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The growing demands of remote detection and an increasing amount of training data make dis-
tributed machine learning under communication constraints a critical issue. This work provides
a communication-efficient quantum algorithm that tackles two traditional machine learning prob-
lems, the least-square fitting and softmax regression problems, in the scenario where the data set
is distributed across two parties. Our quantum algorithm finds the model parameters with a com-

munication complexity of O( log2(N)

ε
), where N is the number of data points and ε is the bound on

parameter errors. Compared to classical and other quantum methods that achieve the same goal,
our methods provide a communication advantage in the scaling with data volume. The core of our
methods, the quantum bipartite correlator (QBC) algorithm that estimates the correlation or the
Hamming distance of two bit-strings distributed across two parties, may be further applied to other
information processing tasks.

The amount of training data is critical for machine
learning to achieve high accuracy, generalization capa-
bilities, and predictive power. Nowadays, data collection
is growing with unprecedented speed around the world,
so it becomes a challenge for algorithms to exploit such
large-scale data within feasible time and memory [1, 2].
Distributed machine learning emerges as a promising so-
lution, where the training data and learning process are
allocated to multiple machines [1, 3, 4]. This scales up
computational power and is also suitable for intrinsically
distributed data when collected [5, 6]. However, these al-
gorithms require extensive communication between dif-
ferent machines, which usually becomes a rate-limiting
step [7]. Therefore, efficient communication schemes for
distributed machine learning tasks are attracting broad
interest. The communication necessary between two ma-
chines in a computation task is quantified by its com-
munication complexity, either within classical [8–11] or
quantum channels [12–15]. Compared to classical com-
munication, even though quantum algorithms have been
shown to reduce the communication complexity in some
scenarios [16], machine learning tasks were not included.
Quantum algorithms have been generally studied as ac-
celerators for the computational complexity [17] in prob-
lems such as least-square fitting [18], statistical infer-
ence [19], feature engineering [20], and classification prob-
lems [21]. Whether quantum algorithms can accelerate
communication in distributed learning tasks remains an
open question.

Here, we propose a quantum communication algorithm
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for two typical data fitting subroutines in machine learn-
ing: least-square fitting and softmax regression, which
are the common output layers of predictors and classi-
fiers, respectively [22]. In this paper we assume a training
dataset contains N independent identically distributed
(iid) data points. Each data point has an M -dimensional
input ~x and a scalar output y. In the basic commu-
nication scenario [4], the training dataset, comprising
the input attributes and labels, is distributed across two
parties, Alice and Bob. Both least-square fitting and
softmax regression aim at fitting a model y ≈ f(~x,λ)

to the data, by estimating the parameters λ̂ that min-
imize a given loss function. The goal of a communica-
tion algorithm is to minimize the number of bits [8, 9] or
qubits [14, 15] exchanged between Alice and Bob during

model fitting, while keeping the accuracy of λ̂ within a
standard error ε.

Least-square fitting has been extensively studied in
both classical distributed algorithms and single-party (no
communication) quantum algorithms. Using a classical
algorithm based on correlation estimation, it has been
proved that the classical communication complexity can-
not be below O(1/ε2) [23, 24]. However, to reach such
lower bound requires an exponentially large number of
data points. In the case of finite datasets, since the ac-
curacy of the fitting parameters should be at least as
small as its error ε, a classical deterministic method re-
quires O(N log2(1/ε)) bits to be exchanged between two
parties within a precision ε [25]. When high accuracy is
not required, only 1/ε2 data points with random indexes
need to be transferred, which yields a O((log2(1/ε) +
log2(N)) 1

ε2 ) communication complexity [23]. Then, to

achieve a statistical variance ε2s = var(|λ|) ∝ 1/N ,
these two classical algorithms have the same commu-
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FIG. 1. Quantum circuits for the distributed quantum count-
ing or quantum bipartite correlator (QBC) scheme. H, G,
and QFT † represent the Hadamard gate, the Grover opera-
tor, and the inverse QFT, respectively. The t-qubit register is
measured after the inverse QFT. The inset shows the biparty
distributed scheme of the Grover operation, where Uxl and
Vyk are defined in Eq. (7,8).

