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A collection of thin structures buckle, bend, and bump into each other when confined. This
contact can lead to the formation of patterns: hair will self-organize in curls; DNA strands will layer
into cell nuclei; paper, when crumpled, will fold in on itself, forming a maze of interleaved sheets.
This pattern formation changes how densely the structures can pack, as well as the mechanical
properties of the system. How and when these patterns form, as well as the force required to pack
these structures is not currently understood. Here we study the emergence of order in a canonical
example of packing in slender structures, i.e. a system of parallel confined elastic beams. Using
tabletop experiments, simulations, and standard theory from statistical mechanics, we predict the
amount of confinement (growth or compression) of the beams that will guarantee a global system
order, which depends only on the initial geometry of the system. Furthermore, we find that the
compressive stiffness and stored bending energy of this meta-material are directly proportional to
the number of beams that are geometrically frustrated at any given point. We expect these results
to elucidate the mechanisms leading to pattern formation in these kinds of systems, and to provide
a new mechanical meta-material, with a tunable resistance to compressive force.

When thin structures pack, there is a competition be-
tween elasticity, which often encourages pattern forma-
tion and densification, and geometric constraints. For
example, paper, when crumpled into a ball, forms com-
plex three-dimensional swirls [1, 2], and DNA strands
inserted into cell nuclei fold and pack into layers [3, 4].
In some cases, these densification processes are resisted
by friction [5, 6] and geometrical incompatibilities in the
deformation of the materials [7–10]. The formation of
patterns has been studied thoroughly in cases where thin
structures are adhered to a substrate [11–14], sheets are
constrained in a ring [6, 15, 16], and rods are inserted into
a container [17–19]. However, the question of to what de-
gree the rods and sheets will order themselves in these
complex and random packing processes is still open.

In structured arrangements of elastic beams, the com-
petition between order and geometric frustration has
been used to great effect in the design of materials with
novel and programmed properties [20–23]. There are
many models in statistical mechanics to rationalize the
emergence of order [24, 25], and in some cases these mod-
els have been extended to study frustration, fluctuation,
and shape-change in thin elastic structures [26–29]. How-
ever, these models are insufficient to capture the ordering
of beams because of the difficulty of finding and model-
ing the interaction forces between adjacent elements. For
example, consider a simple 1-D version of the ordering of
packed beams, the gills of a mushroom (see Figure 1a).
If the mushroom dries and shrinks, the gills will at first
buckle, and then bump into each other. Reminiscent of
the 1-D Ising model for magnetism [24], the ground state
of this system occurs when all gills point in the same di-
rection (shown in an analogous experiment in Figure 1b,
right). However, here there exists a hierarchy of dis-

FIG. 1: (a) An oyster mushroom that has been left in the
open air to dry (approximately one day between consecutive
pictures). During this drying process, the gills become com-
pressed along their length, causing them to buckle (middle)
and then align (right). (b) Experimental observations of a
similar phenomenon in a system of slender parallel plates com-
pressed in an Instron. (c) A numerical experiment of the same
system. Videos of a typical experiment (SI video 1) and sim-
ulation (SI video 2) are available.

ordered meta-stable states in the shallow-post-buckling
regime, where the gills self-organize into “clumps,” and
leave “holes” where they have separated (Figure 1a, mid-
dle).

In this Letter, we consider a simplified version of this
system: an array of N parallel elastic beams confined
to a vertical space `s that is shorter than their length
`, and equally spaced inside of a box of width W , such
that the distance between the centers of any two adja-
cent beams is d = W/N (Figure 1c). We characterize the
control parameter of the system to be the confinement
factor Γ = `/`s. If the beams are initially perturbed
in random directions, we observe behavior reminiscent
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of a phase transition, where the initial disordered state
(beams buckled in random directions) will gradually de-
cay to the fully-ordered ground state (all beams aligned
in one direction) as Γ increases. We therefore ask the
following two questions: First, when and how much will
the beams align; can we predict how order will emerge?
Second, how does the mechanical response of the system
depend on the degree of order and its emergent topol-
ogy; conversely could we use this emergent topology in
the design of tunable-stiffness materials?

