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Twisted bilayer graphene (TBG) exhibits extremely low Fermi velocities for electrons, with the
speed of sound surpassing the Fermi velocity. This regime enables the use of TBG for amplifying
vibrational waves of the lattice through stimulated emission, following the same principles of op-
eration of free-electron lasers. Our work proposes a lasing mechanism relying on the slow-electron
bands to produce a coherent beam of acoustic phonons. We propose a device based on undulated
electrons in TBG, which we dub the phaser. The device generates phonon beams in a terahertz
(THz) frequency range, which can then be used to produce THz electromagnetic (EM) radiation.
The ability to generate coherent phonons in solids breaks new ground in controlling quantum mem-
ories, probing quantum states, realizing non-equilibrium phases of matter, and designing new types
of THz optical devices.

Introduction.— Controlling and manipulating
phonons is a long-sought goal offering a multitude of
applications in electronics, information processing, and
material science [1–8], known as phononics. Recently,
high-amplitude beams of phonons were employed to
induce superconductivity [9–16] and to control ferro-
electricity [17–21] and magnetism [22–37]. Developing
reliable sources of phonons is therefore of key importance
for future advances in the field of phononics. Generation
of coherent phonons in solids can be achieved through
pumping by intense laser and magnetic fields [38–42], or
by the acoustic Cherenkov effect [43–46].

A laser of phonons (i.e., a device for amplification of
sound waves by stimulated emission) can serve as an ef-
ficient source of strong coherent acoustic waves with a
narrow linewidth. Such devices were realized in the low-
frequency range, radio to gigahertz, in trapped ions [47–
49], optical tweezers [50], nanomechanical resonators [51–
56], and magnetic systems [57, 58]. A coherent amplifi-
cation of terahertz (THz) phonons, yet below the thresh-
old, was recently demonstrated in semiconductor super-
lattices [59], and in pump-probe experiments in SiC [60].

Here, we present a model of a device for a controlled
amplification of acoustic THz phonons, based on the
newly-discovered narrow-band materials, whose unique
bandstructures allow coherent phonon amplification in a
narrow linewidth with low losses to incoherent modes.
Furthermore, acoustic phonons have a long lifetime, giv-
ing rise to a high-gain and low-loss device [61]. Although
generators of coherent sound waves are often referred to
as “sasers” [62], we dub our narrow-band-based device a
“phaser”, to highlight the phonon nature of the underly-
ing mechanism.

Narrow-band materials such as twisted bilayer
graphene (TBG) [63–65] and other moiré heterostruc-
tures [66, 67] have an electronic bandwidth controlled by
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FIG. 1. Proposed phaser device, and the key phonon-
emission process. (a) Device schematics. A layer of TBG is
encapsulated between two tunneling contacts of doped semi-
conductors. A nano-undulator is realized by a modulated in-
space uniaxial strain. Electrons produce a coherent phonon
beam whose resonant frequency is controlled by the wave-
length of the periodic structure, λu. (b) Band structure and
Phonon-emission processes. Blue (orange) areas indicate oc-
cupied (depleted) regions in the range ε = [0, V ]. Population
inversion is imposed by the leads depicted by the two parabo-
las. Phonon emission resonances occur between two replicas
of the bands shifted by the wavevector ku, induced by the
nano-undulator. (c) Phonon emission Feynman diagrams.
Solid lines indicate incoming and outgoing electrons, a wiggly
line indicates an emitted phonon, and the dashed line indi-
cates extra crystal momentum provided by the periodicity of
the nano-undulator. In the slow-electron regime, the energy
and crystal momentum can be only conserved in the presence
of the momentum shift ku.

the twist angle. The spectrum of the acoustic phonons
of the TBG near the magic angle (where the band is flat-
tened) is insensitive to the twist angle [68–70], resulting
in a “slow-electron” regime where the speed of sound sur-
passes electronic group velocities [71], and spontaneous
emission of acoustic waves is kinematically suppressed.
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Our proposed device is based on a TBG tuned close to
the magic angle and weakly spatially modulated by a pe-
riodic uniaxial strain or an array of gates (Fig. 1a). The
modulation period defines the resonant phaser phonon
mode. Remarkably, for lasing in the THz range, the
modulation wavelength should be in the mesoscopic scale.
External leads produce the needed electronic population
inversion, as in semiconductor laser diodes [72].

