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From an open system perspective non-Markovian effects due to a nearby bath or neighbouring
qubits are dynamically equivalent. However, there is a conceptual distinction to account for: neigh-
bouring qubits may be controlled. We combine recent advances in non-Markovian quantum process
tomography with the framework of classical shadows to characterise spatiotemporal quantum cor-
relations. Observables here constitute operations applied to the system, where the free operation
is the maximally depolarising channel. Using this as a causal break, we systematically erase causal
pathways to narrow down the progenitors of temporal correlations. We show that one application
of this is to filter out the effects of crosstalk and probe only non-Markovianity from an inaccessible
bath. It also provides a lens on spatiotemporally spreading correlated noise throughout a lattice
from common environments. We demonstrate both examples on synthetic data. Owing to the scal-
ing of classical shadows, we can erase arbitrarily many neighbouring qubits at no extra cost. Our
procedure is thus efficient and amenable to systems even with all-to-all interactions.

INTRODUCTION

In the race to fault tolerant quantum computing, mag-
nified sensitivity to complex dynamics in open quan-
tum systems requires increasingly tailored characterisa-
tion and spectroscopic techniques [1–8]. Correlated dy-
namics are one particularly pernicious class of noise, and
can be generated from a variety of sources, including
inhomogeneous magnetic fields, coherent bath defects,
and nearby qubits, see Figure 1a [9, 10]. Concerningly,
these effects are often omitted from quantum error cor-
rection noise models despite being ubiquitous in noisy
intermediate-scale quantum (NISQ) hardware [5, 6, 11–
14].

Temporal – or non-Markovian – correlations are el-
ements of error that are correlated between different
points in time, as mediated by interactions with an exter-
nal system [6, 15]. A process is said to be non-Markovian
if the total dynamics do not factorise into a product of
dynamical maps [16], a stronger condition than the well-
known completely-positive divisibility of dynamics [17].
The specific mediator of these effects is both conceptually
and experimentally relevant device information. Is it con-
trollable, or is it part of the inaccessible bath? Relatedly,
if the dynamics of two nearby qubits do not spatially fac-
torise, this is known as crosstalk. If one qubit is traced
out, then entangling crosstalk – such as the always-on
ZZ interactions in transmon qubits [18] – can generate
temporal correlations for the second qubit. Whether the
dynamics look non-Markovian depends on whether it is
feasible or not to dilate the characterisation to multiple
qubits and account for the variables responsible for these
correlations. Typically, it is not. Since crosstalk and
bath non-Markovianity can easily be conflated, it is cru-
cial to find robust methods that can not only account for
their behaviour, but distinguish them.
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FIG. 1. System of interacting qubits and an inaccessible non-
Markovian environment (E). a A target qubit qn may interact
via crosstalk mechanisms with other qubits, {q1, q2, q3, · · · },
in a quantum device, as well as defects in the bath and fluc-
tuating classical fields B + δB. b The non-Markovian corre-
lations for that system may be separated into different causal
pathways by which the correlations are mediated. Causal
breaks (depicted in grey) erase any temporal correlations from
a given pathway, allowing one to infer the various contribu-
tions to total non-Markovianity from nearby qubits and envi-
ronment.

In this Letter, we establish a systematic, concrete, and
efficient approach to the two pragmatic questions: (1)
if non-Markovian dynamics are detected across different
timescales for a qubit, do they come from neighbouring
qubits or a nearby bath? And (2) how can we determine
when two qubits are coupled to a shared bath generat-
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ing common cause non-Markovian effects. The solutions
here have highly practical implications. Namely, whether
curbing the correlated effects is achievable through con-
trol or fabrication methods [19, 20]. Process tensor to-
mography (PTT) is a recently developed generalisation
to quantum process tomography, and can guarantee an
answer to these questions and more, but the number of
experiments required grows as O(d2kn+N ) to find corre-
lations across k steps over N qudits [6].

