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Unitary control changes the absorption and emission of an object by transforming the external
light modes. It is widely used and underlies coherent perfect absorption. Yet two basic questions
remain unanswered: For a given object under unitary control, what absorptivity α, emissivity e, and
their contrast δ = e− α are attainable? How to obtain given α, e, or δ? We answer both questions
using the mathematics of majorization. We show that unitary control can achieve perfect violation
or preservation of Kirchhoffs law in nonreciprocal objects, and uniform absorption or emission for
any object.

Thermal radiation represents a ubiquitous aspect of
nature [1–7]. The control of thermal radiation is there-
fore of fundamental interest and has wide applications
in technologies such as renewable energy [8–17], imag-
ing [18], and sensing [19, 20].

Conventional thermal radiators are often approxi-
mated as blackbodies since their emission typically cov-
ers a broad frequency and angular range [1, 4]. In recent
years, however, with the advancement of nanophoton-
ics concepts, it has become possible to design thermal
photonic structures with absorption and emission prop-
erties that are drastically different from that of a black-
body [21–28]. For example, one can now achieve thermal
radiators with emissivity and absorptivity spectra that
are narrow in either spectral or angular domain [21].
There are also significant recent developments in non-
reciprocal thermal radiators that strongly violate Kirch-
hoff’s law [29–34]. In these non-reciprocal devices, the
key figure of merit is the contrast between absorptivity
and emissivity [15, 30, 35–37].

In addition to the design of a photonic structure it-
self, the absorption and emission properties can also be
designed by controlling the external modes that the pho-
tonic structures interact with. In this paper, we refer to
such control as unitary control since mathematically the
design process can be described by a unitary transfor-
mation in the space of the external modes. As practical
examples that illustrate the concept of unitary control,
Fresnel lenses can be used as concentrators to boost the
absorption of a solar cell [36]. Curved reflecting mirrors
can be used to redirect thermal emission, as exploited in
fan heaters and more recently in radiative cooling exper-
iments [2, 38–42]. In these examples, the Fresnel lens or
the curved mirror shapes the external modes to influence
the absorption and emission properties of a device. The
concept of unitary control is also directly connected to
the effects of coherent perfect absorption [43–52], where
the complete absorption of light can be achieved due to
the interference of multiple incident waves.

Despite its fundamental and practical importance,
there still lacks a systematic theory of unitary control.
The theory should answer two basic questions: (1) Given
an object, what are all the attainable absorptivity, emis-
sivity, and nonreciprocal contrast for each mode under
unitary control? (2) How to obtain given absorptivity,
emissivity, or nonreciprocal contrast for each mode via
unitary control? The first question asks about the ca-
pability and limitation of unitary control. The second
question asks for implementation. Here we provide com-
plete answers to both questions using the mathematics
of majorization [53].

We first briefly discuss the notations used in the math-
ematics of majorization [53]. For x = (x1, x2, . . . , xn) ∈
Rn, we define x↓ = (x↓1, x

↓
2, . . . , x

↓
n) and x↑ =

(x↑1, x
↑
2, . . . , x

↑
n), where x↓1 ≥ x↓2 ≥ · · · ≥ x↓n reorder the

components of x in non-increasing order, and x↑1 ≤ x
↑
2 ≤

· · · ≤ x↑n in non-decreasing order. For x = (x1, . . . , xn)
and y = (y1, . . . , yn) in Rn, if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i , k = 1, 2, . . . , n− 1; (1)

n∑
i=1

xi =

n∑
i=1

yi, (2)

we say that x is majorized by y, written as x ≺ y. See
Supplemental Material (SM) [54], Sec. I for more details.

For subsequent use, we also summarize some nota-
tions related to matrices. We denote by Mn the set of
n × n complex matrices and U(n) the set of n × n uni-
tary matrices. For M ∈ Mn, we denote by d(M) =

(d1(M), . . . , dn(M))
T

, λ(M) = (λ1(M), . . . , λn(M))
T

,

and σ(M) = (σ1(M), . . . , σn(M))
T

the vectors of diag-
onal entries, eigenvalues, and singular values of M . (A
singular value of M is the nonnegative square root of an
eigenvalue of M†M [55].) We also denote

1− σ2(M) ≡
(
1− σ2

1(M), . . . , 1− σ2
n(M)

)T
. (3)
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We introduce the self-concommutator of M : M†M −
M∗MT , and denote its eigenvalues as

c(M) ≡ λ(M†M −M∗MT ). (4)

See SM, Sec. II for an introduction to the self-
concommutator.