nication complexity O(N log2(N)) or O( log2(1/εs)
ε2s

). In

comparison, quantum computation methods for linear
fitting based on the Harrow-Hassidim-Lloyd (HHL) al-
gorithm [26] yield normalized parameters (|λ|2 = 1)

from a quantum state |λ〉 =
∑M
j=1 λj |j〉 with commu-

nication complexity of O(log2(N)) [18, 27, 28]. How-
ever, to extract λj=1,··· ,M , the HHL-based algorithm re-
quires O(M2 1

ε2 ) repeated measurements. In this case,
the HHL-based fitting algorithm requires communicat-

ing O( log2(N)
ε2 ) qubits [18, 29], with no clear advantage

over classical algorithms.

We designed a quantum counting-based [30, 31] com-
munication algorithm that achieves a reduced commu-

nication complexity of O( log2(N)
ε ) for both least-square

fitting and softmax regression (Table I). At its core, the
direct action of our algorithm is to estimate the corre-
lation or the Hamming distance of two bit-strings dis-
tributed across two parties. Embedding this algorithm
into a hybrid computing scheme enables the data fitting
tasks beyond the theoretical limit of classical algorithms,
and we expect it could benefit other scenarios not ana-
lyzed here.

Estimating correlation. We first present the core sub-
routine of our methods, the quantum bipartite correlator
(QBC) algorithm. The problem is stated as follow: Alice
and Bob haveN -dimensional vectors ~xb, ~yb ∈ {0, 1}N , re-
spectively, that can only take binary values (denoted by
superscript b). This is not as restrictive as it sounds, as
real numbers can always be expanded as binary floating
point numbers (see section ”least-square fitting”). The

task is to estimate the correlation ρ̂ ≡ xbyb−xb·yb√
xb(1−xb)yb(1−yb)

,

in which the communication-intensive step is to evaluate

xbyb = 1
N

∑N
i=1 x

b
i y

b
i within a standard deviation error

ε [23].

We assume that Alice and Bob have access to quan-
tum computers with oracles. The oracle of Alice’s com-
puter performs a unitary transformation Û1,2

~xb : |i〉1|0〉2 7→
|i〉1|xbi 〉2 that encodes the data xbi , where |i〉 is an n ≡
dlog2(N)e-qubit state |i1i2 · · · in〉, representing the index
of the queried component, and |xbi 〉 is a single-qubit state.

Bob has an oracle Û~yb of the same type that encodes the

data ybi . This type of oracle is a common building block
in quantum algorithms [18, 26, 36], which can be realized
through quantum random access memory [37] or other
data-loading procedures [38, 39].

Estimating the correlation xbyb is based on quantum
counting, in which the phase oracle is realized cooper-
atively by Alice and Bob through communication, as
shown in Fig. 1. We sketch the framework here and
provide the algorithm details in the supplementary ma-
terials (SM, which includes Refs. [31, 33, 35, 40]) sec-
tion I. The algorithm works on an n-qubit vector in-
dex space (|·〉n), a t-qubit register space (|·〉t), and a
2-qubit oracle workspace (|·〉o). Initially, all qubits are
set to zero: |ψ0〉 ≡ |0〉t|0〉n|00〉o. Hadamard gates are
applied to create superposition in both t and n space
|ψ1〉 = 2−(t+n)/2

∑
i,τ |τ〉t|i〉n|00〉o. A phase oracle on

the state |·〉n can be realized through the following uni-
tary operation:

Ô~xb,~yb ≡ Û
n,o1
~xb Ûn,o2

~yb
CZo1,o2Ûn,o2

~yb
Ûn,o1
~xb , (1)

which yields Ô~xb,~yb |i〉n|00〉o = (−1)x
b
i y

b
i |i〉n|00〉o. Here

o1, o2 are the two qubits in the oracle space and CZo1,o2

is a control-Z gate acting on them. Each oracle call
requires about 2n-qubit communication, as Alice needs
to send the (n + 1)-qubits to Bob after applying Ûn,o1