Toy model.— Postponing a numerical analysis of the
full TBG band structure, we first consider a Dirac Hamil-
tonian toy model, which applies to the low-energy physics
of generic 2D lattices in the slow-electron regime:

HD(k) = ~vek · σ. (1)

k = (kx, ky) is the in-plane crystal momentum, σ =
(σx, σy) a vector of pseudo-spin Pauli matrices, and
ve > 0 the electronic velocity. Eq. (1) is diagonalized

by the Bloch states eir·k√
A |ψkα(r)〉, corresponding to the

eigenvalues εα(k) = α~ve|k|, where α = ±, |ψkα(r)〉 is
periodic in the unit cell, and A is the area of the sys-
tem. The eigenstates are created by the operators ĉ†kα.
In the toy model, we assume no spin or pseudospin de-
grees other than σ (additional degrees of freedom such
as valley, spin, and layer indices of the TBG would not
qualitatively change the effect).

Concentrating on the ve < cph regime, with cph the
speed of sound, assumed uniform and isotropic. Sound
waves are described by the lattice displacement oper-
ator û(r, t) = (ûx, ûy)[73], which can be expanded in
the eigenmodes û(r, t) = 1√

A

∑
q e

iq·r−iωl(q)tcl(q)ũl(q).

Here, r = (x, y), and cl(q) is the unit vector denoting
the direction of the displacement in the mode l and crys-
tal momentum q. Focusing on the lowest energy acoustic
mode with l = 0, we assume a dispersion ω0(q) = cph|q|,
and coupling to electrons

Ĥep =

∫
d2rg(r)Ôij(r)∂iûj(r). (2)

Here, Ôij(r) is a local electronic operator with i, j =
{x, y}, and g(r) is the coupling strength with a position
dependence explicitly specified below.

Two external leads produce an electronic population
inversion. An electron-doped semiconductor contact has
a chemical potential set at ε = εtop, corresponding to the
top of the upper band of the TBG [denoted by α = +, see
below Eq. (1)], and a hole-doped semiconductor contact
is set to the charge neutrality point of the TBG, ε = 0.
We assume that tunneling between the system and the
leads is faster than the electronic decay rates due to re-
laxation and phonon emission [74]. Assuming this and
zero-temperature leads, the electronic occupation prob-
ability fαk = 〈ĉ†αkĉαk〉 is approximated by fαk = 0 for
0 < εα(k) < V , and fαk = 1 otherwise, imposing popu-
lation inversion in the upper band (Fig. 1b).

When the electron-phonon (e-ph) coupling is spatially
uniform, the electronic population inversion is virtually
decoupled from the phonons. Indeed, the “slow-electron”
regime renders conserving energy and crystal momentum
simultaneously impossible within a single-phonon emis-
sion. As a result, the incoherent phonon background field
created by the inverted electronic state is suppressed.
This e-ph decoupling is crucial for lasing. Yet the elec-
trons should be coupled to at least one phonon mode, to
generate a coherent beam.

Inspired by free-electron lasers [75–78], emission into
a selected mode can be induced by spatially modulated
e-ph coupling, g(r). Below, we let g(r) depend on the
x = r · x̂ coordinate, with a wavelength λu = 2π/ku,
g(r) = g0 + 2g1 cos(kux) (see Fig. 1a). We denote the
region of the system where g1 6= 0, a nano-undulator, by
analogy with the FEL magnetic undulator, and discuss
its physical realization below.

In the nano-undulator, phonon emission processes
obey k′ − k = q + nkux̂, where k, k′ are respectively
the electronic crystal momenta before and after emit-
ting a phonon with momentum q, and n = {−1, 0, 1}
[Fig. 1c]. The momentum shift arises from the Fourier
expansion of g(r) in Eq. (2): g(r) =

∑
n gne

inkux,
where g1 = g−1. Energy conservation, however, remains
ε+(k′) − ε+(k) = ~ω0(q). Energy and crystal momen-
tum conservation is satisfied by two resonant x̂-direction
phonon modes with frequencies

ωR± =
cphku

(cph/ve)± 1
. (3)

Thus, the resonant frequency of the phaser is controlled
by tuning the nano-undulator wavevector, ku.
Gain estimation starts with considering a coherent

sound wave incident at x = 0 with amplitude u0 and
frequency ω, propagating along +x̂ (generated, i.e., by
a seed or by spontaneous emission processes), Fig. 1a.
Sound amplification in the nano-undulator is captured
by an exponential factor with the gain coefficient γω [72]

uω(r, t) = u0e
γωxei(qx−ωt), (4)

where q = ω/cph. Such a sound wave, after passing the
nano-undulator, carries a period-averaged power density

Ps(ω) =
1

2a2Lu
cphMω2|u0|2(e2γωLu − 1), (5)

where Lu is the nano-undulator length, M is the atomic
mass of the underlying material, and a is lattice constant.