FIG. 1. (a) A general n-port passive system. (b) Illustration
of unitary control.

We consider a general passive linear time-invariant
electromagnetic system (Fig. 1a). It is connected to its
exterior by n ports. Each port supports an input mode

|φ(i)j 〉 and an output mode |φ(o)j 〉. We adopt the usual
convention that the output mode is the time-reversal of
the input mode [56], i.e.,

|φ(o)j 〉 =
(
|φ(i)j 〉

)∗
, j = 1, . . . , n. (5)

Using these modes as bases, we describe the incoming
and outgoing waves as

a = (a1, . . . , an)T , b = (b1, . . . , bn)T , (6)

where ai and bi are the input and output wave amplitudes
in the i-th port, respectively. The system is described by
a scattering matrix S ∈Mn such that

b = Sa, (7)

where Sij is the transport coefficient from the j-th to
the i-th port. In general, S can be any complex matrix
that satisfies the passivity condition: I − S†S is positive
semidefinite. If the system is reciprocal, S needs to be
symmetric: S = ST [56–58].

Now we introduce unitary control. Unitary control
refers to unitarily transforming the input and output
modes (Fig. 1b):

|φ(i)j 〉 →
n∑

k=1

Ukj |φ(i)k 〉 , |φ(o)j 〉 →
n∑

k=1

U∗kj |φ
(o)
k 〉 , (8)

where U ∈ U(n). Under the new mode bases, the scat-
tering matrix is modified by

S → UTSU. (9)

Hence, unitary control corresponds to a unitary congru-
ence [55] of a S-matrix.

Unitary control also transforms the absorption and
emission properties of a system. The absorption and
emission properties are described by three real vectors:

α = (α1, . . . , αn)T , e = (e1, . . . , en)T , (10)

δ ≡ e−α = (δ1, . . . , δn)T , (11)

where αi and ei are the absorptivity and emissivity in the
i-th port, respectively, and δi = ei − αi is the nonrecip-
rocal contrast that measures the violation of Kirchhoff’s
law. α, e, and δ can be determined from S. We define

A ≡ I − S†S, E ≡ I − SS†, (12)

∆ ≡ ET −A = S†S − S∗ST , (13)

which are referred to as the absorptivity, emissivity, and
nonreciprocal contrast matrices, respectively. All three
matrices are Hermitian. Using the laws of thermody-
namics, one can prove [31]:

α = d(A), e = d(E), δ = d(∆). (14)

Under the unitary control as defined in Eq. (9), the
absorptivity, emissivity, and nonreciprocal contrast ma-
trices are modified via unitary similarity [55]:

A→ U†AU, E → UTEU∗, ∆→ U†∆U. (15)

The absorptivity, emissivity, and nonreciprocal contrast
vectors become:

α[U ] = d(U†AU), e[U ] = d(UTEU∗), (16)

δ[U ] = d(U†∆U), (17)

which are all explicitly U -dependent.
The concept of unitary control is closely related to the

effect of coherent perfect absorption [43–52]. A coherent
perfect absorber is a multi-port system that can com-
pletely absorb incident light with an appropriate modal
profile. In SM, Sec. III, we analyze a concrete example
of a two-port coherent perfect absorber to illustrate the
concept of unitary control. Our theory generalizes the
study of coherent perfect absorbers by highlighting many
other effects that are achievable through unitary control,
including nonreciprocal effects. Also, the mathematics of
majorization has not been applied in the previous study
of coherent perfect absorbers.

