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Magnetic frustrations and dimensionality play an important role in determining the nature of
the magnetic long-range order and how it melts at temperatures above the ordering transition T'x.
In this work, we use large-scale Monte Carlo simulations to study these phenomena in a class of
frustrated Ising spin models in two spatial dimensions. We find that the melting of the magnetic
long-range order into an isotropic gas-like paramagnet proceeds via an intermediate stage where the
classical spins remain anisotropically correlated. This correlated paramagnet exists in a temperature
range Ty < T < T™, whose width increases as magnetic frustrations grow. This intermediate phase
is typically characterized by short-range correlations, however the two-dimensional nature of the
model allows for an additional exotic feature — formation of an incommensurate liquid-like phase
with algebraically decaying spin correlations. The two-stage melting of magnetic order is generic
and pertinent to many frustrated quasi-2D magnets with large (essentially classical) spins.

The formation of long-range magnetic order (LRO)
upon cooling from a disordered paramagnetic (PM) phase
is akin to a gas-to-solid transition. The “solid” phase is
characterized by a spontaneously broken symmetry with
long-range order in the spin-spin correlations. Studies of
geometric frustrations and their effect on this transition
have a long history — it is well established that frustra-
tions suppress the Néel transition temperature Ty rela-
tive the Curie-Weiss temperature, which is often quanti-
fied by the Ramirez frustration ratio n = Tow /Ty [1]. In
some highly frustrated lattices, such as the corner-sharing
tetrahedra in pyroclore magnets [2] or corner-sharing tri-
angles in kagomé compounds [3, 4], T is suppressed to
zero, with the formation of a (classical [5] or quantum [6])
spin liquid and associated order-by-disorder lifting of the
extensive ground state degeneracy [7]. However, highly
frustrated geometries are not the only way to suppress
LRO. Instead, one may consider seemingly simple bi-
partite lattices, such as the square or cubic lattice sys-
tems with competing spin interactions between the near-
est and farther neighbors (a paradigmatic J; — Js model
on a square lattice is one such example [8]). Apart from
suppressing the Néel temperature, do such interaction-
induced frustrations affect the process of “melting” of the
LRO when the ground state is not extensively degener-
ate? Furthermore, what is the role of the dimensionality
of the magnetic system — which can be controlled in prin-
ciple by tuning the degree of anisotropy of the exchange
interactions along the different crystal directions — on the
strength of thermal fluctuations?

In this Letter, we perform Monte Carlo simulations to
study a classical magnet with anisotropic interactions to
elucidate the effect of both the anisotropy and magnetic
frustrations on the process by which the magnetically or-
dered “solid” melts. Our key finding is that this melting
proceeds via an intermediate stage in a range of temper-
atures above the Néel ordering temperature T, where
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Figure 1. Suppression of Tx with the addition of frustrating
interactions. (a) Diagram of interactions in the 2D ANNNI
model. (b) Comparison of T from Weiss molecular field
theory (dashed line), the Onsager solution (J.2 = 0, solid
black line), and the 2D ANNNI model with J.2 = 0.2J.1 (red
line) and J.2 = 0.4J.1 (blue line).

the correlations between the spins remain significant and
retain the ‘knowledge’ of the anisotropy present in the
Hamiltonian. This intermediate correlated paramagnet
(CPM) eventually undergoes a crossover into a more con-
ventional paramagnet at a temperature 7" > T, above
which the correlation length is of the order of the lat-
tice constant and the anisotropy is lost. We find that
the dynamic temperature range of this CPM (T — Ty)
grows with increasing frustrations, and that the CPM
occupies a significant portion of the phase diagram even
as T is suppressed to zero by frustrations. These clas-
sical results are relevant to many experimental systems
(both itinerant and insulating magnets) with large mag-
netic moments that can be treated as classical, where
the evidence of the crossover scale T and the anisotropic
CPM has accumulated, for instance in Eu-based helimag-
nets [9-12], some heavy fermion compounds with helical
order [13-15], in layered ferromagnets [16], and at a field-
tuned quantum critical point in CeColns [17-19].