In the low-gain limit, the period-averaged power den-
sity emitted by the electrons stimulated by the field uω,
can be found using Fermi’s golden rule [79],

Pe(ω) =
2πω

A
∑

αα′,kk′

fαk[Mαα′

kk′ δ(εα(k)− εα′(k′)− ~ω)

−Mαα′

k′kδ(εα(k)− εα′(k′) + ~ω)].

(6)
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FIG. 2. The gain in the toy model. (a) Dirac disper-
sion of the electrons as in Eq. (1) and a copy shifted by the
energy ω and crystal momentum q + ku in the x̂ direction
(dashed arrow). The phonon emission rate is proportional to
the intersection area of the two Dirac dispersions [Eq. (6)],
indicated by the blue line. (b) The gain of the device normal-
ized by γ0 [see Eq. (8)] as a function of the phonon frequency
calculated in the toy model, for four values of ku. The val-
ues of ku and the corresponding wavelengths λu = 2π/ku are
indicated in the inset. The gain exhibits resonance peaks at
the frequencies given by Eq. (3).

Here, (α,k) and (α′,k′) respectively denote the elec-
tronic band and crystal momentum before and after
the interaction with the acoustic wave and Mαα′

kk′ =

|A−1
∫
d2reir(k−k

′)〈ψαk(r)|Ĥep|ψα′k′(r)〉|2, where the
integration is over the nano-undulator area. [For coher-
ent phonon generation in a more generic case one can use
e-ph instabilities as outlined in the Supp. Mat.]

Since the sound wave is coherent, the acous-
tic field operator in Ĥep can be replaced
[Eq. (2)] by its expectation value 〈û〉 ≈ uω,
given in Eq. (4). Then we obtain Mαα′

kk′ =

q2|u0|2
∑
n |

gn
A |

2|
∫
d2reγωxeir(k−k

′−(q+nku)x̂)〈Ô〉αkα′k′ |2,

where 〈Ô〉αkα′k′ =
∫
d2r〈ψαk|Ôxi(r)ci|ψα′k′〉, and ci is

the i-th component of the unit vector along u0.

Assuming 〈O〉 depends weakly on momentum, and tak-
ing a small gain limit γω → 0, Mαα′

kk′ is non-zero only
when |k − k′ − (q + nku)x̂|2 < (2π)2/A. In the ther-
modynamic limit (A → ∞), the values of k contribut-
ing to the sum in the expression for Pe(ω) in Eq. (6),
lie near the intersection line of two cones described by
εα(k) and εα′(k

′) + ~ω, where k′ = k+ (q + nku)x̂, and
fαk 6= fα′k′ (Fig. 2a). The largest value of Pe(ω) is ob-
tained for ω ≈ ωR,n, where n = ± [see Eq. (3)], where
the two cones are tangent. The area in the momentum
space where the two cones are nearly tangential diverges

as δω
− 1

2
n , with δωn = ωR,n − ω, as ω approaches ωR,n

from below, giving rise to a resonance peak in Pe(ω). For
ω > ωR,n the intersection line of the cone with α = +
and the cone with α′ = −, contributes to a negative peak
corresponding to the absorption of phonons.

The gain γω is found by setting Ps(ω) = Pe(ω) and

using [Eqs. (5) and (6)] for Ps(ω) and Pe(ω) as a function
of γω. In the small gain limit (γω → 0),

γω = P0
e (ω)a2/(cphMω2|u0|2), (7)

where P0
e (ω) = Pe(ω)|γω=0. Estimating Eq. (6) in the

limit 0 < δωn � ωR,n and V � ~ωR,n [79] , we find

γω = γ0
∑
n=±

~ωR,n
√

2ωR,n/δωnND(V )a2, (8)

where γ0 = g21〈O〉2/(~c3phM) and ND(ε) = ε/(2π~2v2e ) is
the DOS of the Dirac dispersion. Fig. 2b shows γω vs. ω
for several ku values shown in the inset.
Analysis of phaser realizations in TBG.— The TBG

consists of two graphene monolayers twisted by a relative
angle θ, giving rise to a moiré super lattice with period
[80] am = a/(2 sin(θ/2)). Small twist angles yield a dis-
persion near charge neutrality with narrow bands, ap-
proximated by Eq. (1) for two spin and two valley quan-
tum numbers [63, 81]. Let us focus on θ = 1.4◦, where
we find ve ≈ 2× 106 cm/sec, which is below the speed of
sound, approximated by cph = 3× 106 cm/sec.