Now we reformulate our key questions mathematically.
Question 1: Given S, what are the sets

{α } ≡ {α[U ] | U ∈ U(n) } , (18)

{ e } ≡ { e[U ] | U ∈ U(n) } , (19)

{ δ } ≡ { δ[U ] | U ∈ U(n) }? (20)
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Question 2: Given S, α0 ∈ {α}, e0 ∈ {e}, and δ0 ∈ {δ},
what are the sets

{U [α0] } ≡ {U ∈ U(n) | α[U ] = α0 } , (21)

{U [e0] } ≡ {U ∈ U(n) | e[U ] = e0 } , (22)

{U [δ0] } ≡ {U ∈ U(n) | δ[U ] = δ0 }? (23)

We comment on the mathematical aspects of Eqs. (18)-
(23). α[U ], e[U ], and δ[U ] as defined in Eqs. (16) and
(17) are different smooth maps from U(n) to Rn. Ques-
tion 1 asks for the range of each map. Since U(n) is
compact, each range is a compact subset of Rn. Ques-
tion 2 asks for the preimage of each element of the range
under each map. These maps are not one-to-one; for ex-
ample, α[U ] = α[U ′], e[U ] = e[U ′], and δ[U ] = e[U ′]
with U ′ = UD where D is any diagonal unitary matrix.

FIG. 2. Numerical experiment for n = 2. Shown here are
scatter plots for (a) {α[Ui] }, (b) { e[Ui] }, (c) { δ[Ui] }.

We start with Question 1. To hint at the solution, we
perform two numerical experiments. In the first experi-
ment, we consider a random 2× 2 scattering matrix:

S =

(
0.2− 0.2i 0.3 + 0.7i
0.1 + 0.3i 0.5− 0.1i

)
; (24)

σ(S) =

(
0.92
0.41

)
, c(S) =

(
0.60
−0.60

)
. (25)

We generate 1000 random Ui ∈ U(2) and calculate
α[Ui], e[Ui], and δ[Ui] by Eq. (16). Figs. 2(a-c) show
the results. We see that {α } = { e } is a line segment
with endpoints obtained by permuting the coordinates of

1− σ2(S) =
(
0.15, 0.83

)T
, while { δ } is a line segment

with endpoints obtained by permuting the coordinates of
c(S).

FIG. 3. Numerical experiment for n = 3. Shown here are
scatter plots for (a) {α[Ui] }, (b) { e[Ui] }, (c) { δ[Ui] }.

In the second experiment, we consider a random 3× 3
scattering matrix:

S =

0.06− 0.15i 0.21 + 0.12i 0.15 + 0.01i
0.12 + 0.35i −0.02 + 0.04i 0.21 + 0.55i
0.09− 0.43i −0.15− 0.09i 0.20 + 0.21i

 ; (26)

σ(S) =

0.78
0.48
0.25

 , c(S) =

 0.39
0.05
−0.44

 . (27)

We generate 100 000 random Ui ∈ U(3) and calculate
α[Ui], e[Ui], and δ[Ui] by Eq. (16). Figs. 3(a-c) show the
results. We see that {α } = { e } is a convex hexagon
with vertices obtained by permuting the coordinates of

1− σ2(S) =
(
0.39, 0.77, 0.93

)T
, while { δ } is a convex

hexagon with vertices obtained by permuting the coordi-
nates of c(S).

The numerical results above suggest the following ob-
servation on the geometry of {α }, { e } and { δ }: For an
n-port system, each set is a convex subset of an (n− 1)-
dimensional hyperplane in Rn. {α } = { e } is the convex
hull spanned by the n! points obtained by permuting the
coordinates of 1 − σ2(S), while { δ } is the convex hull
spanned by the n! points obtained by permuting the coor-
dinates of c(S). (The convex hull of a set is the smallest
convex set that contains it.) We show that this observa-
tion is true as a result of the main theorem of our paper:

Theorem. Given a passive scattering matrix S ∈Mn,

{α } = { e } = {u ∈ Rn | u ≺ 1− σ2(S) } , (28)

{ δ } = {v ∈ Rn | v ≺ c(S) } . (29)

Proof. We prove {α } = {u ∈ Rn | u ≺ 1− σ2(S) }.
First, we show α[U ] ∈ {α } =⇒ α[U ] ≺ 1 − σ2(S).
We use Schur’s theorem [59](see SM, Theorem I.2):