~xb

and Bob needs to send the (n + 1)-qubits back after

applying Ûn,o2
~yb

CZo1,o2Ûn,o2
~yb

; finally, Alice applies Ûn,o1
~xb

to finish the whole oracle Ô~xb,~yb . The Grover opera-

tion needed for counting is then constructed as Ĝ~xb,~yb ≡
Ĥ⊗n(2|0〉n〈0|n− Î)Ĥ⊗nÔ~xb,~yb . The QBC scheme applies
the Grover operation iteratively on the initial state:

|ψ2〉 =
1

2(t+n)/2

∑
τ

|τ〉t ⊗ (Ĝ~xb,~yb)τ
∑
i

|i〉n|00〉o. (2)

Expanding the Grover operator in its eigenba-
sis gives (Ĝ~xb,~yb)τ

∑
i |i〉n = (eiτθ|φ+〉〈φ+| +

e−iτθ|φ−〉〈φ−|)
∑
i |i〉n, where |φ±〉 are the two eigen-

states of Ĝ~xb,~yb , and θ = 2 arcsin

(√
xbyb

)
. Applying

the inverse quantum Fourier transform QFT† to |·〉t



3

TABLE I. Communication complexity of classical distributed algorithm, quantum counting-based algorithm developed in this
work, and other quantum algorithms. Listed problems include estimating correlation and Hamming distance of two separate
bit strings, distributed linear fitting, and distributed softmax regression. In the first column, (c) and (q) means the problem
requires output as classical data or quantum states, respectively. In the table, ε, N , M are the standard error of solution,
number of data points, and number of attributes in Alice’s data; κ and s are the condition number and sparseness of the matrix
X in linear regression problems; and q is the number of classes in softmax regression problems. (See derivation in section III.).
All the classical algorithms and the LOCC algorithm transfer classical bits, and the rest of the quantum algorithms transfer
qubits.

Problem (output) Classical algorithm Quantum counting Other quantum algorithm

Correlation (c) O( 1
ε2

)(lower-bound) Ref. [23] O( log2 (N)

ε
) O( log2 (N)

ε2
) (swap-test, [32])

O(log2 (N) max
{

1
ε2
,
√
N
ε

}
)

(LOCC, [33])

Hamming distance (c) O(N)[34] O( log2(N)

ε
) O( log2(N)

ε2
) (classical shadows, [35])

Linear-fitting (c) O(N log2 (κ
2

ε
)) (deterministic[25]) O(Mκ log2(N)

ε
) O(M2κ5 log2(N)

ε2
) (HHL,[18])

O(
log2(N)+log2 (κ

2

ε
)

(ε/κ2)2
) (stochastic [23])

Linear-fitting (q) −− O(Mκ log2(N)

ε
) O(κ5 log2(N)) (HHL,[18])

Softmax regression (c) O(N log2 q) O(Mqκ log2(N)

ε
) −−

yields the final state:

|ψ3〉=
1√

2t+n

∑
η=±,i
〈φη|i〉|φη〉n|00〉oQFT†(

∑
τ

|τ〉teiητθ).

(3)
Measuring the t-register will project into a state |j〉t re-

sulting in the phase 2πj · 2−t which encodes either θ̂ or

2π − θ̂ with equivalent standard deviation: ∆θ̂ = 2−t+1.
Both cases give the same estimated correlation

x̂byb = sin2( θ̂2 ), with standard deviation ε =√
xbyb(1− xbyb)2−t+1 (see SM section II for details).

