
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phase Space Reconstruction from Accelerator Beam
Measurements Using Neural Networks and Differentiable

Simulations
R. Roussel, A. Edelen, C. Mayes, D. Ratner, J. P. Gonzalez-Aguilera, S. Kim, E. Wisniewski,

and J. Power
Phys. Rev. Lett. 130, 145001 — Published  5 April 2023

DOI: 10.1103/PhysRevLett.130.145001

https://dx.doi.org/10.1103/PhysRevLett.130.145001


Phase Space Reconstruction from Accelerator Beam Measurements Using Neural1

Networks and Differentiable Simulations2

R. Roussel,∗ A. Edelen, C. Mayes, and D. Ratner3

SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA4

J.P. Gonzalez-Aguilera5

Department of Physics, University of Chicago, Chicago, Illinois 60637, USA6

S. Kim, E. Wisniewski, J. Power7

Argonne National Laboratory, Argonne, Illinois 60439, USA8

(Dated: January 24, 2023)9

Characterizing the phase space distribution of particle beams in accelerators is a central part
of accelerator understanding and performance optimization. However, conventional reconstruction-
based techniques either use simplifying assumptions or require specialized diagnostics to infer high-
dimensional (> 2D) beam properties. In this Letter, we introduce a general-purpose algorithm
that combines neural networks with differentiable particle tracking to efficiently reconstruct high-
dimensional phase space distributions without using specialized beam diagnostics or beam manip-
ulations. We demonstrate that our algorithm accurately reconstructs detailed 4D phase space dis-
tributions with corresponding confidence intervals in both simulation and experiment using a single
focusing quadrupole and diagnostic screen. This technique allows for the measurement of multiple
correlated phase spaces simultaneously, which will enable simplified 6D phase space distribution
reconstructions in the future.