Model — The three-dimensional (3D) anisotropic next-



nearest neighbor Ising (ANNNI) model, with ferromag-
netic interactions in the plane and competing interactions
along the c-axis of hexagonal crystal, was first proposed
by Elliot [20] to explain complex helicoidal orders and
their temperature evolution in the rare-earth magnets.
As we show in this Letter, this uniaxial frustration plays
a pivotal role in how this anisotropic magnet ‘melts’.
We consider as our starting point the 2D ANNNI model
(Fig. la):

H =Y [Jo0i0its + J10i0ips + Joaoioiraz] . (1)

K2

The variables o; € {—1,1} are classical Ising spins,
with ferromagnetic coupling along x direction Jy < 0,
and competing antiferromagnetic interactions along z:
0 < J.2 < J.1. The reason for our considering a 2D ver-
sion of the model is both because of its simplicity, and
because it evades the entropy-induced multitude of in-
commensurate phases (“devil’s staircase”) experimen-
tally found in CeSb [21] and specific to the 3D ANNNI
model at finite temperatures [22-29].

First, we consider anisotropy in the absence of frus-
tration, in this case with J,o = 0. The Weiss molecular
field approach [30] predicts an ordered phase of ferro-
magnetic chains that are stacked antiferromagnetically
in the z-direction, occuring below a mean-field critical
temperature given by kpTar = 2(|Jo| + |J21]) (Fig. 1b,
dashed line). The thermal fluctuations alter this behavior
considerably, as famously shown by Onsager [31], result-
ing notably in the much lower transition temperature Ty
than predicted by Weiss molecular-field theory, namely
given by the following equation (with 8. = (kgTn)™1):

sinh(28.|Jo|) sinh(28.]J.1]) = 1. 2)

The resulting critical temperature is shown in Fig. 1b
(solid black line) as a function of the anisotropy J,1/Jo.
Notably, as a result of thermal fluctuations, Ty — 0
in the one-dimensional (1D) limit of J,; — 0. This ef-
fect bears a striking resemblance to the suppression of
T'n in the quantum Heisenberg model in two dimensions,
which is itself a consequence of the Mermin-Wagner the-
orem [32]. The existence and proximity of a lower critical
dimension in both the quantum and classical cases is im-
portant for emergence of the anisotropic CPM phase.

Geometric Frustrations and anisotropic CPM — With the
addition of geometric frustration in the form of an anti-
ferromagnetic coupling between second-neighbour layers
0 < J.o < J.1/2, the mean-field energy scale kpThr =
2(|Jo| + J.1 — J.2) is lowered slightly, whereas the true
transition temperature is further suppressed by frustra-
tions as shown in Fig. 1b (red and blue lines).

Results for the frustrated 2D ANNNI model were com-
puted using classical Monte Carlo simulation with con-
ventional Metropolis updates, as well as cluster updates,

and parallel tempering [34]. By analyzing the spin-spin
correlation functions in our Monte Carlo simulations

C(r) = (o(0)a(r)) ~ f(r) cos(qz). 3)
we extract the correlation lengths &, and &, from the
spatial decay of f(r) ~ r~'/2exp(—+/(x/c)2 + 22/¢.),
where ¢ = £, /&, > 1 due to anisotropy. Here the factor
r~1/2 arises in accordance with the canonical Ornstein-
Zernike form for correlations in two dimensions [45]. The
data presented below are the results of fits to the func-
tional form Eq. 3, on finite systems with L, = L, = 64.
Because the correlations in the CPM phase are much
shorter than the finite system size (§, < L,,&, < L),
finite-size effects will only modify quantitative features
such as the precise value of Ty, leaving our primary
results unchanged. Data for additional system sizes
L € {32,48,56,64,96,128} as well as extended aspect
ratio L, = 2L, is presented in the Supplementary Mate-
rial [34].

As expected, we find that the correlation lengths di-

verge below Ty but are finite and anisotropic above the
transition as shown in Fig. 2b. This resembles the sit-
uation in a classical liquid, which has a short-range or-
der (SRO) but no long-range order. However unlike in a
classical liquid, spin correlations retain the “memory” of
the anisotropy J,1/Jo < 1, with the resulting correlation
length being much shorter in the z-direction &, < &, as
shown in Fig. 2b. One can picture this anisotropic corre-
lated paramagnet (CPM) as consisting of oblong droplets
of size &, x &, with the spins correlated within the droplet
but not between them (see the insets in Fig. 2a for Monte
Carlo snapshots). As the temperature increases, these
oblong droplets shrink until eventually their large axis
(&2) becomes comparable to the lattice spacing — at that
temperature, which we denote by T, a crossover into a
conventional paramagnet occurs, with very short-ranged
correlations in both directions. While magnetic frus-
trations suppress Tx, the dynamic temperature range
Ty < T < T* where the anisotropic CPM exists grows
with increased frustrations, as shown by the color scale in
Fig. 2c. This range becomes especially pronounced when
frustration is largest near J.o/J,1 = 1/2.
Floating ‘liquid’ phase — The evolution of a CPM into
a paramagnet at T™* is a crossover rather than a true
phase transition in the regime J,2/J.1 < 1/2 where the
spin correlations remain commensurate with the lattice
(g = @1 = 7 in Eq. (3)). Upon further increase of J.o,
the correlations in the high-temperature paramagnet be-
come incommensurate, with the value of 7/2 < ¢ < 7
shown by color in Fig. 3(a). Surprisingly, in this regime
the correlated paramagnet acquires a very different char-
acter, with spin correlations that decay algebraically
while oscillating with an incommensurate wavevector
qg=7m/2+ Ag:

Chioat (1) ~ Tincos(qz), (4)
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Figure 2.