The overall communication complexity C is the Grover
operation’s 2(n + 1) qubits communication repeated for
2t − 1 iterations:

C = 2(n+ 1)(2t − 1) = O

(
log2(N)

ε

)
, (4)

where we choose t to satisfy the desired error bound. The
computational complexity is the total number of oracle
calls by Alice and Bob, which is Ccomp = 4(2t−1) = O( 1

ε ).
We note that the QBC algorithm solves the problem

of estimating xbyb, which is equivalent to computing the
inner product. Inner product of quantum states is usu-
ally accomplished by the swap test algorithm [32, 33].

However, the swap test method costs O( log2(N)
ε2 ) bits

of communication, due to the requirement of repeated
measurements. Recently, Anshu et al [33] proposed an
algorithm to estimate the inner product of two quan-
tum states using local quantum operations and classical
communication (LOCC). With respect to communication
complexity, neither the original SWAP-test that trans-
fers qubits, nor LOCC that transfers bits, achieves an
advantage over the classical algorithms. The QBC algo-
rithm achieves the communication advantage by utilizing

quantum counting and a distributed implementation of
the Grover iterator.

Estimating the Hamming distance. The QBC algo-
rithm can be used to estimate the Hamming distance d
between ~xb and ~yb (that is, the number of positions i
where xbi 6= ybi ). The key is to replace the oracle in Eq. 1
by

Ô′~xb,~yb ≡ Û
n,o1
~xb Ûn,o2

~yb
Co1,o2NOTZ

o2Co1,o2NOT Û
n,o2
~yb

Ûn,o1
~xb , (5)

where Co1,o2NOT represents a CNOT gate with o1 as con-
trol qubit, and Zo2 represents a σZ gate acting on the
o2 qubit. This phase oracle acts as Ô′~xb,~yb |i〉n|00〉o =

(−1)x
b
i⊕y

b
i |i〉n|00〉o, and the QBC scheme counts the

number of indexes i’s such that xbi ⊕ ybi = 1, return-
ing d

N with the same communication complexity as for
estimating the correlation.

This result provides a quantum solution to the widely
studied gap-Hamming problem in theoretical computer
science [34, 41]. Multiple proofs conclude that it is
impossible for a classical protocol to output the Ham-
ming distance d within

√
N using less than O(N) bits

of communication [23, 34, 42]. By setting ε = 1√
N

,

our quantum scheme performs the estimation using
O(
√
N log2(N)) qubits of communication, exhibiting a

square-root speedup over classical algorithms. The Ham-
ming distance can also be estimated via the ”classical
shadows” algorithm [35] (an established quantum algo-

rithm) with communication complexity of O( logN
ε2 ) (see

SM section V for details), which has a higher order to 1
ε

than the QBC algorithm. As estimating the Hamming
distance under communication constraints has applica-
tions in database searching [41], networking [43], and
streaming algorithms [44], the QBC algorithm may be
embedded into other diverse applications in the future.
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Least-square fitting. When machine learning mod-
els are used to predict the central value of Gaus-
sian distributed continuous variables, the common set-

ting is a linear output layer f(xi,λ) = λ0 + ~λ ·
~x = λTx (where xi ≡ (1, xi,1, · · · , xi,M−1)T and
λ ≡ (λ0, λ1, · · · , λM−1)T ) that performs the least-
square fitting. The model fitting is reduced to solving
a linear least-square problem Xλ = y, where X ≡
(x1, · · · ,xN )T is an N ×M matrix belonging to Alice
and y is Bob’s N × 1 column vector, both of which have

real-number components. The goal is to estimate λ̂ with
standard error ε using minimal communications. Here
we assume M � N , as the number of model parame-
ters/attributes is usually much smaller than the number
of data points to avoid over-fitting.

