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We employ a functional renormalization group approach to ascertain the pairing mechanism and
symmetry of the superconducting phase observed in rhombohedral trilayer graphene. Supercon-
ductivity in this system occurs in a regime of carrier density and displacement field with a weakly
distorted annular Fermi sea. We find that repulsive Coulomb interactions can induce electron pair-
ing on the Fermi surface by taking advantage of momentum-space structure associated with the
finite width of the Fermi sea annulus. The degeneracy between spin-singlet and spin-triplet pairing
is lifted by valley-exchange interactions that strengthen under the RG flow and develop nontrivial
momentum-space structure. We find that the leading pairing instability is d-wave-like and spin-
singlet, and that the theoretical phase diagram versus carrier density and displacement field agrees

qualitatively with experiment.

Introduction— Recent experiments have demonstrated
that graphene multilayers can exhibit rich strong-
correlation physics [IHIg|, including broken spin/valley
flavor symmetries and superconductivity, when the lay-
ers are twisted to magic angles that yield extremely flat
moiré superlattice bands [T9H23]. Twist angle changes
during processing make systematic studies more diffi-
cult, however, and devices inevitably have some twist-
angle disorder [24]. For this reason, the recent obser-
vation [25], [26] of superconductivity and broken flavor
symmetries in untwisted rhombohedral trilayer graphene
(RTG) has been a pleasant surprise. In the regime of
displacement field and carrier density where strong cor-
relations have been observed, the normal state is a two-
dimensional hole gas with a distorted annular Fermi sur-
face, which has been precisely characterized using quan-
tum oscillation measurements [25] 26] that take advan-
tage of the exceptional sample perfection. The strongest
superconductivity appears as an instability of a flavor-
symmetric paramagnetic normal state and has an in-
plane critical magnetic field that seems most compatible
with spin-singlet pairing [27] [28§].

Several ideas have already been explored in connection
with superconductivity in RTG [29435]. Conventional
acoustic-phonon-mediated attraction [29] can explain su-
perconductivity only if direct Coulomb interactions be-
tween electrons do not play a significant role. The exper-
imental observation of a nearly temperature-independent
resistivity up to 20 K suggests that electron-phonon inter-
actions are relatively weak [25], however, arguing against
this mechanism. Inter-valley coherence fluctuation medi-
ated pairing was proposed as a possibility [30}[3T],33], mo-
tivated by the experimental observation that supercon-
ductivity is proximal to a phase transition to a partially
isospin polarized (PIP) phase [30]. However, the observa-
tion of a sudden jump in quantum oscillation frequencies
between superconducting (SC) and PIP phases [25] indi-
cates that the phase transition is first order and therefore

that these critical fluctuations will not be strong. Since
superconductivity in RTG is in the clean limit, the Kohn-
Luttinger (KL) mechanisms [36] has also been considered
as a possibility [32, B5]. It was demonstrated that super-
conductivity can arise from the combination of annular
Fermi surfaces and long-range Coulomb repulsion in RTG
when a random phase approximation (RPA) is employed
132, 37].

In this Letter, we apply the functional renormaliza-
tion group (FRG) method to investigate the pairing
mechanism and symmetry in RTG. We start with long-
range bare Coulomb interactions, and include a valley-
exchange interaction that is ~ 100 times weaker than
intra- and inter-valley interactions because the Fermi
surfaces are small in size compared to the RTG Bril-
louin zone. We find that the valley-exchange interaction
is enhanced under the RG flow and develops nontrivial
momentum-space structures that cannot be represented
by a simple momentum independent inter-valley Hund’s
coupling [30, BI]. The enhanced valley-exchange inter-
action breaks valley-SU(2) symmetry and lifts the de-
generacy between spin-singlet and spin-triplet pairing.
The renormalized pairing interactions develop features
at cross-annulus momentum-transfers due to inter-Fermi
surface particle-hole fluctuations. For experimentally rel-
evant ratios of the annulus radii, these features favor d-
wave spin-singlet pairing and p-wave spin-triplet pairing
on the inner and outer Fermi surfaces, respectively. The
competition between pairing and particle-hole channel in-
stabilities is sensitive to the Fermi-level density of states
as well as the precise annulus shape.