α[U ] = d(U†AU) ≺ λ(U†AU) = λ(A) = 1− σ2(S).
(30)

Second, we show u ≺ 1−σ2(S) =⇒ u ∈ {α }, i.e., there
exists U ∈ U(n) such that α[U ] = u. We use Horn’s
theorem [60] (see SM, Theorem I.3): As u ≺ 1− σ2(S),
there exists a Hermitian matrix H with d(H) = u and
λ(H) = 1− σ2(S). Since λ(A) = 1− σ2(S) = λ(H), H
and A are unitarily similar (see SM, Theorem V.1(b)).
Hence there exists U ∈ U(n) such that H = U†AU. Now
we can check

α[U ] ≡ d(U†AU) = d(H) = u. (31)

This completes the proof for {α }. The proofs for { e }
and { δ } are similar.

The geometric observation above is a direct conse-
quence of our theorem. We use Rado’s theorem [61] (see
SM, Theorem I.1), which states that for a given y ∈ Rn,
the set {x ∈ Rn | x ≺ y } is the convex hull of points
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obtained by permuting the components of y. The geo-
metric observation is an application of Rados theorem to
Eqs. (28) and (29).

Eqs. (28) and (29) are our first main results. Eq. (28)
shows that {α } and { e } are completely determined
by σ(S), which is invariant under unitary control:
σ(UTSU) = σ(S). We can classify all passive linear
time-invariant systems by their σ. Two systems exhibit
the same {α } and { e } if and only if they belong to the
same σ class. Eq. (29) shows that { δ } is completely de-
termined by c(S), which is also invariant under unitary
control: c(UTSU) = c(S). We can classify all passive
linear time-invariant systems by their c. Two systems
exhibit the same { δ } if and only if they belong to the
same c class.

We now turn to Question 2. For illustrative purposes,
we consider only the problem of {U [α0] }. The solu-
tion to the problem of {U [e0] } and {U [δ0] } is simi-
lar. The problem corresponds to the following physical
scenario. Suppose we have a photonic structure char-
acterized by a scattering matrix S and therefore an ab-
sorptivity matrix A = I − S†S. Given an absorptivity
vector α0 ≺ 1 − σ2(S), how do we construct the set
of all possible unitary control schemes as described by
unitary matrices {U [α0] } that achieve α0? Or alterna-
tively, a simpler question, how to construct one unitary
control scheme as described by a unitary matrix U [α0]
that achieves α0?

These two problems can be solved by the following
algorithms. We first perform a preparatory step that
is common in both algorithms: Suppose A have p dis-
tinct eigenvalues λ1, . . . , λp, with respectively multiplic-
ities n1, . . . , np. Let Λ = λ1In1

⊕ . . . ⊕ λpInp
. We find

a V ∈ U(n) such that A = V ΛV †. Now we provide the
two algorithms:

Algorithm 1 (Constructing {U [α0] }).
1. Use Fickus’ algorithm [62] (see SM, Algo-

rithm IV.2) to construct all Hermitian matrices Hi

with eigenvalues λ(A) and diagonal entries α0. For

each Hi, find a Vi ∈ U(n) such that Hi = ViΛV
†
i .

2. We claim that Ui ∈ U(n) such that Hi = U†i AUi if
and only if

Ui = V (W1 ⊕ . . .Wp)V †i (32)

where Wk ∈ U(nk), k = 1, . . . , p, are arbitrary.
Denote the set of all such Ui as {Ui}.

3. We claim that {U [α0] } =
⋃

i {Ui }. (See SM,
Sec. V for proof of the two claims.)

Algorithm 2 (Constructing a U [α0]).

1. Use Chu’s algorithm [63] (see SM, Algorithm IV.1)
to construct a Hermitian matrix A′ with eigen-
values λ(A) and diagonal elements α0. Find a
V ′ ∈ U(n) such that A′ = V ′ΛV

′†.