The least-square solution of the equation is λ =
(XTX)−1XTy = 1

N (NX†)y, where X† is the Moore-

Penrose pseudoinverse of X, and NX† should scale
as O(N0) in the case of iid dataset. As NX† can
be computed by Alice locally, only the calculation of
1
N (NX†)y involves communication. The jth component
of λ can be represented by correlations (inner product)

λj = 1
N

∑
i(NX

†
ji)yi, j = 0, · · · ,M−1, which can be cal-

culated by expanding the real numbers as binary float-
ing point numbers. For example, following the IEEE 754

standard [45], each NX†ji and yi can be written as bi-

nary floating point numbers: NX†ji ≡
∑∞
k=0 2u−kxbkji ,

yi ≡
∑∞
k=0 2v−kybki , where u and v are the highest digit

of the elements of NX†ji and yi, and xbkji and ybki are the
kth digit, respectively. Then λj can be written as:

λj =
1

N

∞∑
r=0

2u+v−r
r∑

k=0

N∑
i=1

xbkji y
b(r−k)
i

= 2u+v
∞∑
r=0

2−r(r + 1)fjr.

(6)

As xbkji and ybki are binary quantity, the inner product

fjr = 1
N(r+1)

∑r
k=0

∑N
i=1 x

bk
ji y

b(r−k)
i can be directly es-

timated by the QBC algorithm. The overall communi-

cation complexity is C =
∑M
j=1

∑∞
r=0 2 log2(N)

εjr
, where εjr

is the standard deviation error of fjr. The infinite series
in r is cut off according to the target accuracy ε of each
component λj , setting εjr to εjr = ε 0.449

2u+v(r+1)2/3
2

2
3 r. If r

is large enough so that εjr > 1, the quantum algorithm
is no longer pertinent, as the number t of ancilla qubits
in the quantum phase estimation algorithm drops to less
than one, since εjr = 2−t+1. In that case, fjr can be
simply dropped because these fjr terms are multiplied
by 2−r in Eq. (6), they do not contribute substantially
to the total error of λj . Rewriting C in terms of the
condition number κ =‖ A−1 ‖∞‖ A ‖∞ of the matrix

A = 1
NX

TX gives

C = 11.026× 2v+12uM
log2(N)

ε
= O

(
Mκ log2(N)

ε

)
,

(7)
where the absolute magnitude of 2v+u in C is on the same

order of κ|y|∞
‖X‖∞ (see SM section III for details). The total

number of oracle queries is Ccomp = Mκ
ε .

An HHL-based quantum algorithm has been previously
developed for data fitting without the communication
bottleneck [18]. The algorithm produces a quantum state

|λ〉 ≡
∑
j λj |j〉 with O( s

3κ6

ε log2(N)) computational
complexity, where 0 ≤ s ≤ 1 is the sparseness of the
matrix A. As explained above, this method is, however,
inefficient in extracting classical data from the quantum
states. In the communication-restricted scenario, the

HHL-based algorithm requires sharing O(κ
5M2

ε2 log2(N))

qubits. For a target statistical precision ε = 1/
√
N , the

QBC based scheme again obtains a square-root speedup
from O(N) to O(

√
N log2(N)) compared to the classi-

cal theoretical limit. A summary of the communication
complexity of different schemes is presented in Table I.

After demonstrating that the QBC algorithm can re-
duce the communication complexity to N , we numeri-
cally assess the practical conditions when the quantum
algorithm shows an advantage compared to classical al-
gorithms (Fig. 2). In general, the QBC algorithm starts
showing an advantage when N ≥ 103 ∼ 104, which is
a reasonable range in fitting problems. The quantum
advantage requires ε to be in an intermediate level: too-
small or too-large ε make deterministic or stochastic clas-
sical algorithm to have a lower communication complex-
ity.

The quality of a fitted model can be characterized by

the mean square error E ≡ 1
N (y−Xλ̂)2 = 1

N (y2 + ŷ2−
2yT ŷ). Only the calculation of 1

N y
T ŷ involves communi-

cation, which can again be realized through the correla-

tion estimation scheme, requiring O( log2(N)
ε )-qubit com-

munication.

The applications of the QBC algorithm are not re-
stricted to fitting linear functions, as a general function
of ~x can be expanded as a linear combination of a series of
basis functions y =

∑
j λjfj(~x). The matrix Fij ≡ fj(~xi)

can be computed locally, and the problem is then re-
duced to the linear fitting problem Fλ = y. Further-
more, this scheme can be used as the linear output layer
of neural network in high-expressivity machine learning
models [22].