We consider two alternatives for the spatial modula-
tion of the e-ph coupling needed for the nano-undulator
[see Eq. (2)] [82]. The first realization uses a spatially
modulated uniaxial strain (see Fig. 1a), induced by plac-
ing the TBG on a periodic nanostructure or by apply-
ing temperature gradients [83–87]. Weak periodic strain
modulates the graphene lattice, and thus also the e-ph
coupling [69, 88]. For a strain, ε0 cos(kux), the spatially-
modulated part of the e-ph coupling in each monolayer

can be expressed by Eq. (2) with g1 =
√
3

4a ~vFβε0, and

Ôij(r) = (ĉ†r,Aĉr,B + ĉ†r,B ĉr,A)(δi,xδj,x − δi,yδj,y), where

ĉ†r,A/B creates an electron in the sublattice A or B of

the graphene monolayer at the r unit cell [79]. For
ε0 ≈ 5% strain, we estimate g1 ≈ 0.15 eV, correspond-
ing to γ0 ≈ 0.02µm−1.

The second realization uses a periodic array of metal-
lic gates at distance d from the TBG. The gates change
the e-ph coupling by affecting the Coulomb screening be-
tween the electronic charge density and the lattice ions
[89–95]. We approximate the renormalized coupling of a
phonon with momentum q by g(r) = D0q/[q + qTF(1 −
e−2qd(r))], where d(r) is the distance from the gates,
which toggles between d(r) ≈ d above a gate and d(r)→
∞ not above a gate, qTF is the Thomas Fermi wavevec-
tor and D0 the bare e-ph coupling. To approximate the
e-ph coupling by Eq. (2), in the limit qTF � q, 1/d, we
estimate g1 ≈ 1

4
D0

1+2qTFd
and Ôij(r) ∼ ρ̂(r)δij , where

ρ̂(r) = ĉ†r,Aĉr,A + ĉ†r,B ĉr,B measures the density. For
qTFd ≈ 3 [96] and D0 = 50 eV, we estimate g1 ≈ 1.8 eV,
corresponding to γ0 ≈ 3µm−1.
Numerical analysis of the gain.— We simulated the

continuum TBG model [63, 81] in order to verify that
the full bandstructure of the TBG exhibits resonance
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FIG. 3. Numerical analysis of the phaser based on the
TBG. (a) The band structure of the upper band of the TBG
near the charge neutrality point for a single valley, shown on
a mini Brillouin zone centered around the Dirac points, K
and K′. Curves around K and K′ points indicate the equipo-
tentials ε = 6 meV. (b) The gain calculated by Eqs. (6) and
(7) for the wavefunctions of the TBG for the uniaxial-strain
nano-undulator as well as for the array of screening gates
nano-undulator, for the wavevector ku ≈ 0.11Gm indicated
by a circle on the x-axis in panel c. (c) The frequency of the
resonant peaks of the gain as a function of ku. Dashed lines
are the resonances predicted by the toy model [Eq. (3)].

phonon-emission peaks, as predicted by the toy model,
and compare their frequencies to Eq. (3). Fig. 3a shows
the spectrum of the upper band of the TBG in a sin-
gle valley in the mini-Brillouin zone centered around the
Dirac points [c.f., supp. mat.]. The contours near the K
and K ′ points are the equipotentials ε = V .

We evaluated the gain in the full TBG model using
Eq. (7), estimating Pe(ω) by Eq. (6) in the two aforemen-
tioned nano-undulator realizations. Fig. 3b shows the re-
sulting gain vs. the frequency for ku ≈ 0.11Gm, where
Gm = 2π/am, for the two nano-undulator options. Both
curves exhibit a peak near ω ≈ 0.8 THz, corresponding
to the analytical estimate of ωR+ [defined in Eq. (3)].
The screening gates option exhibits an additional peak
near ω ≈ 1.5 THz, not present for the uniaxial strain op-
tion. This is due to the selection rules, which suppress
transitions for large phonon frequencies.

