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Despite groundbreaking observations of supersolidity in spin–orbit-coupled Bose–Einstein con-
densates, until now the dynamics of the emerging spatially-periodic density modulations has been
vastly unexplored. Here, we demonstrate the nonrigidity of the density stripes in such a supersolid
condensate and explore their dynamic behavior subject to spin perturbations. We show both ana-
lytically in infinite systems and numerically in presence of a harmonic trap how spin waves affect
the supersolid’s density profile in the form of crystal waves, inducing oscillations of the periodicity
as well as the orientation of the fringes. Both these features are well within reach of present-day
experiments. Our results show that this system is a paradigmatic supersolid, featuring superfluidity
in conjunction with a fully dynamic crystalline structure.

Supersolidity is an intriguing phenomenon exhibited
by many-body systems, where both superfluid and crys-
talline properties coexist as a consequence of the simul-
taneous breaking of phase symmetry and translational
invariance [1–6]. After unsuccessful attempts in solid he-
lium [7, 8], supersolidity was first experimentally realized
in Bose–Einstein condensates (BECs) with spin–orbit
coupling (SOC) [9, 10] or inside optical resonators [11].
More recently, the supersolid phase has been identified
in a series of experiments with dipolar Bose gases, where
phase coherence, spatial modulations of the density pro-
file, as well as the Goldstone modes associated with the
superfluid and crystal behavior have been observed [12–
19].

Since the experimental realization of spin–orbit-
coupled Bose–Einstein condensates (SOC BECs) [20, 21],
this platform has emerged as a peculiar candidate of su-
persolidity because the spin degree of freedom is cou-
pled to the density of the system [22–29]. Without SOC,
a two-component BEC has already two broken symme-
tries, one for the absolute phase and one for the relative
phase between the two BEC order parameters. The ad-
dition of weak SOC mixes the spatial and spin degree of
freedom, resulting in a stripe phase where the relative
phase between the two condensates breaks the transla-
tional symmetry of space—the defining property of a su-
persolid. The Goldstone modes associated with the rela-
tive phase are spin excitations, whose dispersion relations
as a function of the Raman coupling have been explored
in Refs. [28, 30], but a connection to the crystal dynamics
of the stripes has so far only been established for their
rigid zero-frequency translational motion [28, 29].

The rigidity of the stripe pattern has been controver-
sially discussed in the literature. For supersolids induced
by coupling a BEC to two single-mode cavities [11, 31],
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Figure 1. Illustration of the interference effects that lead to
the appearance and dynamics of stripe patterns. The Ra-
man process responsible for spin–orbit coupling turns the two-
component Bose–Einstein condensate (two big circles) into a
system with a four-component wave function. Components
with the same spin form a spatial interference pattern.

the wave vector of the density modulations is determined
by the cavity light and the associated Goldstone mode
is suppressed for nonzero wave vectors [32]. Since the
spin–orbit effect is induced by Raman laser beams, it
has been widely believed that the stripe pattern in SOC
BECs is also externally imposed by the light and thus
rigid. Up to now, conclusive evidence for the nonrigidity
of the stripe pattern has been lacking, as previous studies
of stripe dynamics have mainly focused on the infinite-
wavelength limit [28, 29]. In this Letter, we elucidate
the lattice-phonon nature of the spin Goldstone mode at
finite wavelengths and thus demonstrate that the stripes
form a fully dynamic crystal that is by no means rigid.
Specifically, we show how spin perturbations can excite
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oscillations of both the spacing and the orientation of
the density fringes, establishing SOC BECs as paradigm
examples of supersolidity.
Origin of stripe dynamics.— We consider the com-