To investigate this state transition experimentally, we
built a stiff acrylic two-piece mount that served to clamp
many slender elastic plates at two of their opposite edges
(effecting clamped-clamped boundary conditions). We
inserted sheets of PVS (thickness h = 1.5 mm, number
N = 26) into the mounts, and compressed the system
uniformly with an Instron, which allowed us to measure
Γ, as well as the force response of the arrangement of
beams (Figure 1b). We then performed an ensemble of
non-thermal quenches on this array of beams – that is, we
iso-statically compressed the beams many times, manu-
ally biasing each beam by hand to initially buckle to the
right or left based on a random coin-flip at the start of
each experiment (further details in SI section 1). Just
as we see in the case of the mushroom (Figure 1a), any
adjacent beams buckling towards each other will eventu-
ally make contact and form clumps (Figure 1b, middle).
After enough confinement, these clumps become unsta-
ble and decompose, and the beams eventually all point
in one direction (Figure 1b, right).

We parametrize the direction of the buckling of each
beam using what we call the “tropism” where Ti = 0
when beam i is un-buckled, and Ti = +1 (−1) if it is
buckled to the right (left), as shown in Figure 2a. To
account for beams that are no longer in the first buckling
mode because of contact with other adjacent beams or
with the walls, we consider that a beam is buckled to
the right (left) if the portion of the beam halfway up the
box is farther to the right (left) than its ends. We can
average the behavior of all beams into an overall system
tropism

T̄ =

∣∣∣∣∣
1

N

N∑

i=1

Ti

∣∣∣∣∣ . (1)

Note that T̄ ≈ 0 when the beams are randomly di-
rected, and T̄ ≈ 1 when the beams are all aligned (Fig-
ure 1b, right). We plot the ensemble-average of T̄ at in-
creasing Γ for a fixed beam spacing, number, thickness,
and initial length in Figure 2b ( ), and indeed find a grad-
ual increase in the average order of the system. We find
large variance in T̄ (i.e. large error bars) for different
random initializations of the beam buckling directions.
This large variance results from the fact that order arises
at different Γ for different random initializations of the
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FIG. 2: The emergence of order for (a) two beams and (b &
c) many beams. (a i.) Illustrated examples of Ti (+1, blue;
−1, orange) (a ii.) Experiments (green) overlaid with simu-
lations (blue and orange) of two beams that buckle towards
each other. There are two meta-stable “clumped” T̄ = 0
states (vertically and rotationally symmetric) however when
Γ > Γc, T̄ = 1. (a iii.) Γc increases with the normalized dis-
tance between two beams d/`s (experiments – , simulations –

, model – black line, SI section 2) (b) T̄ for experiments and
simulations of many beams (N = 26, W = 140 mm, `s = 54
mm, h = 1.54 mm, average d = 5.4 mm, number of ensemble
measurements: experiment – 25, simulation – 100) (c) T̄ in-
creases with Γ with a rate highly dependent on N , d, W , h,
and `s.

beams. We can compare this with the behavior of two
beams buckling towards each other (Figure 2a ii and iii)
and find that for the many-beam case, the clumps re-
main stable (and therefore T̄ < 1) at much higher Γ for
the same normalized beam spacing d/`s (Figure 1c).

To eliminate any imperfections in the experimental set-
up and other forces such as gravity, we replicated the ge-
ometry of our physical experiments using numerical ex-
periments (ensemble T̄ shown in Figure 2b, ) in the
Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS [30], visualizations in Ovito [31]) adopt-
ing a similar protocol as [32] to simulate the mechanics of
the elastic beams (SI section 3). We also include simula-
tions with varying coefficient of sliding friction (µs = 0,
frictionless, ; µs = 1, rubber-like, ; µs = 2, highly
frictional, ), and different beam-end (pin-pin, ), and
vertical box edge (periodic, ) boundary conditions. Ad-
ditionally, we performed simulations where the distances
between the beams was uniformly randomly distributed
with a lower bound of 1.2h and an upper bound such
that the average distance between the beams is the same
as the model experiment (SI video 3, ). We find good
agreement between experiments and simulations, and
furthermore the tropism T̄ is statistically independent
of the degree of friction, boundary conditions, and beam
spacing variability. The lack of dependence on friction is
somewhat unique when compared to other work on the
packing of slender structures [5, 6, 15–19]. However, our
set-up is designed specifically to study the emergence of
order, not the packing of the elastic structures in space.
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FIG. 3: Understanding beam alignment. (a) A step-by-step
illustration of clump-hole annihilation, with simulations at
increasing Γ from top to bottom. Clumped beams are colored
purple, and all others are colored by their tropism (Ti = 1→
blue, Ti = −1 → orange). (b) Illustration of the parameters
in our mathematical model. (c) The ensemble value of T̄ as
a function of α (prediction from Equation 2, red). Error bars
are the same as in Figure 2c, left off for clarity.