The basic premise of our work is to apply the method
of classical shadows [21] to PTT, resolving these prob-
lems. The classical shadow philosophy implements ran-
domised single-shot measurements to learn properties of
a state, granting access to an exponentially larger pool of
observables at fixed locality. Employing this, instead of
reconstructing the whole multi-time process for an entire
quantum register, we can estimate and analyse each of
the fixed-weight process marginals. Marginalising over
a measurement is equivalent to measuring and throwing
the outcome away. To marginalise over a process input is
equivalent to inputting a maximally mixed state. Hence,
these are maximal depolarising channels at no extra cost,
which act as causal breaks on controllable systems.

When suitably placed, these operations eliminate tem-
poral correlations as mediated on the chosen Hilbert
spaces, thus allowing non-Markovian sources to be
causally tested. We illustrate this idea in Figure 1b. The
end result is the simultaneous determination of the bath-
mediated non-Markovianity on all qubits. Our approach
hence only depends on the individual system size (in this
work, qubits), and is a physics-independent way for us to
test the relevant hypotheses. We are also able to simulta-
neously compute all spacetime marginals, extending the
randomised measurement toolkit to the spatiotemporal
domain [22].

SPATIOTEMPORAL CLASSICAL SHADOWS

By virtue of the state-process equivalence for multi-
time processes [15, 23–25], quantum operations on dif-
ferent parts of a system at different times constitute ob-
servables on a many-body quantum state. This allows
state-of-the-art characterisation techniques to be applied
to quantum stochastic processes. Classical shadow to-
mography [21, 22] is one such technique, and already
has many generalisations and applications [26–29]. Mea-
suring classical shadows allows for exponentially greater
observables to be determined about a state, provided
sufficiently low weight. But this restriction means the
technique has limitations for the study of temporal cor-
relations (which are high weight) in contrast to spatial
ones, as discussed in Ref. [12]. Our work expands on this
to the multi-qubit-multi-time case, and identifies other
desirable applications of classical shadows to multi-time
processes.

Definitions and Notation.– Consider a quantum device
with a register of qudits Q := {q1, q2, · · · , qN} across a
series of times Tk := {t0, t1, · · · , tk}. We take the whole

quantum device to define the system: HS :=
⊗N

j=1Hqj .
The device interacts with an external, inaccessible envi-
ronment whose space we denote HE . The k-step open
process is driven by a sequence Ak−1:0 of control op-
erations on the whole register, each represented mathe-
matically by completely positive (CP) maps: Ak−1:0 :=
{A0,A1, · · · ,Ak−1}, after which one obtains a final state
ρSk (Ak−1:0) conditioned on this choice of interventions.
Note that where we label an object with time informa-
tion only, that object is assumed to concern the entire
register. These controlled dynamics have the form:

ρSk (Ak−1:0) = TrE [Uk:k−1Ak−1 · · · U1:0A0(ρSE0 )], (1)

where Uk:k−1(·) = uk:k−1(·)u†k:k−1. Now let the Choi
representations of each Aj be denoted by a caret, i.e.

Âj = Aj⊗I[|Φ+〉〈Φ+|] =
∑
nmAj [|n〉〈m|]⊗|n〉〈m|. Then,

the driven process in Equation (1) for arbitrary Ak−1:0

uniquely defines a multi-linear mapping across the regis-
ter Q – called a process tensor, Υk:0 – via a generalised
Born rule [15, 24]:

pSk (Ak−1:0) = Tr

[
Υk:0

(
Πk ⊗ Âk−1 ⊗ · · · Â0

)T
]
, (2)

At each time tj , the process has an output index oj
(which is measured), and input index ij+1 (which feeds
back into the process). The details of process tensors can
be found in the appendix, but are not crucial to under-
standing this work. The two important properties that
we stress are: (i) a sequence of operations constitutes an
observable on the process tensor via Equation (2), gen-
erating the connection to classical shadows, and (ii) a
process tensor forms a collection of possibly correlated
completely positive, trace-preserving (CPTP) maps, and
hence may be marginalised in both time and space to
yield the jth CPTP map describing the dynamics of the

ith qubit Ê(qi)
j:j−1. A process is said to be Markovian if and

only if its process tensor is a product state across time.
The measure of non-Markovianity we use throughout this
work is that described in Ref. [16]. Specifically, it is the
relative entropy S[ρ‖σ] = Tr [ρ(log ρ− log σ)] between a
process tensor Υk:0 and its closest Markov description,
the product of its marginals:

Υ
(Markov)
k:0 = Êk:k−1 ⊗ · · · ⊗ Ê1:0 ⊗ ρ0. (3)

We denote this generalised quantum mutual information
(QMI) for a given process by N (Υk:0). Classical shadow
tomography provides access to a small number of low
weight observables, with 〈I〉 on the remainder of the sub-
systems. The case where 〈Iij+1

Ioj
〉 is evaluated is equiv-

alent to selecting an Âj = Iij+1 ⊗ Ioj ≡ Iij+1oj . This is
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FIG. 2. Circuit diagram of our proposed procedure. Spa-
tiotemporal classical shadows can be obtained by applying
random Clifford operations to each qubit, projectively mea-
suring, resetting, and then a random Clifford preparation.
By repeating these instruments across the circuit with chosen
wait times, the appropriate shadow post-processing may be
used to determine spatiotemporal marginals of the process.
Each oj signifies an index where the state of the system is
read out at time tj , and each ij+1 signifies the preparation of
a new state, also at time tj .

the Choi state of the maximal depolarising channel, up
to normalisation. When marginalising across all but a
handful of times or qubits, we will denote the remaining
steps or registers by commas, i.e.

Ê(qi0 ,qi1 )
j0:j0−1,j1:j1−1 :=Tr{qi0 ,qi1},{tj0 ,tj0−1,tj1 ,tj1−1}[Υk:0];

Υ
(qi)
k:0 = Trqi [Υk:0],

(4)

where the overlines denote complement, i.e. every qubit
except qi : Q\{qi}, or every time except tj : Tk\{tj}.

When non-Markovian correlations persist as medi-
ated by the inaccessible bath, we designate this as bath
non-Markovianity (BNM). When the correlations are
mediated from neighbouring qubits, we designate this
as register non-Markovianity (RNM). Naturally, since
the bath cannot be controlled by definition, BNM can
be probed without RNM, but RNM effects cannot be
isolated by themselves. Instead, one might consider
the spatial process marginals alone to measure direct
crosstalk [26, 30, 31].

Procedure.– To map these correlations on each qubit,
the classical shadows procedure naturally extends as fol-
lows: at each t ∈ Tk, on each q ∈ Q, apply a unitary op-
eration randomly selected from the single qubit Clifford
group, followed by a projective measurement in the Z-
basis. This defines a POVM on all qubits across all times
{U†i |x〉〈x|Ui}

qm
tj . The measurements considered have four

defining features: the qubit q on which they act, the time
t at which they are implemented, and the basis change
U applied prior to a measurement outcome x. To avoid
notational overload, we omit these final two labels when
writing instruments where the context is clear.

Record both the outcome of the measurement and the
random unitary. Reset the qubit to state |0〉 and ap-
ply a random Clifford gate, recording this operation as
well. The intended effect of this is to apply a randomised
quantum instrument – i.e. a random measurement with
an independently random post-measurement state. See
Figure 2 for the circuit diagram. The application of an
instrument in each chosen location in space and time con-
stitutes a single-shot piece of information about the pro-
cess tensor. The single shot is a projection of the process
tensor onto the sequence of interleaving measurements Π
and preparations P :

Π̂Tk
=

k⊗
l=0

N⊗
j=1

(U j∗ol
|x〉〈x|U jTol

),

P̂Tk
=

k⊗
l=1

N⊗
j=1

(U jil |0〉〈0|U
j†
il

),

(5)

with probability given in accordance with Equation (2).
Note that the Choi state of a POVM element is given
by its transpose [32]: Π̂ = ΠT. Using the tensor prod-
uct structure, we can examine each measurement and
each preparation at each time on each qubit separately.
The preparations P

qj
l are all deterministic, and enact the

quantum channel

MP(σ
qj
il

) = EUj
il
∼U [U jil |0〉〈0|U

j†
il

], (6)

where EUj
il
∼U is the expectation value taken over the

unitary ensemble. The inverse of this gives the classi-
cal shadow on the process input legs

