
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Folding Dynamics and Its Intermittency in Turbulence
Yinghe Qi, Charles Meneveau, Greg A. Voth, and Rui Ni

Phys. Rev. Lett. 130, 154001 — Published 12 April 2023
DOI: 10.1103/PhysRevLett.130.154001

https://dx.doi.org/10.1103/PhysRevLett.130.154001


Folding dynamics and its intermittency in turbulence

Yinghe Qi1, Charles Meneveau1, Greg Voth2, and Rui Ni1∗
1 Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

2 Department of Physics, Wesleyan University, Middletown, CT 06459, USA
(Dated: February 27, 2023)

Fluid elements deform in turbulence by stretching and folding. In this work, by projecting the
material deformation tensor onto the largest stretching direction, the dynamics of folding is depicted
through the evolution of the material curvature. Results from direct numerical simulation (DNS)
show that the curvature growth exhibits two regimes, first a linear stage dominated by folding fluid
elements through a persistent velocity Hessian which then transitions to an exponential growth
driven by the stretching of already strongly bent fluid elements. This transition leads to strong
curvature intermittency at later stages, which can be explained by a proposed curvature-evolution
model. The link between velocity Hessian to folding provides a new way to understand the crucial
steps in energy cascade and mixing in turbulence beyond the classical linear description.

The deformation of fluid elements, as already described
by Reynolds in 1894 [1], is a process that involves stretch-
ing and folding. Stretching elongates fluid elements ex-
ponentially [2] along one (or two) direction(s) and com-
presses them in the other directions, while folding brings
fluid particles closer, which increases the local curvature
and also reduces length scales. Given its connection to
flow structures and their dynamics, deformation is there-
fore essential to many fundamental problems in turbu-
lence including mixing [3, 4], energy cascade [5], and vor-
tex dynamics [6], as well as in turbulent multiphase flows
with non-spherical [7, 8] and deformable particles [9, 10].

The linear component of deformation has been stud-
ied extensively in turbulence [2, 11–15], and the dynamic
equation for linear deformation links the geometries of
flow structures to the velocity gradient and Cauchy-
Green strain tensors. This linkage paves the foundation
to finite-time Lyapunov exponent and the Lagrangian co-
herent structures [2], which have impacted studies of the
transport and mixing of passive scalars in the atmosphere
[16, 17], ocean [18], and solar interior [19]

The natural question arises as to how such a framework
can be extended to the folding dynamics and what is the
right dynamical system approach for describing folding.
Given the nonlinear nature of problem, several different
methods have been proposed, such as taking the total de-
viation from the linear part, [20] or calculating the cur-
vature of fluid elements [12, 21–23]. However, the con-
nection from these statistics to the underlying fluid dy-
namics in the Eulerian and Lagrangian frameworks have
not been clearly illustrated.

To build a framework that makes that connection, we
consider the folding of infinitesimal fluid elements. Fig.
1(a) shows a number of infinitesimal spherical fluid el-
ements being deformed after a time 3τη (τη is the Kol-
mogorov time scale) in 3D homogeneous and isotropic
turbulence [24, 25] (details of the direct numerical sim-
ulation (DNS) of the turbulence can be found in Sup-
plemental Material). It is clear that the deformed fluid
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elements show complex geometry involving both stretch-
ing and folding. To mathematically describe this high-
order deformation, we consider each point X at t0 within
an infinitesimal fluid element mapped to another point
x within the deformed element after a finite time ∆t,
where x and X are the relative positions with respect
to the center of the fluid elements. The non-linear map-
ping function between X and x with the leading orders
follows

x = F (t0 + ∆t) ·X + X ·G(t0 + ∆t) ·X, (1)

where Fij = ∂xi/∂Xj is the deformation gradient ten-
sor and Gijk = ∂2xi/∂Xj∂Xk is the deformation Hes-
sian tensor. The tensors Fij and Gijk can be then de-
termined by integrating dFij(t)/dt = AimFmj(t) and
dGijk(t)/dt = AimGmjk(t) +HimnFmj(t)Fnk(t)/2 along
the trajectories of fluid elements, with Aij = ∂ui/∂xj
and Hijk = ∂2ui/∂xj∂xk being the velocity gradient and
velocity Hessian tensors, respectively. Details of these
equations can be found in Supplemental Material.

To further simplify Eq. (1), we consider the defor-
mation of an arbitrary straight material line passing
through the center of a fluid element, represented by a
set of positions X represented parametrically according
to X(λ) = êλ. ê is a selected unit vector and the pa-
rameter λ → 0 indicates the distance from the center of
the fluid element. Substituting X(λ) = êλ into Eq. (1)
yields the expression for the deformed material line at
t0 + ∆t,

x(λ) = F · êλ+ ê ·G · êλ2 = rsλ+ rbλ2, (2)

where rs = F · ê and rb = ê · G · ê are defined as the
stretching vector and the bending vector, respectively.