Model— We employ the well established six-band con-
tinuum model detailed in the Supplementary Informa-
tion (SI) [39] that accounts for long-range Coulomb in-
teractions, gate and dielectric screening, and all perti-
nent details of the low-energy electronic structure. In
the following calculations, we choose the displacement
field-induced electrostatic potential Ay = 30 meV and
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FIG. 1. (a) Patching scheme for the annular Fermi surfaces
(solid curves). The momentum space around each valley is
divided into 48 patches. The circles on the Fermi surfaces
specify the wavevectors at which we evaluate 4PVs. The dot-
ted curves identify the wavevectors at which energy maxima
occur along radial directions, and separate patches that be-
long to the inner and outer Fermi surfaces in our FRG calcu-
lations. (b) Diagrammatic representation of the one-loop RG
flow equation for 4PVs, including particle-particle (PP), ex-
change (EX) and forward scattering (F'S) contributions. Here
the temperature T is the RG flow time, and the slashes on
the propagators denote temperature derivatives [38].

carrier density n, = —1.75 x 10'2 cm™? as represen-

tative [39]. The corresponding annular Fermi surfaces
are illustrated in Fig. a). To capture the competi-
tion between superconductivity, inter-valley coherence,
and spin-polarized half metals in RTG, we employ the
temperature-flow FRG scheme because it properly ac-
counts for small-g particle-hole fluctuations [38], [45] 46].
The technical details of the present study are similar to
earlier works [38], [47H49], especially those in multi-orbital
systems with more than one Fermi surface [50H52]. To
implement numerical FRG calculations, we set the ini-
tial temperature to Ty ~ 11600 K [39] and employ the
N-patch scheme [38, 53] illustrated in Fig. [[[a).

The one-loop FRG flow equations for 4-point ver-
tices (4PVs) with spin-SU(2) symmetry are depicted di-
agrammatically in Fig. (b) These diagrams are simi-
lar to KL-mechanism diagrams [36], previously employed
to study pairing instabilities in graphene-based systems
[32] 35, [54H6T]. The essential difference between the
KL diagram and the FRG flow equation is that the for-
mer focuses only on the irreducible pairing vertex while
the latter retains all 4PVs on an equal footing, mak-
ing it possible to explore competing orders. Moreover,
particle-hole fluctuations that do not develop instabil-
ities can upon reducing temperature still give progres-
sively larger contributions to the RG flow of the pairing
vertex, leading to an enhancement of the pairing insta-
bility. Appealing to standard rescaling and power count-
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FIG. 2. (a) Schematic diagrams of ug,¢.. (b)-(c) Renormal-
ized pairing interactions at temperature 7' = 70 mK, includ-
ing (b) u(n1,f1;72) and (¢) ue(ni,7i1;n2). The bottom-left
and top-right 24x24 blocks are scatterings on the inner and
outer Fermi surfaces, respectively. The remaining blocks are
scatterings between the inner and outer Fermi surfaces.

ing arguments [47, [49], we focus on the zero-frequency
4PVs with momenta on the Fermi surface. We therefore
choose the wavevectors marked by circles in Fig. a)
to represent each patch and approximate the 4PVs by
u(ky, ko; k3) = u(ny, ne;ng) for all wavevectors k; in the
same patch n; [62]. The fourth wavevector is determined
by momentum conservation. As shown in Fig. a), the
4PVs can be classified as intra-valley (u,), inter-valley
(uy), or valley-exchange (u.) using the definitions

Ug(n1,n2;n3) = u(Knq, Kng; Kng),
ug(ny,na;n3) = u(Kny, K'ng; K'ng), (1)
= u(

ue(n1,n2;n3) Kny, K'ng; Kng),

where the patch indices are associated with valleys. For
example, ns in u, and u; are on K- and K’'-valley Fermi
surfaces, respectively. Time-reversal symmetry requires
u(Tlnl,Tzng;T3n3) = u*(%ﬂj&l,?gﬁg;i’gﬁg), where 7 de-
notes the opposite patch number of n on the same Fermi
surface. Using these conventions, the valley index can be
removed from the FRG flow equations (see SI [39]).