D̂j
il

:=M−1
P (U jil |0〉〈0|U

j†
il

) = 3U jil |0〉〈0|U
j†
il
− I. (7)

Existence of this inverse is guaranteed by tomographic
completeness of the ensemble [21]. For the measurements
Π
qj
l we have the usual single qubit Clifford channel:

MD(σ
qj
ol

) = E
Uj

ol
∼U,x∼Tr[Π

qj
l σ

qj
ol

]
[U j∗ol
|x〉〈x|U jTol

]. (8)

Here, |x〉 on each qubit at each time is sampled according
to the generalised Born rule in Equation (2), and depends
generally on the operations that come before it. The
inverse of this channel gives the shadow on the output
legs:

∆̂j
ol

:=M−1
D (U j∗ol

|x〉〈x|U jTol
) = 3U j∗ol

|x〉〈x|U jTol
− I. (9)

Hence, for a k-step process on N qubits, the classical
shadow is a reshuffling of

Υ̂k:0 = D̂T
Tk
⊗ ∆̂T

Tk
, (10)

to have the o and i legs alternating, and from which
properties can be efficiently determined using the usual
median-of-means estimation described in Ref. [21].
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FIG. 3. A numerical simulation demonstrating the proposed
technique to isolate environmental effects. A grid of 15 qubits
is simulated with crosstalk effects and an inaccessible non-
Markovian defect. a Determining the non-Markovianity on
each qubit individually (with the remainder idle) is not very
informative, since each qubit looks non-Markovian due to pas-
sive crosstalk. b After learning all of the shadow marginals

Υ
(qj)

2:0 , the crosstalk is filtered out to reveal which qubits pos-
sess temporal correlations from the environment.

ERASING NON-MARKOVIAN PATHWAYS

The above procedure suffices to estimate marginals of
a process tensor with only logarithmic overhead, which
we show for completeness in the appendix. In short, we
estimate the required observables to uniquely fix the pro-
cess marginal, and then employ a maximum likelihood
algorithm to determine a physically consistent process
tensor. We consider two possible applications of spa-
tiotemporal classical shadows, supplemented by numeri-
cal demonstrations.

Distinguishing between passive crosstalk and bath non-
Markovianity.– First, we consider certifying when non-
Markovian correlations originate via an inaccessible bath,
or from neighbouring qubits in the register. Certify-

ing bath non-Markovianity means estimating Υ
(qi)
k:0 – the

marginal process tensor for a single qubit. This can be
simultaneously performed for all qi ∈ Q. The Choi state
of the operations on the remainder of the qubits at each
time will be I/d, i.e. a maximally depolarising channel.
Because this enacts a causal break any information trav-
elling from the system into the register cannot persist

forwards in time. Hence, computing N (Υ
(qi)
k:0 ) will be a

measure of correlations from an inaccessible bath alone.
We formally show this in the appendix.

We demonstrate this numerically in Figure 3. Here,
we have 15 qubits and one defect quantum system act-
ing as the bath in a two-step process, and then compute
N (Υqi

2:0). The qubits each experience a random nearest-
neighbour ZZ-coupling crosstalk, and the ones geo-
metrically closest to the defect are Heisenberg-coupled

to that system: H =
∑
i

∑
α J

α
i,Eσ

(i)
α σ

(E)
α for random

Jαi,E . Figure 3a shows the standard fare: estimating the
process tensor of each qubit and determining its non-
Markovianity while the other qubits remain idle. How-
ever, the results are not so informative, because they do

not distinguish between RNM and BNM effects, and so
every qubit experiences temporal correlations. Figure 3b
shows the results of a shadow marginal estimation, and
we readily identify only the qubits coupled to bath de-

fects have a non-zero N (Υ
(qi)
2:0 ).