A highly relevant material line is the one that gets
stretched the most, written as X(λ) = êR1λ. Here, êR1

is the unit eigenvector associated with the greatest eigen-
value of right Cauchy-Green strain tensor CR = F TF .
This special material line, as the ”skeleton” of the fluid
element, can be used to reflect the overall geometry of
the fluid element. Substituting ê = êR1 in Eq. (2)
results in the quadratic equation x(λ) = rs1λ + rb1λ
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FIG. 1. (a) The deformation of infinitesimal spherical fluid
elements after ∆t = 3τη (size not to scale). (b) The time
evolution of the mean curvature 〈κ1〉 (black solid curve); The
black dashed line represents a linear relationship, and the
cyan dashed line represents the prediction based on an Eule-
rian quantity 〈|ê1 ·H · ê1|〉 with ê1 being the eigenvector cor-
responding to the maximum eigenvalue of the rate-of-strain
tensor. Inset: the same figure for 〈κ1〉 (black solid line) with
a linear scale in time. The black dashed line represents an
exponential growth over time.

where rs1 = F · êR1 and rb1 = êR1 · G · êR1. An ex-
ample of this material line is shown as the inset of Fig.
1(a) (black dashed line). Given this quadratic equation,
the curvature of the material line κ1 can be found using
κ1 = 2rb1⊥/(r

s
1)2, where rb1⊥ represents the component

of rb1 that is perpendicular to rs1. Although κ1 is not
sufficient to describe the complete deformation, it does
reflect the overall folding of the fluid element.

The curvature κ1 can therefore be obtained by com-
puting F and G and their associated rb1 and rs1 along
with each fluid trajectory. Fig. 1(b) shows the time
evolution of the mean curvature 〈κ1〉, averaged over 105

fluid elements, as a function of the integration time ∆t
using the DNS data. It is evident that, for the available
simulation duration, the mean curvature of the fluid el-
ements grows continuously, but the growth rate changes
appreciably between two regimes. In early times, 〈κ1〉 in-
creases linearly. The linear regime lasts until about the
Kolmogorov timescale τη when the length scale 1/〈κ1〉 is
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FIG. 2. (a) The PDFs of the curvature p(κ1) at different time
instants in the early stage. Inset of (a): the same PDFs but
for the normalized curvature p(κ1/〈κ1〉). (b) The PDFs of
the curvature p(κ1) at different time instants in the late stage
with the solid curves representing the data and the dashed
curves representing the prediction by the model (Eq. (5)).
Inset of (b): the time evolution of the kurtosis of κ1.

around 25η (η is the Kolmogorov length scale), and the
growth of 〈κ1〉 slows down, marking the transition of the
curvature dynamics. Soon after τη, the growth of 〈κ1〉
accelerates again, and this late stage behavior is better
fitted with an exponential function, which is illustrated
in a semi-logarithmic plot in the inset of Fig. 1(b).

The transition from the linear to the exponential
growth of 〈κ1〉 indicates different mechanisms at play,
which can be better understood using local curvature.
Here, the probability density function (PDF) of κ1, i.e.
p(κ1), at different times are shown in Fig. 2 for the early
(a) and late (b) stages. In the early stage, the curvature
grows systematically, but follows a self-similar behavior
as indicated by the collapsed PDFs of the normalized
curvature p(κ1/〈κ1〉) in the inset of Fig. 2(a). In the late
stage, the tail of the PDF still rises over time, whereas
the peak location remains constant. This distinct be-
havior suggests that the curvature distribution becomes
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more intermittent over time, which is confirmed by the
growing kurtosis as shown in Fig. 2(b) inset. This result
highlights the growing inhomogeneity of local mixing as
locations with extreme curvature should reach a well-
mixed stage much sooner than what is implied by the
mean.

To model the multi-stage growth behavior of curva-
ture, we consider an arbitrary deforming infinitesimal
material line as in Eq. (2). The equation for this material
line can therefore be decomposed along two directions,
ê‖ = rs/rs and ê⊥ = rb⊥/r

b
⊥ , following:

x(λ) =
(
rsλ+ rb‖λ

2
)
ê‖ + rb⊥λ

2ê⊥, (3)

where rb‖ = (rb · ê‖)ê‖ and rb⊥ = rb − rb‖.