Fig. 3c shows the frequencies of the two peaks of the
screening-gates nano-undulator gain vs. ku. Dashed lines
are the prediction from ωR± (Eq. 3). The curve of
the low-frequency peak roughly coincides with the an-
alytical curve corresponding to ωR+ vs. ku with ve =
2 × 106 cm/sec [see Eq. (3)]. The position of the second
peak does not show a linear dependence on ku, as pre-
dicted by Eq. (3), due to deviations of the TBG band
structure from the linear dispersion [Eq. (1)] for high
phonon energies. We can fit its resonance frequency at
ku/Gm = 0.05, by ωR− with ve = 1.5× 106 cm/sec.

Lasing threshold is achieved when the gain exceeds
the loss. The loss of phonons is mostly due to e-ph, ph-
ph, and impurity scattering. The lifetime of acoustic
phonons in clean graphene can reach τph ≈ 0.3µsec, for

long-wavelength phonons [97], which results in γloss =
(τphcph)−1 ≈ 2 × 10−4 µm−1. This value is below the
gain of the system, estimated at a frequency slightly
above the resonance peak. To have a sufficient gain,
the system can be placed in an acoustic cavity, e.g.,
as in Ref. 98. The phonon-loss in a cavity is given by
γcavity = − log(R1R2)/(2Lu), where R1 and R2 are the
reflectivities of the two mirrors. For R1R2 = 0.97 and
Lu ≈ 5µm, we obtain γcavity ≈ 0.001µm−1. This results
in a phonon Q-factor of the cavity being Q ∼ 105.

Discussion.— In this manuscript, we presented a
model of a phonon laser device based on the “narrow-
band” regime, dubbed a phaser. The phaser generates
coherent phonon beams in the THz range. We pro-
posed and analyzed two realizations of the phaser in near-
magic-angle TBG, with a spatially modulated uniaxial
strain or an array of screening gates [see Fig. 1a]. The
periodicity of the structure determines the device’s reso-
nant frequency.

What could a THz phaser be used for? The phaser
uniquely allows driving the TBG into a non-equilibrium
regime through moiré Floquet engineering [99, 100], ex-
tending the driving sources to THz frequencies and fi-
nite momenta [101]. THz phonon sources can be used to
probe low-energy excitations in solids [102, 103] in a new
regime of surface acoustic waves. An electronic genera-
tor of coherent phononic beams on-demand has multiple
technological applications such as superfast manipulation
of magnetic memories [32, 104] and controlling ferroelec-
tricity [17–21].

Furthermore, a phaser could generate THz EM radia-
tion. The implied large amplitude lattice oscillations are
coupled to plasmon modes both electrically and through
the e-ph coupling. The resulting charged modes generate
a THz EM field evanescent in the direction perpendicular
to the TBG plane. The electric field amplitude near the
surface is roughly [79] | ~E| = 2

√
2πeρ0λq

2|〈û〉|. Here, λq
is the relative charge fluctuation which we estimate as
λq ≈ 2 × 10−2, and ρ0 is the electronic density taken as
ρ0 ≈ 1/a2m. Assuming that the phaser in the saturation
regime creates lattice waves of the order of |〈û〉| ≈ 0.1a,

we estimate, | ~E| ≈ 30 kV/m. Such an electric field can
be detected by placing a dipole antenna near the sur-
face of the TBG. An oscillating evanescent electric field
can be transformed into THz EM radiation, through a
meta-material structure.

Our analysis focused on the single-particle electronic
bands of the TBG. In the presence of the e-e interactions,
the Fermi velocity may be renormalized, yet the slow-
electron regime can be still achieved [105]. Furthermore,
the Dirac dispersion near charge neutrality is protected
by the C2T symmetry (two-fold rotation times time-
reversal) and will be preserved unless it is spontaneously
broken [106–109]. Operating at temperatures near 30K,
but below the temperatures of THz resonant phonons, is
expected to prevent the formation of a symmetry-broken
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phase. This elevated temperature allows for efficient op-
eration while avoiding the formation of phases that may
interfere with the proper functioning of the system.

The toy model of the phaser [Eq. (1)] can be realized
in other experimental platforms. A “slow-band” regime
can be realized, e.g., in cold atoms, using Bose-Fermi
mixtures [110, 111]. The energy scales of cold atom se-
tups, however, are a few orders of magnitude smaller than
in solids, giving rise to a different range of resonant fre-
quencies.
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