Schematic diagram (a) demonstrating the concept of anisotropic melting in a 2D Ising system with spatially

anisotropic interactions , 0 < J.1 < |Jo|. Insets in (a) are bitmap images of microstates from a Monte Carlo simulation. (b)
The correlation lengths &, and &, fit from the Onsager solution [31, 33] for J.1 = 0.1|Jo|, with &, growing below T while £,
remains negligible. (c) Contour plot of &, in the 2D ANNNI model for J.1 = |Jo|. The T scale, defined here as the temperature
below which &, grows larger than 3 lattice sites, is most suppressed when approaching the frustration point J.2/J.1 = 0.5.

shown by the green triangles in Fig. 3(b). It is historically
called a “floating” phase, to do with the appearance of a
similar phenomenon in the physics of an incommensurate
adsorbent on top of a crystalline substrate [47-49]. The
physical picture is that above Ty, the domain walls pro-
liferate along the z-direction, destroying the true long-
range order and resulting in the incommensurability of
the floating phase. The appearance of such a phase in
the 2D ANNNI model was originally indicated by mean-
field and non-interacting approximations [27, 50].

Our analysis shows that the floating phase is separated
from the ordered commensurate phase with Qo = (0, %)
(sometimes called the double-column antiferromagnet,
DCAF) by a true phase transition at T, at which the de-
gree of incommensurability of the floating phase vanishes
as a power-law: ¢ — Q2 = Ag ~ (T — Ty)? (see Fig. 3c-
d). This transition, first investigated by Pokrovskii &
Talapov [51], is expected to have = 1/2 in 2D, which is

verified by the data collapse of Aq ~ (¢)® for different
T—Ty(J:2)

values of J,2 as shown in Fig. 3(d), where t = T lUa)

At the upper boundary Tq (dashed line in Fig. 3a),
the floating phase is separated from the disordered para-
magnet (with exponentially decaying correlations, shown
by yellow cirles in Fig. 3b) by a Berezinskii-Kosterlitz—
Thouless (BKT) transition [27, 52-57]. Algebraic corre-
lations are typically seen only at a critical point, whereas
here they are a signature of a phase of matter in the
extended temperature range Ty < T < Tj, with the ex-
ponent 0 < 1 < 1/4 varying smoothly as a function of
temperature. We determine Tj as the position where the
correlation function fits match the BKT critical expo-
nent 7 = 0.25 (see SM [34] for fit data and discussion of
finite-size effects). Earlier studies showed that the float-
ing phase boundary Tq may coincide with T [52, 53].
However, in agreement with more recent studies using
complimentary methods [55-57], our results indicate a
finite range of algebraic correlations with 0 < 1 < 0.25

smoothly varying for multiple system sizes [34].

Lifshitz transition — As the above analysis and Fig. 3(a)
illustrates, the wavevector q characterizing the spatial
dependence of the spin correlation function can change
as a function of temperature. More generally, q = (0, q)
also changes as a function of the ratio J.2/J,1, as shown
in Fig. 3(c), from the commensurate q = Q; = (0,7) in
the low-frustrated region (yellow in Fig. 3a), to incom-
mensurate at higher frustration. This is known as the
Lifshitz transition (a misnomer, as it is a crossover in the
thermodynamic sense), characterized by the appearance
of the double-peak structure in the spin-structure factor
S(q), as shown in the inset of Fig. 4. Upon crossing the
Lifshitz transition, shown schematically by a dashed grey
line in Fig. 4, the wavevector changes continuously away
from q = Q; and at high temperatures q approaches
fixed incommensurate values that depend on J.2/J.;.
The Lifshitz line T, can be clearly seen in our Monte
Carlo simulations as the line of color gradient separating
the yellow region from green/blue in Fig. 3(a). At least
in the ANNNI model studied here (and perhaps more
generally), the Lifshitz line merges with the boundary of
the LRO1 phase upon approaching the maximally frus-
trated region near J,o = 0.5. In addition to the Lifshitz
transition, the onset of incommensurate short-range cor-
relations also manifests itself in the real space in a subtle
way, via the so-called “disorder transition” [58, 59], dis-
cussed in the SM [34].