mon scenario where SOC is generated in a binary mix-
ture of atomic quantum gases by coupling two internal
states using a pair of intersecting Raman lasers [33–35].
In contrast to quantum mixtures with a simple coher-
ent coupling of radio frequency or microwave type, the
Raman coupling involves a finite momentum transfer
−2~k0 = −2~k0êx, which we assume to point in the neg-
ative x direction. In the limit of weak Raman coupling,
the emergence of the stripes and their dynamics can sim-
ply be explained as a spatial interference effect within a
wave function which has four components (Fig. 1): spin
up condensate at zero momentum with a SOC admixture
of spin down at wave vector 2k0, and spin down conden-
sate at zero momentum with a SOC admixture of spin
up at wave vector −2k0. Due to SOC, there is now a
spatial interference pattern between the two spin up and
two spin down components with wave vector K = 2k0.
The spontaneously chosen relative phase between the two
condensates determines the origin of the stripe pattern.
If there is a chemical potential difference between the
two components, the relative phase of the two conden-
sates will oscillate and therefore also the position of the
stripes. One can add a spin current to the system, e.g.,
an out-of-phase or relative motion between the two con-
densates, which thus obtain the momenta ±~krel/2. The
four components of the wave function are now at krel/2,
−krel/2 − 2k0 for spin up and −krel/2, krel/2 + 2k0 for
spin down, and the spatial interference pattern has now
the wave vector K = 2k0 + krel. If the spin current is
oscillating, the wave vector of the stripe pattern will os-
cillate at the same frequency. When krel is parallel to k0,
the fringe spacing oscillates. When they are perpendicu-
lar, the angle of the fringes oscillates. In what follows, we
confirm and extend this intuitive picture using rigorous
perturbative calculations and numerical simulations.
Theoretical framework.— After transforming to a spin-

rotated frame, the single-particle Hamiltonian of the sys-
tem takes the time-independent form [21]

HSOC = 1
2m (p− ~k0σz)2 + ~Ω

2 σx + ~δ
2 σz + V (r) , (1)

wherem is the atomic mass, σx and σz are Pauli matrices,
Ω is the strength of the Raman coupling, δ is the effective
detuning, and V (r) is a single-particle potential. In infi-
nite systems (V ≡ 0), the Hamiltonian is translationally
invariant and allows for a spontaneous breaking of this
symmetry, which, in combination with the broken U(1)
symmetry in the BEC phase, gives rise to supersolidity.

Since quantum depletion of a SOC BEC is typically
small under realistic conditions [36, 37], interactions be-
tween atoms are well described by mean-field theory via

the Gross–Pitaevskii (GP) energy functional [38]

E =
∫

dr
(

Ψ†HSOCΨ + gnn
2 n2 + gss

2 s2
z + gnsnsz

)
. (2)

Here, the order parameter is given by a two-component
spinor Ψ = (Ψ↑,Ψ↓)ᵀ with complex wave functions
Ψ↑ and Ψ↓ for the individual spin states. The last
three terms in Eq. (2) describe density–density, spin–
spin, and density–spin interactions, respectively, where
n = |Ψ↑|2 + |Ψ↓|2 denotes the total particle density and
sz = |Ψ↑|2 − |Ψ↓|2 is the spin density. The correspond-
ing interaction constants gnn = (g↑↑ + g↓↓ + 2g↑↓)/4,
gss = (g↑↑ + g↓↓ − 2g↑↓)/4, and gns = (g↑↑ − g↓↓)/4 are
obtained from suitable combinations of the coupling con-
stants gij = 4π~2aij/m, determined by the s-wave scat-
tering lengths aij of the respective spin channels with
i, j ∈ {↑, ↓}. We focus our analysis on symmetric in-
traspecies interactions, assuming gns = 0 and δ = 0 from
now on.

At the critical Raman coupling ~Ωcr =
4Er

√
2gss/(gnn + 2gss) [23, 25], where Er = (~k0)2/2m

is the recoil energy, the system undergoes a first-order
transition between the supersolid (stripe) phase and
the superfluid (but not supersolid) so-called plane-wave
and single-minimum phases (see, e.g., Ref. [27]). The
latter are characterized by a strong Raman coupling
that is responsible for the locking of the relative phase
between the two spin components [39], resulting from
the competition between the spin (gss) and density
(gnn) interaction components of the mean-field energy
functional (2) [40]. Consequently, there is only a single
spin–density-hybridized Goldstone mode above Ωcr.
Conversely, in the supersolid phase, below Ωcr, the
spontaneous breaking of both phase and translational
symmetry implies the existence of two Goldstone modes
of predominantly density and spin nature with distinct
sound velocities (see Supplemental Material (SM) [41]
for further details) [26, 29].
A major question to be addressed in what follows is

how the spin degree of freedom can induce dynamics in
the stripe patterns and in particular how the excitation
of a spin wave results in the excitation of a crystal wave
affecting the time dependence of the density profile.
Perturbation approach in infinite systems.— A useful

scenario to probe this question consists in suddenly re-
leasing at time t = 0 a small static spin perturbation of
the form −λErσz cos(q · r), with 0 < λ � 1. The wave
vector q is assumed to be small in order to explore the
relevant phonon regime, where a major effect of the re-
lease of the perturbation is the creation of a spin wave
propagating with velocity cs. Here, we are mainly inter-
ested in its effect on the dynamic behavior of the stripes
characterizing the density distribution. Starting from the
results of Ref. [29] for the Bogoliubov amplitudes of the
phonon modes in the long-wavelength limit, and neglect-
ing the small contributions of the gapped modes of the
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Bogoliubov spectrum, the space and time dependence of
the density can be written in the form

n(r, t) = n̄+
+∞∑
m̄=1

ñm̄ cos[m̄χ(r, t)] . (3)