Increasingly precise control of the distribution of par-10

ticles in position-momentum phase space is needed for11

emerging applications of accelerators [1]. This includes,12

for example, new experiments at free electron lasers [2–13

6] and novel acceleration schemes that promise higher-14

energy beams in compact spaces [7]. Numerous tech-15

niques have been developed for precision shaping of beam16

distributions [8]; however, the effectiveness of these tech-17

niques relies on accurate measurements of the 6D phase18

space distribution, which is a challenging task unto itself.19

Tomographic measurement techniques are used in ac-20

celerators to determine the density distribution of beam21

particles in phase space ρ(x, px, y, py, z, pz) from limited22

measurements [9–14]. The simplest form of this uses23

scalar metrics, such as second-order moments, to describe24

observations of the transverse beam distribution when25

projected onto a scintillating screen. [15–17]. This pro-26

cess however discards significant amounts of information27

about the beam distribution captured by high-resolution28

diagnostic screens and only predicts scalar quantities29

of the beam distribution. In contrast, methods using30

projections of the beam image, including filtered back-31

projection [12, 18], algebraic reconstruction [19–21], and32

maximum entropy tomography (MENT) [13, 22] produce33

more accurate reconstructions.34

The MENT algorithm is particularly well-suited to re-35

constructing beams from limited and/or partial informa-36

tion sources about the beam distribution, as is the case37

in most experimental accelerator measurements. MENT38

solves for a phase space distribution that maximizes en-39

tropy (and, as a result, likelihood), subject to the con-40

straint that the distribution accurately reproduces ex-41

perimental measurements. While these techniques have42

been shown to effectively reconstruct 2D phase spaces43

from image projections using algebraic methods, applica-44

tion to higher-dimensional spaces requires independence45

assumptions between the phase spaces of principal co-46

ordinate axes (x, y, z), complicated phase space rotation47

procedures [20, 23], or simultaneous measurement of mul-48

tiple 2D sub-spaces with specialized diagnostic hardware49

[24].50

Numerical optimization methods can also be used to51

infer beam distributions from experimental data. For52

example, arbitrary beam distributions can be parameter-53

ized by a set of principal components [25] whose relative54

weights can be optimized to produce a beam distribution55

that, when tracked through a simulation, reproduces ex-56

perimental measurements. Alternatively, heuristics can57

be used to delete or generate particles in a distribution58

until particle tracking results match experiments [26, 27].59

Unfortunately, these methods suffer from increasing com-60

putational cost when extending them to reconstruct-61

ing high-dimensional phase space distributions, primarily62

due to the cost associated with optimizing the large num-63

ber of free parameters needed to represent detailed beam64

characteristics in high-dimensional phase spaces.65

In this Letter we describe a new method that provides66

detailed reconstructions of the beam phase space using67

simple and widely-available accelerator elements and di-68

agnostics. To achieve this, we take advantage of recent69

developments in machine learning to introduce two new70

concepts (shown in Fig. 1): a method for parameteriz-71

ing arbitrary beam distributions in 6D phase space, and72

a differentiable particle tracking simulation that allows73
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FIG. 1. Description of our approach for reconstructing phase space beam distributions. First, a 6D base distribution is
transformed via neural network, parameterized by θt, into a proposed initial distribution. This distribution is then transported
through a differentiable accelerator simulation of the tomographic beamline. The quadrupole is scanned to produce a series
of images on the screen, both in simulation and on the operating accelerator. The images produced both from the simulation

Q
(i,j)
n and the accelerator R

(i,j)
n are then compared with a custom loss function, which attempts to maximize the entropy of

the proposal distribution, constrained on accurately reproducing experimental measurements. This loss function is then used
to update the neural network parameters θt → θt+1 via gradient descent. The neural network transformation that minimizes
the loss function generates the beam distribution that has the highest likelihood of matching the real initial beam distribution.

us to learn the beam distribution from arbitrary down-74

stream accelerator measurements. We examine how this75

method extracts detailed 4-dimensional phase space dis-76

tributions from measurements in simulation and exper-77

iment, using a simple diagnostic beamline, containing a78

single quadrupole, drift and diagnostic screen to image79

the transverse (x, y) beam distribution. Finally, we dis-80

cuss current limitations of this method as well as future81

directions for the design of novel accelerator diagnostics82

using this technique.83

We first demonstrate our algorithm using a synthetic84

example, where we attempt to determine the distribu-85

tion of a 10-MeV beam given a predefined structure in86

6D phase space. The propagation of a synthetic beam87

distribution through a simple diagnostic beamline con-88

taining a 10 cm long quadrupole followed by a 1.0 m drift89

is simulated using a custom implementation of Bmad [28]90

referred to here as Bmad-X. To illustrate the capabilities91

of our technique, the synthetic beam contains multiple92

higher order moments between each phase space coordi-93

nates (see Supplemental Materials for details). To sim-94

ulate an experimental measurement, we simulate parti-95

cles traveling through the diagnostic beamline while the96

quadrupole strength k is scanned over N points. The97

final transverse distribution of the beam is measured at98

each quadrupole strength using a simulated 200 × 20099

pixel screen, with a pixel resolution of 300 µm (image100

data can be viewed in the Supplemental Materials). The101

set of images, where the intensity of pixel (i, j) on the n’th102

image is represented by R
(i,j)
n , is then collected with the103

corresponding quadrupole strengths to create the data104

set, which is then split into training and testing subsets105

by selecting every other sample as a test sample, resulting106

in 10 samples for each data subset.107

The reconstruction algorithm begins with the gener-108

ation of arbitrary initial beam distributions (referred to109

here as proposal distributions) through the use of a neural110

network transformation. A neural network, consisting of111

only 2 fully-connected layers of 20 neurons each, is used112

to transform samples drawn from a 6D normal distribu-113

tion centered at the origin to macro-particle coordinates114

in real 6D phase space (where positional coordinates are115

given in meters and momentum coordinates are in radi-116

ans for transverse momenta). As a result, the coordinates117

of particles in the proposal distribution are fully param-118

eterized by the neural network parameter set θt.119

Fitting neural network parameters to experimental120

measurements is done by minimizing a loss function to121

determine the most likely initial beam distribution, sub-122

ject to the constraint that it reproduces experimental123

measurements; this is similar to the MENT algorithm124

[22]. The likelihood of an initial beam distribution in125

phase space is maximized by maximizing the distribution126

entropy, which is proportional to the log of the 6D beam127

emittance ε6D [29]. Thus, we specify a loss function that128

minimizes the negative entropy of the proposal beam dis-129

tribution, penalized by the degree to which the proposal130

distribution reproduces measurements of the transverse131

beam distribution at the screen location. To evaluate132

the penalty for a given proposal distribution, we track133
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FIG. 2. Comparisons between the synthetic and reconstructed beam probability distributions using our method. (a-e) Plots
of the mean predicted phase space density projections in 4D transverse phase space. Contours that denote the 50th (black)
and 95th (white) percentiles of the synthetic ground truth (dashed) and reconstructed (solid) distributions. (f-j) Plots of the
predicted phase space density uncertainty.