In our system, order arises at relatively low confinement
compared to other studies, and since understanding this
ordering is our aim, we do not consider a highly-packed
regime, where the beams would begin to slide against
each other and the walls, and friction would play a larger
role. We discuss this further in section 4 of the SI. Hence,
without loss of generality, we performed simulations of
clamped-clamped, evenly spaced beams without friction
in a periodic box, with the expectation that the results
apply broadly. We varied the beam density as well as the
number of beams, plot T̄ as a function of Γ in Figure 2c,
and find that T̄ strongly depends on the geometric pa-
rameters of the box.

In Figure 3a we show a series of simulations with in-
creasing Γ. We find that beams align when clumps and
holes “meet” and annihilate, that is, the space between
the center of a clump and a hole is completely taken
up by the horizontal deflection of the hole (dh) and the
clump (dc), as well as the sum of the thicknesses of the
beams between them (Figure 3b, more detail in SI sec-
tion 5). We can use this mechanism to predict T̄ as a
function of Γ. We would expect that T̄ = 1 when the fi-
nal clump meets and annihilates with the final hole. For
simplicity we will consider the case where the edges of
the box are periodic, and as such the maximum possi-
ble distance between the final clump-hole pair is W/2.
If we approximate the shape of a beam as a triangle,
using the Pythagorean theorem, dh ≈ 1

2`s
√

Γ2 − 1. We
can further approximate the center beam of a clump as
a mode-2 buckled elastica, and so dc ≈ dh/2.

In experiments and simulations, we observe that
clumps and holes do not move laterally as the beams
are confined, and therefore, before annihilation, the num-
ber of beams between a clump and a hole Nb stays the
same. However, the effective horizontal thickness h̃ of the
beams changes, as shown in Figure 3b. If we keep our
triangular approximation for the shape of the beams, we
get that h̃ ≈ hΓ and therefore the additional space that

each beam takes up is h̃− h = h(Γ− 1).
When the maximum amount of initially empty space

between a clump and a hole (W/2 − Nh/2) is taken up
by these three previously mentioned lengths (dh + dc +
Nbh(Γ− 1)), all clumps and holes will have met and an-
nihilated, and T̄ → 1. In the case where the last clump
and hole are as far apart as they can be, Nb = N/2, so
the fraction of the horizontal space between the clump
and hole taken up by the beams, which we will call the
“porosity” α, is α = [dh+dc+N(h̃−h)/2]/(W/2−Nh/2).
In Figure 3c, we plot T̄ against α and find that, as we
expect, for all geometries, T̄ ≈ 1 when α = 1. More
than that, however, it seems that the tropism is approx-
imately equal to α, or in other words, rearranging and
inserting our previously derived values for the clump and
hole deflections,

T̄ ≈ α =
1
2 (Γ− 1)hN + 3

4`s
√

Γ2 − 1

W/2−Nh/2
. (2)

This comes from the fact that as the beams are confined,
the number of clumps and holes which make contact and
annihilate is proportional to the space that the beams
take up. We note that, as can be seen from Figure 3c,
even when α = 1, there are some cases where T̄ is slightly
less than 1. We expect that these small discrepancies
come from the fact that, rather than explicitly deriving
dh, dc, and h̃, we have approximated their values. A
more thorough theoretical treatment of the beams might
improve the quality of our prediction, however, we believe
that these approximations are sufficiently elucidating for
the purposes of this work.

Now that we understand when the beams will become
ordered, we turn to our second question: how do the
beams respond to the imposed compression when they
are not ordered? This is analogous to why it requires
less force to confine paper to a target volume through
folding than through crumpling [2]: a larger degree of
geometrical frustration in thin structures often leads to
more stored energy [33]. We can observe this directly
in our system. In Figure 4 we plot the normalized com-
pressive force F̃i = Fi/F1 of each beam in a clamped-
clamped, periodic, frictionless simulation, where Fi is the
compressive force applied to beam i, and F1 is the com-
pressive force applied to a single beam with the same
boundary conditions, compressed to the same Γ and no
neighboring beams. We simultaneously define and plot
the normalized bending energy Ũbi = Ubi/Ub1 in the same
way, where Ubi is the bending energy of beam i, and Ub1

is the corresponding bending energy of the beam from
which we derive F1. We superimpose these plots onto
the simulated configurations. For beams that are not in
clumps, and therefore have no contacts, F̃i = Ũbi = 1.
In contrast, beams that are in contact with other beams
in a clump and are geometrically frustrated [33] have a