Discussion — The present work indicates that a generic
temperature-frustration phase diagram looks schemati-
cally as depicted in Figure 4: the two commensurate or-
ders, LRO1 and LRO2 form at the lowest temperatures,
characterized by the different (commensurate) ordering
wavevectors q = Qi and Qo, respectively. The melt-
ing of these magnetic crystals occurs via an intermediate,
generically anisotropic correlated paramagnet, which can
be commensurate or incommensurate depending on the
strength of frustration in the interactions. Note that the
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Figure 3. False color plot (a) indicating the evolution of

q. By definition, the Fourier-space correlations c (@) =
>, e "i(o(0)o(ri)) are peaked at a wavevector g = (0, q).
Insets in panel (a) illustrate the low-temperature ordered
phases. The star on the vertical axis indicates Tn for the
nearest-neighbor Ising model [31, 46]. (b) Monte Carlo data
and analytical fits to the spin correlation function. The ver-
tical dotted line indicates the magnetic period in the DCAF
phase. (¢) Evolution of ¢ at fixed temperatures as a function
of J.2/J.1. The insets (c) depict the single- and double-peak
structure of the Fourier-space correlations in the CAF and
DCAF phases, respectively. (d) Data collapse of Ag = At"-®
(where A is a proportionality constant depending on J.2), in-
dicating a second-order phase transition into the DCAF phase
at critical temperature Ty with critical exponent g = 0.5.

CPM regime identified in the present 2D model corre-
sponds to the “devil’s staircase” part of the phase di-
agram in the originally studied 3D version of ANNNI
model [22-29]. Tt is reasonable to conclude that the re-
duced dimensionality amplifies the role of thermal fluc-
tuations, thus destroying the staircase’s long-range order
in favour of the short-range CPM.

In addition to the study of the CPM, we have con-
firmed the existence of the floating phase by observ-
ing, in order of decreasing temperature, the divergence
of the correlation length at Th, an extended tempera-
ture range Ty < T < Tg of algebraic correlations with
a continuously-varying power law, followed by the crit-
ical scaling of Aq at T (Fig. 3d) (See Supplemental
Material [34] for additional data). The appearance of
this quasi-LRO floating phase in the ANNNI model can
be understood as an attempt of a system to form an
incommensurate long-range order: true LRO with in-
commensurate q is forbidden by classical fluctuations in
2D [27]. There are many layered magnets with Ising
anisotropy whose spin correlations can be well approx-
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Figure 4. Schematic phase diagram of a frustrated magnet
with two competing orders. The insets depict the spin corre-
lation function C(gq), proportional to the static spin structure
factor measured in neutron scattering. The Quasi-LRO phase
with algebraic correlations is specific to the 2D ANNNI model
but the other features should apply to generic magnets with
frustration and anisotropic interactions.

imated to be 2D-like, and the phenomenon of a floating
phase — first discussed in statistical mechanics of surface
adsorbates [47-49] — ought perhaps to be revisited exper-
imentally.

While the specific model discussed in this work has
Ising anisotropy, the appearance of the anisotropic cor-
related paramagnet above T and below some crossover
scale T* (shown schematically by a green line in Fig. 4)
is more general. Indeed, it appears ubiquitous in many
classical as well as quantum magnets, at elevated tem-
peratures where thermal fluctuations dominate. The ap-
pearance of such a CPM phase is often revealed by a
slow recovery of the full magnetic entropy at the tem-
peratures notably higher than the long range ordering at
T, such as found in e.g. Eu-based helimagnets [9-11],
helimagnetic CeRhIn; and related heavy fermion com-
pounds [13-15]. The anisotropy of this CPM phase can
be directly seen in layered ferromagnets such as Crls and
CrSiTes by various means — neutron scattering [60] and
optical polarimetry [61]. Crucially, we found that the dy-
namical temperature range AT = (T* — Ty ) where the
CPM is realized becomes broader with increased frustra-
tion (towards the middle of horizontal axis in Fig. 4).
Indeed, it is in this regime that frustrations can result in
a disordered classical spin liquid state, of which classical
spin-ices such as HosTisO7 and DysTisO7 are famous
examples [62]. For quantum magnets, which are beyond
the scope of the present work, the interplay of quantum
and thermal fluctuations adds to the complexity of the
correlated quantum paramagnet phase, which deserves
future investigations.
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