Here, n̄ is the average density and

χ(r, t) = 2k1x+ φ+ δφ(t) cos(q · r) (4)

the relative phase between the two condensates in the
spin-rotated frame. The sum over the integer index m̄
reflects the presence of higher harmonics in the density
profile (3) characterizing the stripe phase, whose coef-
ficients are denoted by ñm̄. Equations (3) and (4) ex-
plicitly reveal that the perturbed density fringes are a
combined effect of the equilibrium modulations, fixed by
the wave vector 2k1 = 2k1êx (which differs from 2k0
at finite Raman coupling [25, 29]), and those induced by
the external perturbation, characterized by the wave vec-
tor q. The perturbative expression for k1 is reported in
Ref. [29] and for convenience in the SM [41]. The phase φ
represents the spontaneously chosen offset of the stripe
pattern in equilibrium. The time dependence of the func-
tion δφ is fixed by the sound velocities cn,s of the density
and spin phonons as well as by the Raman coupling Ω.

For q � k1, the relative phase (4) varies very slowly
over a large number of equilibrium density oscillations.
Consequently, in a region of space |r−r0| � q−1 around
a given point r0, one can approximate χ by its first-order
Taylor expansion,

χ(r, t) 'K(r0, t) · r + Φ(r0, t) . (5)

This expression features a local time-dependent stripe
wave vector, whose structure

K(r0, t) = ∇χ(r0, t) = 2k1 − δφ(t) sin(q · r0)q (6)

confirms the intuitive scenario of Fig. 1 (where k1 has
been approximated by k0), upon identifying krel with
the second term in Eq. (6). In addition, Eq. (5) contains
the phase shift

Φ(r0, t) = χ(r0, t)− r0 · ∇χ(r0, t)
= φ+ δφ(t)[cos(q · r0) + (q · r0) sin(q · r0)] ,

(7)

which is responsible for the time modulation of the offset
of the stripe pattern.

Carrying out a perturbative analysis of the order pa-
rameter of the condensate up to second order in ~Ω/4Er
(see Refs. [29, 42]) yields the result

δφ(t) = −2k1vs
csq

sin(csqt) , (8)

where we have introduced the velocity

vs = λ
~k0
m

[
1
2 − β

(
~Ω
4Er

)2
]
, (9)

with β = Ern̄[2Ergnn +2(2Er + n̄gnn)gss + n̄g2
ss]/[2(2Er +

n̄gnn)2(2Er + n̄gss)], and the expression for cs is reported
in Ref. [29] and for convenience in the SM [41]. At the
leading order Ω2, only the spin sound velocity cs enters
Eq. (8), while a second term oscillating at the density
phonon frequency cnq appears at order Ω4 [42]. For
Ω = 0, the velocity vs fixes the time variation rate of
the relative phase of the quantum mixture, without any
consequence for the density distribution since the con-
trast of fringes exactly vanishes in this limit [25, 29] (see
also SM [41]).

If cos(q · r0) = ±1, the initial static spin perturbation
has a peak (antinode) at r0, and close to this point it
becomes of the form ∓λErσz. After releasing the spin
perturbation, there is a spin imbalance at r0 and the
difference in chemical potentials causes an oscillation of
the relative phase of the two condensates. From Eqs. (7)
and (8) one sees that, at times satisfying the condition
t � (csq)−1 (which is easily fulfilled for the small q of
interest here), the stripes show a displacement at veloc-
ity ±vs, i.e., χ(r, t) ' 2k1(x ∓ vst) + φ , in excellent
agreement with the numerical findings of Ref. [28] (see
SM [41] for further details). At q = 0, the spatial trans-
lation of stripes corresponds to the zero-frequency limit
of the spin Goldstone branch.