2. We obtain a U [α0] = V V
′†.

Algorithms 1 and 2 are our second main results.
To illustrate the usage of our algorithms, we provide a

numerical example in SM, Sec. VI. We consider a 5-port
lossy system characterized by a random S-matrix. Our
task is to construct a U [α0], U [e0], and U [δ0] with ran-
domly assigned goals α0, e0, and δ0. We use Algorithm 2
and complete the task. Importantly, our algorithms allow
us to achieve the prescribed absorptivity (or emissivity,
or non-reciprocal contrast) in all ports with a single uni-
tary matrix that performs unitary control.

Finally, we discuss physical applications of our theory.
First, we provide the criterion for k-fold degenerate co-

herent perfect absorption [52], i.e., the effect that a sys-
tem exhibits coherent perfect absorption for k indepen-
dent input modes. From Eq. (28), we obtain a necessary

and sufficient condition: σ↑1 = . . . = σ↑k = 0.
Second, we propose the concept of unitary perfect vio-

lation of Kirchhoff’s law, which refers to the effect that
a system exhibits complete violation of Kirchhoff’s law
(|δi| = 1 for some i) under some unitary control. From
Eq. (29), we obtain the necessary and sufficient condition
for unitary perfect violation of Kirchhoff’s law for k in-
dependent inputs: |c|↓1 = . . . = |c|↓k = 1. As an example,
consider a nonreciprocal two-port system with

S =

(
1
2

1
2

− 1
2 −

1
2

)
, c(S) =

(
1
−1

)
; (33)

α = e =

(
1
2
1
2

)
, δ =

(
0
0

)
. (34)

With this modal basis, Kirchhoffs law is satisfied, i.e. the
absorptivities and emissivities are equal in every port.
However, the system is non-reciprocal since its S-matrix
is not symmetric. We show that with the appropriate
modal basis, this system can exhibit a perfect violation
of Kirchhoffs law. We apply a unitary transformation

S → UTSU =

(
0 1
0 0

)
, with U =

(
1√
2

1√
2

− 1√
2

1√
2

)
. (35)

Then

α[U ] =

(
1
0

)
, e[U ] =

(
0
1

)
, δ[U ] =

(
−1
1

)
, (36)

the system exhibits perfect violation of Kirchhoff’s law.
Third, we propose the concepts of unitary uniform ab-

sorption, unitary uniform emission, and unitary detailed
balance, which refer to the effects that a system exhibits
uniform absorptivity (αi = const), uniform emissivity
(ei = const), and zero nonreciprocal contrast (δi = 0),
respectively, under some unitary control. We claim that
any n-port lossy system exhibits unitary uniform absorp-
tion, unitary uniform emission, and unitary detailed bal-
ance. We prove this by showing that for any S ∈ Mn,
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there exist U,U ′, U ′′ ∈ U(n) such that

α[U ] = e[U ′] = (a, . . . , a)T , δ[U ′′] = (0, . . . , 0)T , (37)

where

a = 1− 1

n

n∑
i=1

σ2
i (S). (38)

This is because for any (x1, x2, . . . , xn)T ∈ Rn, we have

(x̄, x̄, . . . , x̄)T ≺ (x1, x2, . . . , xn)T , x̄ =
1

n

n∑
i=1

xi. (39)

Thus, for any S ∈Mn, we have

(a, . . . , a)T ≺ 1− σ2(S), (0, . . . , 0)T ≺ c(S), (40)

hence they are attainable under unitary control. So, any
system can exhibit uniform absorption or emission over
any number of ports under suitable unitary control. This
fact can be useful in applications such as thermal cam-
ouflage. Any nonreciprocal thermal emitter can behave
just like a reciprocal emitter under some mode bases.
Therefore, to maximize the nonreciprocal response of a
nonreciprocal thermal emitter, one must carefully shape
the external modes in addition to optimizing the photonic
structure itself.

In conclusion, we provide a systematic theory for uni-
tary control of optical absorption and emission. We re-
veal that majorization theory provides the mathematical
structure to describe the physics of unitary control. Our
results deepen the understanding of unitary control of
absorption and emission and provide practical guidelines
for its implementation.
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A. Alù, and M. A. Kats, Nanophotonic engineering of far-
field thermal emitters, Nature Materials 18, 920 (2019).

[28] C. Guo, Y. Guo, B. Lou, and S. Fan, Wide wavelength-
tunable narrow-band thermal radiation from moiré pat-
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