Softmax classifier. Besides fitting continuous data,
the QBC scheme can also be used for fitting discrete
labels (classification). A common output layer of clas-
sification models is the softmax classifier. The basic
scenario is that the data of Bob yi has discrete pos-
sible values in a set of classes Y = {c1, c2, · · · , cq}.
The model outputs the probabilities for a given data
point ~x to be in each class P (y = cj |x,Λ) with ansatz
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FIG. 2. Communication complexity phase diagram of the
QBC algorithm, deterministic, and stochastic classical algo-
rithms in parameter space of N , ε, and M . Without loss
of generality, we assume that both ~x and y are normalized,
and different components of ~x are iid. The color map rep-
resents the minimal communication complexity of the three
algorithms in the logarithmic scale. Black lines divide the
space into three regions denoted as Classical (D), Classical
(S), and Quantum, representing the region where determinis-
tic classical, stochastic classical, and QBC algorithm has the
smallest communication complexity. The black dashed line in
each layer indicates the statistical variance ε = 1/

√
N .

P (y = cj |x,Λ) = eλj
T x∑

l e
λl
T x

, where the coefficient ma-

trix is Λ ≡ (λ0, · · · ,λq). The cross-entropy loss function
L(Λ) ≡ −

∑
ij 1yi=cj log2 P (yi = cj |xi,Λ) is to be mini-

mized, where 1y=cj is a 1 when y = cj and 0 otherwise.

λ̂ can be obtained from a set of equations:

N∑
i=1

xie
λ̂Tj xi∑q

k=1 e
λ̂
T
k xi

=

N∑
i=1

1yi=cjxi, j = 1, 2, · · · , q.

(8)
The equation right-hand-sides can be estimated as in-
ner product between 1y=cj and the vector x following
our previous scheme, with communication complexity

C = O( qM log2(N)
ε ) (see SM section IV for details). As

the left-hand-side of the equations does not involve y,
the equations can be solved without any further commu-
nication. We note that logistic regression for the 2-class
classification problems can be derived as a special case of
the softmax regression scheme with q = 2.

We can further quantify the communication complex-
ity of evaluating the quality of a fitted classifier. The
quality can be determined by comparing the model out-
puts ŷi = argmaxcjP (yi = cj |xi,Λ) and labels yi on the
training or testing dataset. Alice and Bob encode ŷi and

yi into Nq-bit strings b̂ij ≡ 1ŷi=cj and bij ≡ 1yi=cj , re-
spectively. Then the correctness of the model can be
determined by estimating the Hamming distance d be-

tween b̂ and b as 1 − d
2N (as each error in classification

contributes 2-bit difference). The communication com-

plexity is C = O( log2 (Nq)
ε ), showing no dependence on

dimension M and insensitive dependence on the number
of classes q.

Conclusion and Outlook -
In this work, we developed a distributed

Grover/quantum counting-based scheme that performs
distributed least-square fitting or softmax regres-

sion with a communication complexity O( log2(N)
ε ), a

square-root improvement over classical algorithms. The
quantum advantage comes from reduced communication
requirements by encoding information in the phases of
a superposition state, a unique attribute of quantum
systems. Some previous quantum schemes [18, 29, 32]
encode the information in the weight of superposition: as
extracting the superposition weight by state tomography
also requires O( 1

ε2 ) repetitions of state preparation and
measurements, these methods do not show significant
advantage in deriving classical fitting parameters com-
pared to classical schemes. The core of our algorithm, a
communication-efficient ”quantum bipartite correlator”,
is expected to be useful in other communication and
information-processing contexts as well. This method
is expected to preserve privacy between two parties.
Neither Alice nor Bob can determine the other party’s
attributes of a specific data point, as only the statistical
average is encoded in the phase during communication.
This meets the security requirement of distributed
computing [46].
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