Far from the antinodes, after the spin quench there is
an oscillating spin current, which makes also the stripe
wave vector (6) vary in time. The strongest oscillations
occur when sin(q ·r0) = ±1, i.e., r0 is a node of the initial
perturbation, which is thus antisymmetric under inver-
sion with respect to r0 and locally behaves as ±λErq ·
(r − r0)σz. In particular, if q = qêx, the local stripe
wavelength 2π/|K(r0, t)| = [1 ∓ (vs/cs) sin(csqt)]π/k1
oscillates around its equilibrium value. By contrast, if
q = qêy, the stripes rotate by an angle ±(vs/cs) sin(csqt)
about the z axis. This effect occurs in combination with
the fringe displacement seen above, unless r0 coincides
with a maximum or minimum of the equilibrium density
distribution.

The above discussion shows that a spin perturbation
applied to the stripe configuration can cause a rigid mo-
tion of the stripes as well as a periodic change in either
magnitude or orientation of their wave vector, depending
on the local behavior of the perturbation. Although the
analytic results (8) and (9) have been derived by carry-
ing out a perturbative analysis up to order Ω2, we have
verified that they provide a rather accurate description
of the dynamics of stripes, as compared to a numerical
solution of the time-dependent linearized GP equation in
infinite systems, also for fairly large values of the Raman
coupling.
Numerical simulations in a harmonic trap.— Having

understood how spin perturbations affect the dynamics
of the stripe pattern in infinite systems, we now illus-
trate similar effects taking place in finite-size configu-
rations, namely in the presence of a harmonic trapping
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Figure 2. Dynamics of the stripe pattern in a harmonically
trapped system for ~Ω/Er = 1.75. (a),(b) Snapshots of the
density profile at different times, showing the compression
and dilatation of the fringe spacing (a) as well as the rotation
of the stripes (b) after suddenly releasing the longitudinal
and transversal spin perturbations Hxσz = −mω2

xx0 xσz with
x0/ax = 0.1 and Hyσz = −mω2

yy0 yσz with y0/ay = 0.15,
respectively. (c) Evolution of the magnitude of the stripe wave
vector |K| and of the longitudinal spin-dipole moment 〈xσz〉
for the scenario in (a). (d) Time trace of the rotation angle θ
of the stripes and of the transversal spin-dipole moment 〈yσz〉
for the scenario in (b). The oscillation frequencies of the stripe
pattern coincide with those of the corresponding spin-dipole
moments.

potential V (r) = m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)/2 with angu-
lar frequencies ωi and corresponding oscillator lengths
ai =

√
~/mωi, i = x, y, z. To this end, we numerically

solve the full time-dependent GP equations, which can be
derived by applying the variational principle i~∂tΨ↑/↓ =
δE/δΨ∗↑/↓ to the energy functional (2).

For our numerics, we assume symmetric intraspecies
scattering lengths close to those of 87Rb, where the ma-
jority of experiments on SOC BECs has been conducted,
a↑↑ = a↓↓ = 100 a0 (a0 is the Bohr radius). More-
over, to enhance the miscibility of the two spin species
and thus the supersolid features, we assume a quasi-two-
dimensional (2D) situation with reduced interspecies cou-
pling g̃↑↓ = 0.6 g̃↑↑ (see experimental considerations be-
low), where g̃↑↑ = g̃↓↓ = g↑↑/

√
2πaz are effective 2D cou-

plings for a strong vertical confinement with frequency
ωz/2π = 2500 Hz [43]. Further, we choose an elongated
trap in x direction with (ωx, ωy) = 2π (50, 200) Hz, a to-
tal particle number of N = 104, as well as k0 =

√
2π/λ0

with λ0 = 804.1 nm [21].
The numerical protocol is the same as that in the

quench scenario considered above: we first compute the
ground state in the presence of a small static perturba-

tion of spin nature and then observe the dynamics after
suddenly releasing the perturbation at time t = 0. Here,
our analysis is focused on the stripe dynamics generated
by the longitudinal and transversal spin operators xσz

and yσz, which correspond in infinite systems to the lo-
cal behavior of the perturbation around the nodes. The
translational motion of the stripes induced by the uni-
form spin operator σz, corresponding to a sudden change
of the Raman detuning, has been studied numerically in
Ref. [28] and is further detailed in the SM [41].
Figures 2(a) and 2(b) illustrate, respectively, the os-