the proposal distribution through a batch of accelerator134

simulations that mimic experimental conditions to gen-135

erate a set of simulated images Q
(i,j)
n to compare with136

experimental measurements. The total loss function is137

given by138

l = − log
[
(2πe)3ε6D

]
+ λ

1

NIJ

N,I,J∑
n,i,j

|R(i,j)
n −Q(i,j)

n | (1)

where λ scales the distribution loss penalty function rel-139

ative to the entropy term and is chosen empirically based140

on the resolution of the images.141

However, the large (> 103) number of free parame-142

ters contained in the neural network transformation used143

to generate proposal distributions necessitates the use144

of gradient-based optimization algorithms such as Adam145

[30] to minimize the loss function. Thus, we need to146

implement computation of the loss function such that it147

supports backward differentiation [31] (referred to here148

as differentiable computations), allowing us to cheaply149

compute loss function derivatives with respect to ev-150

ery neural network parameter. This requires that ev-151

ery step involved in calculating the loss function is also152

differentiable, including computing the beam emittance153

and tracking particles through the accelerator. Unfortu-154

nately, to the best of our knowledge, no particle tracking155

codes currently support backwards differentiation. To156

satisfy this requirement, we implement particle tracking157

in Bmad-X using the machine learning library PyTorch158

[32]. We estimate screen pixel intensities from a discrete159

particle distribution with a differentiable implementation160

of kernel density estimation [33].161

Results from our reconstruction of the initial beam162

phase space using synthetic images are shown in Fig. 2.163

We characterize the uncertainty of our reconstruction us-164

ing snapshot ensembling [34]. During model training,165

we cycle the learning rate of gradient descent in a peri-166

odic fashion which encourages the optimizer to explore167

multiple possible solutions (if they exist). After several168

of these cycles (known as a “burn-in” period), we save169

model parameters at each minima of the learning rate170

cycle, as shown in Fig. 3(a). We then weight predictions171

from each model equally, using them to predict a mean172

initial beam density distribution Fig. 2(a-e) with asso-173

ciated confidence intervals Fig. 2(f-j). Performing this174

analysis by tracking 105 particles for each image took175

less than 30 seconds per ensemble sample using a profes-176

sional grade GPU (< 60 ms per iteration, 500 steps per177

ensemble sample).178

TABLE I. Predicted Emittances Compared to True Values

Parameter
Ground
truth

RMS
Prediction

Reconstruction Unit

εx 2.00 2.47 2.00± 0.01 mm-mrad
εy 11.45 14.10 10.84± 0.04 mm-mrad
ε4D 18.51 34.83∗ 17.34± 0.08 mm2-mrad2

∗ Assumes x-y phase space independence

We see excellent agreement between the average recon-179

structed and synthetic projections in both transverse cor-180

related and uncorrelated phase spaces. Furthermore, the181

prediction uncertainty from ensembling is on the order of182

a few percent relative to the predicted mean, providing183

confidence that the overall solution found during opti-184

mization is unique. As shown in Table I, reconstructions185

of the beam distribution from image data predicts trans-186

verse phase space emittances that are closer to ground187

truth values than those predicted from second-order mo-188

ment measurements of the transverse beam distribution.189



4

This results from non-linearities and cross-correlations190

present in the 4-D transverse phase space distribution.191

FIG. 3. Evolution of the proposal distribution during training
on synthetic data. (a) Learning rate schedule for snapshot en-
sembling. (b) Second order moments of beam reconstruction
during training for each phase space coordinate. Dashed lines
denote ground truth values. Vertical lines denote snapshot
locations after burn-in period.