Renormalized pairing interaction— The initial val-
ues of the 4PVs are obtained by patch averaging bare
Coulomb interactions using band eigenstates to calculate
wave function overlap factors (see Sec. IV in SI [39]).
For opposite-valley electron pairing, the relevant 4PVs
are ut(ny,ny1;Ne) and ue(ny, fi1; ne), where the outgoing
momenta belong to K and K’ valleys. The initial val-
ues of u, are much weaker (less than 1%) than those of
u; because the magnitude of the inter-valley momentum-
transfer is much larger than the typical size of the annular
Fermi surfaces in RTG [39]. As shown in Figs. [2b) and
(¢c), us and u. flow to comparable magnitudes as tem-
perature reduced to T' = 70 mK. The effective pairing
interactions are

Vet = ug(ni, ni;ng, ne) £ ue(ny, nisng, na),  (2)

where the upper (lower) sign is for spin-singlet (spin-
triplet) pairing, and the fourth patch index is restored
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FIG. 3. (a) Temperature flows of pairing interaction in channels distinguished by gap function symmetries. (b) Magnitudes
of spin-singlet d + id and spin-triplet p + ip gap functions on the Fermi surfaces. (c¢) Angular momentum amplitudes A,, of
the gap function on the inner (left) and outer (right) Fermi surfaces. (b)-(c) are calculated at T = 70 mK. (d) Spin-singlet
d —id and spin-triplet p —ip gap functions on the K-valley Fermi surfaces, where the length and direction of arrows specify gap
amplitude and phase. (e) Schematic diagram of the inner-, inter-, and outer-Fermi surface scatterings that constitute the total
pairing interaction wu¢(ni,71; 72, n2). Similar definitions are used for wu.(ni,fii;n2,fi2). (f)-(g) Contributions from the three
types of scatterings illustrated in (e) to pairing interactions in (f) spin-singlet d-wave and (g) spin-triplet p-wave channels.

based on momentum conservation. The results shown in
Figs. [2(b) and (c) indicate that the inner Fermi surface
prefers spin-singlet pairing because u; and u, share sim-
ilar momentum-space structure, resulting in |Vy| > [V;].
In contrast, scattering across the annular Fermi surfaces
and on the outer Fermi surface prefers spin-triplet pair-
ing because u; and u, possess opposite momentum-space
structures, leading to |Vs| < |V4/.

Pairing symmetry— The gap function at T, is speci-
fied by the solution of the linearized gap equation. For
the present study, we find that the spin-singlet and
spin-triplet gap functions are mainly determined by the
momentum-space structures of V;; and can be well ap-
proximated by the eigenvectors of the largest magnitude
negative eigenvalues of V, (see details in the SI [39]).
Figure a) plots several of the lowest eigenvalues of V ;
as a function of T'. We find that the strongest spin-singlet
and spin-triplet channels are respectively d-wave-like and
p-wave-like, and that both channels have doubly degener-
ate eigenvectors. Figure b) plots the magnitudes of the
chiral d+id and p+£ip combinations of these eigenvectors,
which are stablized below the critical temperatures [39].
Note that the leading pairing instability is spin-singlet
d-wave-like because it possesses the lowest eigenvalue as
shown in Fig. a). The deep minima in the gap function
on the outer Fermi surface in Fig. b) are due to strong
mixing between different angular momentum channels.
The terminology used to distinguish p- and d-wave pair-
ings is justified by the Fourier coefficients of both gap
functions given in Fig. c), where one angular momen-
tum is always dominant. Figure. d) illustrates the d—id
and p — ip gap structures, which are largest on the in-
ner Fermi surface for spin-singlet d-wave pairing and are
comparable in magnitude on the inner and outer Fermi
surfaces for spin-triplet p-wave pairing.

Figure f)—(g) decompose the spin-singlet d-wave (V%)

and spin-triplet p-wave (V) pairing interactions into
contributions from inner-, inter-, and outer-Fermi sur-
face scatterings illustrated in Fig. [3[(e) (details in SI [39]).
We find that V2 is dominated by scattering on the in-
ner Fermi surfaces while the strongest contribution to
VP is the inter-Fermi surface scattering, which explains
the comparable pairing amplitudes on the annular Fermi
surfaces in the spin-triplet p-wave channel. The ultimate
pairing symmetry depends on the competition between
all three types of scattering, which depends in turn on
the Fermi surface shape as we show later.

