the semiclassical anomalous current as
jSC(t) ∝ −F(t)× [∆ΩK+A(t) + ∆ΩK′+A(t)], in which we
assume that the electrons tunnel at the minimum band
gaps at K and K′ [10, 78], and adopt a two-band approx-
imation, such that ∆Ωk is the Berry curvature difference
between the lowest CB and the highest VB, representing
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the total contribution from the electron and hole. The
solid line in Fig. 4(a) shows the z-component of ∆Ωk

along K ′-Γ-K. The calculated semiclassical yields, using
the same laser fields as in the ab-initio calculations of
Fig. 3, are plotted in Fig. 4(b) for H4 and H6 in solid lines.
Clear minima are observed, with the most pronounced
minimum seen at ∼9 µm for H4 and at ∼15.7 µm for H6,
consistent with our ab-initio results in Fig. 3. To gain fur-
ther insight, we assume a monochromatic vector poten-
tial A(t) = F0/ω0 sin(ω0t)ê, which leads to the analytical
expression for the current, jSC(t) ∝

∑∞
s=1 C2s sin(2sω0t),

with

C2s =
sω0

a

∞∑
q=1

Ωq
q

cos

(
2qπ

3

)
J2s

(
qaF0

2ω0

)
(2)

the amplitudes, Ωq the Fourier coefficients of ∆Ωk
z , J2s

the (2s)th-order Bessel function, and a the lattice con-
stant. The yield versus wavelength for the (2s)th anoma-

lous harmonic, S2s ∝ s2ω2
0 |C2s|2, is plotted in Fig. 4(b)

for 2s = 4 and 2s = 6 in dashed lines. The pronounced
minima marked by the arrows hence correspond to nodes
of C2s seen as a function of wavelength. We see that the
expression for C2s in Eq. (2) involves both the nonlin-
earities of the Bessel functions and the Berry curvature
Fourier coefficients Ωq. We have checked that the q-sum
in Eq. (2) is not dominated by a single term, but rather
a superposition of terms. In addition, the pronounced
minima in the yield-versus-laser-intensity plots from the
ab-initio calculations are also explained in terms of the
nodes of C2s (considered as a function of the laser inten-
sity) [63]. The nodes in C2s is another characterization
tool for the anomalous harmonics, as the presence of such
minima in a wavelength or intensity scan is an indication
of the dominance of the anomalous HHG mechanism.
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FIG. 5. Time-frequency emission profiles for the anomalous
harmonics extracted from the ab-initio simulations for laser
wavelength (a) 7.6 µm and (b) 10 µm. The colorbar axis is in
linear scale and arbitrary units, and the dashed vertical line
is to guide the eyes. (c) Spectral phases for the anomalous H4
and H6 extracted from the simulations, with the wavelengths
used in (a) and (b) marked by vertical lines.

Finally, we consider the emission-time profiles and the
spectral phases of the solid-state harmonics, which en-

code pertinent information about the underlying har-
monic emission mechanisms [28–31]. In Figs. 5(a) and
5(b), we show the time-frequency profiles for the anoma-
lous harmonic emissions obtained from the ab-initio cal-
culations, at laser wavelengths corresponding to before
and after the H4 minimum at λmin ≡ 9 µm [Fig. 3(b)],
respectively. For the 7.6 µm case in Fig. 5(a), the spec-
tral yields around H6 is emitted at t = T/2, correspond-
ing to the electric field extrema, while H4 is emitted at
t = (n + 1

2 )T/2 at the zeros of the field. For the longer
laser wavelength 10 µm > λmin in Fig. 5(b), the emission
time of H4 and H6 are shifted by a quarter optical cycle.