Identifying shared baths.– A second important scenario
we consider is where two qubits are correlated via com-
mon cause from a shared bath. For example, this might
be experiencing the same stray magnetic field inhomo-
geneities or through a coupling to a common defect. This
is sometimes referred to as crosstalk, because the joint

map Ê(q1,q2)
j:j−1 does not factor to Ê(q1)

j:j−1⊗ Ê
(q2)
j:j−1 [30]. How-

ever, we consider this a coarse description because neither
system acts as a direct cause for each other’s dynam-
ics. Instead, they are subject to spatiotemporal correla-
tions as mediated by the same non-Markovian bath. The
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FIG. 4. A numerical simulation demonstrating the proposed
technique to determine qubits with shared baths. A grid of 14
qubits is simulated with crosstalk effects and two inaccessible
non-Markovian defects. a Shadow filtering may be used to
find qubits coupled to an inaccessible bath as before b By

looking at the correlations between map Ê(qm)
1:0 with Ê(qn)

2:1 , we
can infer which qubits share common baths and the extent
to which the defects redistribute quantum information. Note,
the relationship lines between qubits are not direct crosstalk
interactions, but bath-mediated spatiotemporal correlation.
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key, therefore, is to measure the relationship between the

maps Ê(q1)
j:j−1 and Ê(q2)

j+1:j .

We demonstrate this numerically in Figure 4. We have
a similar setup to before, except this time with two bath
defects. Performing a shadow filtering (Figure 4a) again
reveals which qubits are coupled to the defects. How-
ever, in Figure 4b, we look at the spacetime marginals
estimated from the shadow data. This fine-grained data
indicates which qubits are commonly coupled to bath de-
fects, versus independently coupled. The arrows from
qubit qi to qubit qj indicate the QMI in the process with

marginals Ê(qj)
2:1 ⊗ Υ

(qi)
1:0 , where Υ1:0 also includes initial

correlations. The erasure of qj in the first step and qi
in the second step eliminates the possibility of direct-
cause correlations between the two qubits, leaving only
the possibility of common-cause. In other words, non-
zero values are a measure of non-Markovian correlations
distributed by a shared bath between two qubits. This
generates a more informative view of the connected in-
terplay between qubits and their environment

DISCUSSION

We have introduced a scalable and conceptually sim-
ple method to distinguish between non-Markovian dy-
namics generated by nearby qubits in a quantum device,
and those from an inaccessible bath. This contributes to
the growing zoo of quantum benchmarking techniques,
and yet satisfies a unique niche. Geometrically isolating
non-Markovian sources across a device can inform var-
ious facets of the development process: the signals can
warrant further investigation and inform the fabrication
process; flag qubits to be given extra control attention;
and be fed forward to error-correction decoders.

This also extends the capabilities of the randomised
measurement toolbox to the multi-time and multi-qubit
domain, and we have identified an important use case in
efficient casual testing. We anticipate that there exist
many alternate applications of classical shadows to spa-
tiotemporal quantum states beyond what we have dis-
cussed here. Notably, classical shadows have seen ex-
tensive recent generalisation and application to quan-
tum speed-up in the determination of quantum prop-
erties [22, 28, 33, 34]. Dynamic sampling of small sys-
tems, meanwhile, has been shown to be complex in the
multi-time sampling setting [35]. We provide a template
by which a similar approach may be applied to quan-
tum stochastic processes. The learning of spatiotempo-
ral correlations constitutes the most general platform for
this task, combining many-body states with multi-time
processes.

Further research is needed to explore alternative en-
sembles suitable for multi-time processes. Specifically,
whether it is tractable to efficiently learn global observ-

ables; which properties provide useful information about
the non-Markovian interactions; and whether causality
conditions imply a learnability gap between quantum
states and quantum processes.

We note also that we have introduced our filter in
full generality with respect to PTT, but the techniques
are generic: the only important point is that causal
breaks are applied to neighbouring qubits between each
steps. The same principles will broadly apply to other
approaches to learning non-Markovian dynamics [3, 36–
38].
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