higher F̃i and Ũbi, as they cannot find their lowest-energy
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FIG. 4: Ordering affects compressive stiffness. (a) Snapshots
of a simulation at Γ = 1.18 (i) and Γ = 1.38 (ii), superim-
posed with the vertical compressive force (Fi, ) and bending
energy (Ubi, ) of each beam normalized by the force and
bending energy of a beam which is not part of a clump (F1,
Ub1). (b) The total compressive force ( ) and bending energy
( ) of the same system of beams as a function of Γ, nor-
malized by the compressive force and bending energy of the
system if all the beams were buckled in the same direction.
Predictions from our approximated model (Equation 3) are
(F ) and (Ub). Vertical lines show places where a clump and
hole annihilate (SI video 4) (c) Normalized force and bending
energy against 1 + Nt/N together with our predictions from
Equation 3 (simulation Ub – squares, predicted Ub – red line,
simulation F – circles, experiment F – diamonds, predicted
F – blue line). Gray in the legend indicates coloration by Γ.

state. These results indicate that our system is behaving
like a mechanical meta-material, an object that gets its
properties not only from the material that it is made of,
but also its internal geometry [23].

Previously, we noted that the beam at the center of a
clump has the approximate shape of a mode-2 elastica.
We would expect that Ub ∝ n where n is the mode num-
ber of the beam (since doubling n doubles the average
curvature in the beam), so for the central beam in the

clump we expect that Ũbi ≈ 2. This is confirmed in Fig-
ure 4a, even for very large Γ. To estimate Fi for the
central beam of a clump, we performed additional simu-
lations of a single beam, where the slope at the vertical
center of the beam was forced to match the slope derived
from our triangular approximation of the beam shape.
In these simulations we found that F̃i ≈ 3. In Figure 4a,
we find that the maximum value of F̃i is indeed approx-
imately 3 for most of the simulation, but increases for
very large Γ, which we expect comes from a deviation of
the true beam shape from our approximation.

In Figure 4a we see that F̃i and Ũbi for the beams in
the clump seems to increase linearly from ≈ 1 at the edge
of the clump, to the maximum value at the clump center.
If we use our earlier approximations for these maximum
values (Ũbi ≈ 2 and F̃i ≈ 3), we might expect that, on

average, a beam in a clump has Ũbi ≈ 1.5 and F̃i ≈ 2.
Hence, we would expect that the total force and bending
energy in our arrangement of beams is

F = F1(N +Nc),

Ub = Ub1(N +Nc/2),
(3)

where Nc is the number of beams that are in a clump. In
Figure 4b, we plot the total normalized force F/(NF1)
( ) and bending energy Ub/(NUb1) ( ) of the specific
simulation run pictured in Figure 4a, along with their
estimated values from the number of clumped beams as
given by Equation 3 and find good agreement, except at
high Γ, when the normalized force estimate starts to fail
as we expected. In Figure 4c, we plot F/(NF1) (circles)
and Ub/(NUb1) (squares) against 1+Nc/N and find that
for a wide variety of box geometries, Ub/(NUb1) collapses
to (1 +Nc/N)/2 for all data, and F/(NF1) collapses ap-
proximately to 1 + Nc/N for all data except for that at
very high Γ, both of which reinforce the appropriateness
of Equation 3. We expect that this error in the pre-
diction of F/(NF1) could be reduced with an analytical

treatment of F̃i for the beam at the center of a clump
(which may itself depend on Γ), which could replace the
value of 3 that we approximated from the model simula-
tion mentioned above.

In this work we have studied how many parallel beams
clamped at their ends and confined in a box order them-
selves, and found that at high enough Γ, T̄ → 1. We
also found that the compressive stiffness of the metama-
terial made up of these buckling beams is proportional
to the number of beams in a clump, potentially allowing
the stiffness to be manually or automatically tuned. We
expect that changes in the geometry that we have stud-
ied could lead to a large dependence on friction, as is the
case in many other systems of slender contacting struc-
tures [5, 34–38], creating an additional route for novel
functionalities. Furthermore, any intrinsic thermal mo-
tion [29], adhesion [39, 40], curvature, or any transverse
loading or long-range potentials may affect the ordering
and mechanical properties of the system, potentially pro-
viding deeper analogies to other work in statistical me-
chanics [25, 26], and more tunability. So far, we have
only considered beams with two motion-restricted ends
and fixed or periodic box edges; further studies could con-
sider cases where one end of the beams is free (like hair,
microtubules [41], or a carbon nanotube forest [42, 43])
or restricted only by friction with a wall, or where a lat-
eral edge is clamped, such as in the case of the mushroom
gills. We also note that, as the beams are compressed, a
transverse force (the compression) turns into a longitudi-
nal transfer, namely the redirection of the beams. This
could provide a method to redirect and control mechan-
ical waves [44, 45].
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