These shifts of the anomalous harmonic emission times
can be understood in terms of the semiclassical analyti-
cal model for the anomalous current. As we have seen,
the yield minima of the (2s)th harmonic is explained by
the nodes of C2s. When going through such a node, the
real-valued amplitude C2s changes sign, corresponding to
a π-phase shift, which in turn will change the emission-
time profiles. We confirm our interpretation by extract-
ing the spectral phases of the anomalous harmonics from
our ab-initio simulations, ϕanom(ω) = arg[janom(ω) · ê⊥],
and present the results in Fig. 5(c). The spectral phases
for H4 and H6 for the laser wavelength range 3 µm to
9 µm are in-phase with value −π/2. A sharp π-phase
shift occurs for H4 at the wavelength of the yield mini-
mum ∼ 9 µm, such that H4 and H6 becomes out-of-phase
from 10 µm to 16 µm. This change of the spectral phase
from being in-phase to out-of-phase explains the time-
shift of the emissions in Figs. 5(a) and 5(b). At ∼ 16
µm, the wavelength corresponding to the yield minimum
of H6 in Fig. 3(c), the spectral phase of H6 shifts by π.
Additional calculations confirm that the phase-shift of
the anomalous HHG also occurs around the minima of a
laser-intensity scan [63], again validating the robustness
of our ab-initio results and our semiclassical interpreta-
tions. In addition to the emission-time shifts and the
sharp spectral-phase shifts being unique characteristics
of the anomalous HHG mechanism, they also suggest the
potential control of anomalous harmonics by taking ad-
vantage of the sign change around the nodes of Cs.

To conclude, we have characterized the anomalous
HHG mechanism in MoS2, by development of an ab-
initio methodology that is able to decompose the dif-
ferent contributions to the nonperturbative microscopic
current. We have identified different laser-parameter
regimes wherein either anomalous or interband currents
dominate, thereby resolving a recent debate on the origin
of the perpendicular-polarized harmonics in terms of ei-
ther the anomalous current [10–12, 14] or the interband
current [20–24]. We uncovered distinct yield minima
at certain field parameters, around which the subcycle
emission-time profiles drastically change. Our findings
open up the possibility for the experimental generation,
identification and time-domain control of pure nonper-
turbative anomalous currents and high harmonics, which
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in turn will be invaluable for high-harmonic spectroscopy
of Berry curvatures [10, 11, 14], as such schemes require
the generation of pure anomalous harmonics. To provide
a direct example, we show in Fig. 4(a) the reconstructed
∆Ωk

z , employing the harmonic spectrum from Fig. 2(b)
in our retrieval algorithm (see SM [63]). Our work thus
provides a future recipe for the experimental retrieval of
Berry curvatures using HHG: (1) identify the anomalous
harmonics utilizing their characteristics discussed in this
work; (2) use a reliable retrieval algorithm for reconstruc-
tion.

We expect our findings to be general and directly appli-
cable to other materials that have finite Berry curvatures.
Indeed, neither the anomalous nor the perpendicular in-
terband harmonics are prohibited by symmetry, and will
generally be competing. The presence of minima in the
anomalous harmonic yields are also of a general nature,
since the amplitudes in Eq. (2) for varying field param-
eters generally take on both positive and negative val-
ues due to the Bessel functions. Finally, all our findings
are facilitated by the development of an general ab-initio
methodology that allows the rigorous decomposition of
the currents without the construction of a globally peri-
odic Bloch gauge, which can directly be applied to other
complex systems. We expect our approach to be espe-
cially useful for ab-initio simulations of strong-field inter-
actions in topological insulators such as Chern insulators,
where a nonzero Chern number prevents the construction
of a globally smooth and periodic Bloch gauge [51, 79].
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A. Rubio, “Impact of the electronic band structure in
high-harmonic generation spectra of solids,” Phys. Rev.
Lett. 118, 087403 (2017).

[46] R. E. F. Silva, I. V. Blinov, A. N. Rubtsov, O. Smirnova,
and M. Ivanov, “High-harmonic spectroscopy of ultrafast
many-body dynamics in strongly correlated systems,”
Nat. Photonics 12, 266–270 (2018).

[47] T. Hansen, S. V. B. Jensen, and L. B. Madsen, “Cor-
relation effects in high-order harmonic generation from
finite systems,” Phys. Rev. A 105, 053118 (2022).

[48] O. Neufeld, N. Tancogne-Dejean, U. De Giovannini,
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