Pairing mechanism— Figure [4a) and (b) depicts the
EX diagram contributions to u; and u., and the associ-
ated inter-valley (H’]’(h ) and intra-valley (H’I’(h ') particle-
hole susceptibilities are plotted in Figs. [i{(c) and (d).
By comparing Figs. [ll(c)-(d) with Figs. @[b)-(c), we find
that the momentum-space structure of these susceptibili-
ties is responsible for the momentum-space structure de-
veloped in the pairing interactions under FRG, which
in turn control the pairing symmetry discussed earlier.
For RTG, the momentum-space structure of H’;(h o and
Hﬁ'(h  arises primarily from inter-Fermi surface nesting,
as illustrated in Figs. [f{d) and (e). In fact, the high-
temperature initial stage of the RG flow is dominated
by FS processes that screen the long-range Coulomb in-
teraction. The EX enhancement becomes important in
the intermediate temperature regime, giving rise to the
momentum-space structure of the paring interactions,
which is then amplified by the PP diagram upon further
reducing temperature [39]. Therefore, we argue that the
KL-like finite angular momentum pairing we have found
stems from particle-hole fluctuations that are enhanced
by inter-Fermi surface nesting.

It is instructive to analyze the pairing symmetry us-
ing the simplified circular Fermi surface model shown in
Fig. (f ) for which the electron energy spectrum is valley
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FIG. 4. (a)-(b) EX diagram contributions to us(n1, fi1; iz, n2)
and ue(ni,71;n2,72), where blue (red) solid lines denote
K (K")-valley propagators. (c)-(d) Particle-hole susceptibil-
ities associated with (a)-(b), calculated at 7' = 70 mK.
(e) Three equivalent inter-Fermi-surface nesting wavevectors
kos — k1 ~ kg — kg =~ ko — k:17, at which HI;(hK peaked:
(n1,n2) = (1,25), (9,4), and (17,22) marked by stars in (d).
(f) Circular annular Fermi surfaces: kr1,2 are the two Fermi
wavevectors. 01 2 are the angles spanned by kr2 — kr1 on the
inner and outer Fermi surfaces.

independent [39]. Therefore, H’;?K (kn, —kn,) = HII’(hK(G)
and T2, (K, +kn,) = II2Y (m+6), where 0 denotes the
angle spanned by k,, — k,, on the Fermi surfaces. The
m-phase difference between H’I}h x and Hll’(h K is distorted
by trigonal warping in Figs. @(c) and (d). Performing
Fourier series expansion in 6,

—II% (0) = Z A, cos(mb). (3)

Since the momentum-space structures of the pairing
interactions are primarily determined by those of the
particle-hole susceptibilities, we approximate du;(6) o
—(ut>2H1;(hK, (0) and du.(0) x —(ua><ue>H1}<hK(9), where
(Uq,t,e) denote their averaged values over 6 [39]. Combin-
ing with Egs. —, the singlet and triplet pairing in-
teractions in the m-wave channel V"} o [(=1)" £ 1] Ap,.
As shown in Fig. f)7 inter-Fermi surface nesting en-
hances —H’I){h «(0) around 6; and 6, on the inner and
outer Fermi surfaces. For this study, 61 ~ /2, leading
to —Ag > |A1|, and hence preferring spin-singlet d-wave
(m = 2) pairing on the inner Fermi surface. In contrast,
02 < m/6, which results in A; > |As| and prefers spin-
triplet p-wave (m=1) pairing. Inter-Fermi surface scat-
tering always prefers spin-triplet p-wave pairing because
—TI%"(8) exhibits a maximum at = 0, as indicated
in Fig. El (d). Overall, the competition between d-wave
singlet and p-wave triplet pairings in RTG is sensitive to
the shape of the annular Fermi surfaces.

Phase diagram— Quantitative prediction of supercon-
ducting critical temperature T, from FRG calculations
stands as a challenging issue [44,47]. Here we provide
crude T, estimates by solving linearized gap equations
with an effective interaction (see details in Sec. VI of SI

TABLE I. Matrix structures and symmetries under time-
reversal 7 and inversion C> operations of the order param-
eters for Pomeranchuk instability (PI), valley polarization
(VP), ferromagnetism/anti-ferromagnetism (FM/AFM), and
inter-valley charge/spin coherence (IVC/IVS). Here FM and
AFM are distinguished by identical and opposite spin polar-
izations in two valleys, Su,y,». and 74 4, . are Pauli matrices in
spin and valley subspaces, and K denotes complex conjugate.