The velocity of any arbitrary material point on the
material line, u(λ), can then be expressed in the frame
spanned by (ê‖, ê⊥) in two different ways by taking either
direct time derivative of Eq. (3) or the Taylor expansion
based on the velocity information (see Supplemental Ma-
terial). Comparing these two expressions for u(λ) leads
to evolution equations for rs and rb⊥, which then yields
the evolution equation for curvature of the material line

dκ

dt
=
(
ê‖ ·H · ê‖

)
· ê⊥

+
(
ê⊥ · S · ê⊥ − 2ê‖ · S · ê‖

)
κ.

(4)

Here S and H are the rate-of-strain tensor and the ve-
locity Hessian tensor following the trajectories of fluid
elements, respectively.

Eq. (4) holds for an arbitrary material line, so it also
works for the curvature along the largest stretching (êR1)
direction κ1. The first term on the right side of Eq. (4)
represents the contribution from the velocity Hessian,
which can directly bend the fluid element as shown in
Fig. 3(a). Here, the thick blue arrows indicate the pri-
mary velocity Hessian that bends the element (i.e., the
velocity gradient that changes along the ê‖ direction). In
the short time limit, κ1 → 0, all the terms multiplied by
κ1 in Eq. (4) are negligible, so Eq. (4) can be simplified
to dκ1/dt =

(
ê‖ ·H · ê‖

)
· ê⊥, which corresponds to the

linear growth in the early stage as in Fig. 1(b). At later
times (∆t > τη), this contribution of the velocity Hessian
approaches zero as shown in Fig. 3(d) (blue solid line)
because

(
ê‖ ·H · ê‖

)
may not be perfectly aligned with

ê⊥. Since the velocity Hessian is a small-scale quantity,
it is not surprising that the transition in Fig. 1(b) begins
at a small ∆t as the velocity Hessian decorrelates [26].

In addition to the Hessian term, the other two terms
in Eq. (4), both proportional to κ1, represent how the
strain affects the curvature of an already-bent fluid ele-
ment. Here, ê⊥ ·S ·ê⊥ represents the stretching along ê⊥,
which tends to increase the curvature (as shown in Fig.
3(b)); ê‖ ·S · ê‖ represents the stretching along ê‖, which
straightens an already-bent fluid element and reduces the
curvature (as shown in Fig. 3(c)). At later times, the
mean curvature 〈κ1〉 is large so both terms associated
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FIG. 3. (a-c) Schematics illustrating how (a) velocity Hessian
, (b) strain along ê⊥, and (c) strain along ê‖ contribute to
the curvature change, respectively. For all cases, the black
dashed curves represent the special material line (skeleton)
while the gray dashed curves indicate the same material line
at a later time deformed by the surrounding flows indicated
by the thick arrows. (d) The time evolution of the contribu-
tion to the mean curvature growth by each term in Eq. (4),
conditioned on κ1 > 3〈κ1〉. All the terms are normalized by
the Kolmogorov scales.

with κ1 become dominant, leading to dκ1/dt ∝ κ1. As
a result, the late stage growth of curvature exhibits ex-
ponential trend, consistent with the results in Fig. 1(b)
inset.

The contributions from strain by each of the two terms
(dashed line) and their combination (red solid line) are
shown in Fig. 3(d). The statistics were collected by only
using the fluid elements with κ1 > 3〈κ1〉 because the
late stage is dominated by the large-curvature cases as
indicated by Eq. (4). It is evident that, as the veloc-
ity Hessian contribution approaches zero, the total con-
tribution by the strain grows significantly, signaling the
transition of the roles between these two mechanisms.
This growing contribution by the strain is dominated by
(ê⊥ · S · ê⊥)κ which enhances the folding, whereas the
other term (−ê‖ · S · ê‖)κ that reduces the curvature
plateaus close to zero.

To understand the enhanced curvature intermittency
at the late stage, the time evolution of the PDF of κ1, i.e.
p(κ1, t) as shown in Fig. 2(b), is modelled by assuming
that p(κ1, t)dκ1 = p(κ′1, t + dt)dκ′1, where κ′1 = κ1 +
(dκ1/dt)dt is the curvature of the fluid elements with an
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FIG. 4. The joint PDF of the normalized curvature along ê1

and ê2 directions. Two schematics show an initially spherical
fluid elements deforming to a bowl shape (top) and a saddle
shape (bottom) after a short time, respectively.

initial curvature κ1 after dt. Substituting κ′1 into the
equation for PDF leads to,

∂p

∂t
+ (dκ1/dt) ·

∂p

∂κ1
+ p · d(dκ1/dt)

dκ1
= 0. (5)

Here we approximate dκ1/dt ≈ 〈ê⊥ ·S ·ê⊥−2ê‖ ·S ·ê‖〉κ1
because (i) the strain is the dominant mechanism in the
late stage and (ii) the contribution by velocity Hessian
will only result in a self-similar distribution of curvature
as shown in Fig. 2(a), whereas the PDFs in the late stage
exhibit longer tails over time. Eq. (5) is then solved
numerically with p(κ1) at t/τη = 3 obtained from the
DNS data serving as the initial condition.