cillation of the fringe spacing and the periodic rotation
of the stripe wave vector in response to weak perturba-
tions by the operators xσz and yσz. The correspond-
ing oscillation frequencies coincide with those of the in-
duced spin-dipole oscillations 〈xσz〉 and 〈yσz〉, as shown
in Figs. 2(c) and 2(d), respectively. It is remarkable that
the transversal spin operator yσz, which generates the
oscillating rotation of the stripes in the supersolid phase,
also constitutes a crucial spin contribution to the angular
momentum operator as a consequence of SOC [44, 45].
The inclusion of such an effective y-dependent detuning
has been used to generate quantized vortices [20] and to
show the occurrence of crucial rigid components in the
moment of inertia [46].
Unsurprisingly, owing to nonlinear effects in the SOC

strength, the dynamic excitation of stripes is not only
produced by spin perturbations (as considered above),
but also by density perturbations. A density pertur-
bation mainly excites the associated density Goldstone
mode, but due to SOC also produces a weak cross-
excitation of the spin Goldstone mode. Since the density
mode also has a weak manifestation in the spin sector,
quantities sensitive to the spin degree of freedom, e.g.,
the fringes, exhibit a beat note involving the frequencies
of both Goldstone modes [47]. In fact, one can show that
a density perturbation generates a beating oscillation of
the stripe wave vector with an amplitude of order Ω2 [42]
(see SM [41] for an illustration of such beating effects in
harmonically trapped systems). By contrast, a spin per-
turbation produces a strong excitation of the spin mode
(and thus of the stripe pattern) with practically invisible
beating in the stripe wave vector since the contribution of
the density mode is of order Ω4, as noted below Eq. (9).
Experimental perspectives.— For the study of stripe

dynamics, it is favorable to have stripes with high con-
trast. This requires strong miscibility between the two
components to suppress the transition to the phase-
separated plane-wave phase. It is therefore best to use an
atom where the scattering lengths are tunable via Fesh-
bach resonances, such as 39K [48] or 7Li [49]. Alterna-
tively, in species with low bulk miscibility, such as 87Rb,
the critical Raman coupling for the stripe phase can be
enhanced by considering a quasi-2D configuration charac-
terized by a reduced spatial overlap of the two spin com-
ponents in the strongly confined direction. This can be
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realized experimentally with the help of a spin-dependent
trapping potential [43, 50, 51] (as we have assumed in our
numerics above) or using pseudo-spin orbital states in a
superlattice [9].

The stripe pattern for SOC BECs has been observed
via Bragg scattering [9, 10]. Since the Bragg angle de-
pends on the period (and angle) of the stripes, any os-
cillation in the stripe spacing (or orientation) will result
in an oscillating Bragg signal. Our simulations for re-
alistic parameters show a modulation of the stripe wave
vector on the order of 5 %. This should be easily resolv-
able in experiments since the angular resolution of the
Bragg spot is diffraction limited by the condensate size,
which is typically 10 to 50 times larger than the fringe
spacing. Alternatively, the periodic dilatation or rotation
of the stripe wave vector could be observed by identify-
ing the oscillating peaks in the momentum distribution
after ballistic expansion. The dynamics of the stripes,
including their zero-frequency translational motion, may
also be observed in situ after increasing the stripe period
to several microns, e.g., by creating a spatial beat note
with the pattern imprinted by a π/2 Raman pulse [43] or
by using matter-wave-lensing techniques [52, 53]. Inter-
estingly, since the phase of the Raman beams is added
to the spontaneous phase due to symmetry breaking, an
oscillation of the position of the stripes can be driven
by a frequency detuning of the Raman beams and could
possibly be detected by an increase in temperature after
dissipative damping.

In conclusion, SOC supersolids display a rich dynamics
of their spontaneously established crystal order. This is
similar to the dynamics predicted and observed in dipolar
quantum gases [15–17]. The main difference between the
two systems is that SOC supersolids have a spin degree of
freedom, which provides a natural way to excite the crys-
tal Goldstone mode. This supersolid Goldstone mode is
of hybridized spin–density nature. Its dynamics is differ-
ent from that of supersolids mediated by two single-mode
cavities, where nonzero wave vectors are suppressed by
the infinite-range coupling [11, 31], and in strong dis-
tinction from externally imposed rigid density patterns
as in optical lattices. As we have shown, the predicted
dynamics in SOC supersolids is readily accessible within
state-of-the-art experimental capabilities.
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