Particle-hole instability| PI | VP | FM [AFM| IVC | IVS
Order parameter 5070 |S0T= |82T0| S2T= |S0Ta,y | SzTa,y
T =isyTeK V| x| x v v X
Cy = 80Tz V| x|V X X X

(a) ]02 O Spin-singlet d-wave A FM (b) ]02 O Spin-singlet d-wave A FM
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FIG. 5. Phase diagrams as function of (a) n. and (b) Ag. The
inserts depict the annular Fermi surfaces for several typical
values of n. and A4 that are associated with the SC, IVS and
FM states. These results are obtained by choosing dielectric
constant € = 4 and gate-sample distance ds = 40 nm.

[39]). For the electron pairing channel, the linearized gap
equation is

Agp(n) = — ZHI;?K(nl)Vs,t(nlﬁl;ﬁ, n)Asi(n1), (4)

where A, ; are spin-singlet and spin-triplet order parame-
ters, ITF7, (n1) denotes the particle-particle susceptibility,
and the renormalized pairing interactions V; ; are given
by Eq. . Since both IT}?,. and V ; are temperature de-
pendent, T, is estimated for each channel as the tempera-
ture at which the corresponding eigenvalue of —IT5 Vs ¢
equals 1.

We have also explored the competition between pairing
and particle-hole channel instabilities. Table. [[| summa-
rizes several typical particle-hole channel instabilities (see
details in Sec. VI of SI [39]). As shown in Fig. [5fa), for
large hole densities that are associated with relatively
thick annular Fermi seas, spin-singlet d-wave pairing is
the leading instability. The corresponding T, exhibits a
dome-like behavior vs. hole density that is qualitatively
consistent with experimental observations [25]. We note
that experimental signatures of a SC state do appear to
be present in the longitudinal resistivity at hole densities
that exceed the region that can currently be identified as
in the SC dome [25] The data seem to be consistent with
the notion that superconductivity survives to higher hole



densities, as in our calculations, albeit with substantially
decreased T,. By decreasing the hole density and mov-
ing the Fermi level toward the VHS (see Fig. [ff(a)), the
PIP state seen in experiment appears consistent with an
IVS state emerging first and then being replaced by the
FM state. In our calculations, these two states compete
closely when the Fermi level of the system approaches the
VHS. Since the averaged value of u, is positive, IVS and
FM always dominate over IVC and AFM (see ST [39]).
Similar behavior is revealed in the phase diagram vs. Ay
for a given n. in Fig. (b) The qualitative features of
these phase diagrams are therefore in good agreement
with experimental observations [25].

Discussion— Numerical estimates of superconducting
T’!s depend on model parameters, such as the dielec-
tric constant € (see SI [39]). One general trend is that
stronger Coulomb interaction results in higher T, contra-
dictory to the acoustic-phonon-mediated superconduc-
tivity [29]. The experimental phase diagram [25] shows
that the PIP (IVS) state emerges at a larger hole density
than in our theoretical estimation. If the stability region
of the IVS state is expanded to agree with experiment, it
intervenes before the peak of the superconducting dome
is reached. This shift would avoid the region in the phase
diagram where the p-wave spin-triplet pairing state be-
comes nearly degenerate with or even dominates over the
d-wave spin-singlet pairing [39]. In fact, an accurate de-
termination of the phase boundary is obviously very de-
manding and beyond the scope of the present FRG study.
The sudden jumps of the T's for the IVS and FM states
shown in Fig. [5| arise from the fact that the particle-
hole susceptibilities possess maxima at finite tempera-
tures due to proximity to the VHS [39]. Such a jump in
T, for the IVS state is consistent with experimental ob-
servation of the jump in quantum oscillation frequency
between SC and PIP phases [25]. We have explored the
effects of changing other model parameters [39]. The re-
sulting phase diagrams share similar qualitative features
with Fig.

The present study explains the spin-singlet SC dome
observed in RTG in terms of inter-Fermi-surface nest-
ing that leads to d-wave singlet pairing. We find that
the Fermi surface geometry plays the key role in deter-
mining pairing symmetry and predict that the strongest
d-wave spin-singlet pairing emerges when the ratio of the
enclosed areas of the inner and outer Fermi surfaces is
r = Sin/Sout = 0.176, close to the value of 0.2 measured
near the SC dome [25], [39]. Larger values of r obtained
by increasing Ay or n. lead to first-order spin/valley fer-
romagnetic phase transitions that reconstruct the Fermi
surface [63], removing the annulus and preempting the
pairing instability.
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