The predicted PDFs at different times are shown as the
dashed curves in Fig. 2(b). An overall good agreement
between the prediction and the data is achieved up to
t ≈ 10τη, particulary in the tail region extended beyond
κ1η ≈ 0.2 in Fig. 2(b), which correspond to a length
scale smaller than 5η. This suggests that the intermit-
tency shown here is related to the curved elements being
stretched even further by small-scale straining motions
in the dissipative range. Note that the range of κ1η is
limited because of the exceedingly low probability of find-
ing fluid elements with κ1η greater than 0.25. We also
note that the model following Eq. (5) is simplified and
it only holds when dκ1/dt increases with κ1, i.e., more
curved elements are being bent at a faster rate, which
can only be satisfied at the late stage given the overall
positive magnitude of 〈ê⊥ · S · ê⊥ − 2ê‖ · S · ê‖〉 in Eq.
(4). Furthermore, the model is intended only for the tail
region because the peak region with smaller κ1 is domi-
nated by the velocity Hessian. As a result, a mismatch
between model predictions and simulation results is not
unexpected for smaller κ1η.

Eq. (4) also enables us to use simple Eulerian quanti-
ties to understand folding in the early stage. As ∆t→ 0,

ê‖ approaches ê1, which is the one of the three eigen-
vectors [êi (i = 1, 2, 3)] corresponding to the maximum
eigenvalue of the rate-of-strain tensor S. The early
growth of the material curvature can therefore be de-
termined by an Eulerian quantity 〈|ê1 ·H · ê1|〉 following
d〈κ1〉/dt ≈ 〈

(
ê‖ ·H · ê‖

)
· ê⊥〉 ≈ 〈|ê1 ·H · ê1|〉β, where

β ≈ 0.85 is the mean cosine of the angle between ê‖·H ·ê‖
and ê⊥ obtained from the DNS data. The predicted re-
sult is shown as the cyan dashed line in Fig. 1(b), and it
overlaps with the DNS data perfectly.

This Eulerian quantity 〈|ê1 ·H · ê1|〉 also helps to es-
tablish a better physical picture of the deformed fluid
elements in the short time limit beyond a simple flat
sheet that extends along the ê1 and ê2 directions consid-
ered in the classical framework [27]. As illustrated in the
schematics of Fig. 4, such a sheet could be curved along
ê3 direction, and its geometry can be described by two
curvatures, whose growth are controlled by (ê1 ·H ·ê1)·ê3
and (ê2 ·H · ê2) · ê3, respectively.

The joint PDF of (ê1 ·H ·ê1)·ê3 and (ê2 ·H ·ê2)·ê3 nor-
malized by Kolmogorov scales is shown in Fig. 4. Here,
the direction of ê3 is chosen such that (ê1 ·H ·ê1)·ê3 > 0,
while (ê2 ·H · ê2) · ê3 can be either positive (bowl shape)
or negative (saddle shape). The joint PDF suggests a
nearly symmetric probability for either shape, skewing
only slightly towards the bowl case. Nevertheless, for a
given curvature in one direction, the most likely curva-
ture in the other direction is zero, so there appears to be
some preference for cigar like shapes. This is confirmed
in Fig. 1(a) where the bending occurs mostly in one
direction (although various other bending configurations
can be seen). Note that large values of the velocity Hes-
sian may be the result of local instabilities (e.g. shear
instabilities that are responsible for rolling up the vor-
tex sheets into tubes [28]). Connecting the dynamics of
instabilities to velocity Hessian and curvature requires
further investigations.

In sum, our work establishes a new framework to con-
nect folding dynamics to the velocity Hessian and defor-
mation Hessian tensors in a way similar to the connec-
tion between stretching to velocity gradient and Cauchy-
Green strain tensors. As the stretching can be well
described by the Lyapunov exponents based on strain,
such a relationship may inspire the development of new
ways to formulate the dynamical system for folding. Our
framework also provides new insights into the flow inter-
mittency that the sharp-turning points in flows become
even more curved due to strain, which could help gain
deeper insights into the intermittency and inhomogene-
ity of turbulent mixing. Future work can possibly extend
our framework to finite-sized fluid elements considering
the coarse-graining effect at the same length scale. This
extension will help develop improved models for length-
scale reduction in the energy cascade process.
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