It is instructive to examine the evolution of the pro-192

posal distribution during model training. In Fig. 3(b)193

we examine second order scalar metrics of the proposal194

distribution after each training iteration for each phase195

space coordinate. The entropy term in Eq. 1 causes196

the distribution to expand in 6D phase space until con-197

strained by experimental evidence. Phase space com-198

ponents that have the strongest impact on beam trans-199

port through the beamline as a function of quadrupole200

strength converge quickly to the true values, whereas201

the ones that have little-to-no impact (e.g. the longi-202

tudinal distribution characteristics) continue to grow. In203

other cases, there is weak coupling between the experi-204

mental measurements and beam properties; for example,205

chromatic focusing effects due to the energy spread σδ206

of the beam weakly affect the measured images. Here,207

the reconstruction can only provide an upper-bound es-208

timate of the energy spread, since small changes in trans-209

verse beam propagation due to chromatic aberrations are210

overshadowed by statistically dominated particle motion.211

Convergence of the proposal distribution thus provides a212

useful indicator of which phase space components can213

be reliably reconstructed from arbitrary sets of measure-214

ments.215

We now describe a demonstration of our method on216

an experimental example at the Argonne Wakefield Ac-217

celerator (AWA) [35] facility at Argonne National Labo-218

ratory. Our objective is to identify the phase space dis-219

tribution of 65-MeV electron beams at the end of the220

primary accelerator beamline. The focusing strength221

of a quadrupole, with an effective length of 12 cm, is222

scanned while imaging the beam at a transverse scintillat-223

ing screen located 3.38 m downstream. Charge window-224

ing, image filtering, thresholding and downsampling were225

used to generate a set of 3 images for each quadrupole226

setting (see the Supplemental Materials for additional227

details).228

TABLE II. Predicted Emittances from Experimental Data

Parameter
RMS
Prediction

Reconstruction Unit

εx,n 4.18± 0.71 4.23± 0.02 mm-mrad
εy,n 3.65± 0.36 3.42± 0.02 mm-mrad

We developed a differentiable simulation in Bmad-X of229

the experimental beamline, including details of the diag-230

nostics used, such as the location and properties of beam-231

line elements and the per-pixel resolution of the imaging232

screen. With this simulation, we used our method to233

reconstruct the beam distribution from experimentally-234

measured transverse beam images. The results, as shown235

in Figure 4 and Table II, demonstrate good agreement236

between experimental measurements of the beam distri-237

bution and predictions from our reconstruction. Scalar238

predictions of the beam emittances from the image-based239

reconstruction are consistent with those calculated from240

RMS measurements. Additionally, our reconstruction241

method accurately reproduces fine features of the trans-242

verse beam distribution that were not present in the243

training data set.244

In this work, we have demonstrated how differentiable245

particle tracking simulations, combined with neural net-246

work based representations of beam distributions, can be247

used to interpret common image-based diagnostic mea-248

surements. Our method produces detailed reconstruc-249

tions of 4-dimensional transverse phase space distribu-250

tions from limited data sets, without the use of com-251

plex phase space manipulations or specialized diagnos-252

tics. Additionally, our reconstruction identifies limita-253

tions in resolving certain aspects of the beam distribu-254

tion based on available measurements. This analysis is255

enabled by inexpensive gradient calculations provided by256

backwards differentiable physics simulations. As a result,257

we are able to determine thousands of free parameters258

used to describe complex beam distributions on a time259

scale similar to the time it takes to perform the physical260

tomographic measurements themselves. Thus, our recon-261

struction technique is suitable for inferring detailed beam262

distributions in an online fashion, i.e. during accelerator263

operations.264

As with any new algorithmic technique, there are areas265

for future improvement. Uncertainty estimates provided266

by the reconstruction algorithm only capture systematic267
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FIG. 4. Reconstruction results from experimental measurements at AWA. Comparison between measured and predicted beam
centroids (a) and second-order beam moments (b) on the diagnostic screen as a function of geometric quadrupole focusing
strength (k). Points denote training samples and crosses denote test samples. Dashed line shows second order polynomial fit
of training data and solid line shows predictions from image-based phase space reconstruction. We also compare (c-h) screen
images and reconstructed predictions for a subset of quadrupole strengths. Contours denote the 50th (black) and 95th (white)
percentiles of the measured (dashed) and predicted (solid) screen distributions. Orange borders denote test samples.

uncertainties from optimizing the loss function, Eq. 1;268

thus it ignores systematic uncertainties of the physical269

measurement and stochastic noise inherent in real ac-270

celerators. Future work will incorporate Bayesian anal-271

ysis techniques into the reconstruction to provide cal-272

ibrated uncertainty estimates to experimental measure-273

ments. Also, while our method significantly increases the274

speed of high-dimensional phase space reconstructions,275

achieving this requires substantial amounts of memory276

to store the derivative information of each macro-particle277

at every tracking step (∼ 4 GB for each snapshot in the278

analysis performed here). Peak memory consumption279

can be reduced through the use of checkpointing [36] or280

pre-computing derivatives associated with tracking par-281

ticles through the entire beamline. Finally, this method282

is limited by the availability of accurate, computation-283

ally efficient, backwards differentiable particle tracking284

simulations. In order to expand the range of diagnostic285

measurements that can be analyzed by this technique,286

further investment in differentiable implementations of287

particle tracking simulations is needed.288

This new reconstruction approach opens the door to ef-289

ficient, detailed characterization of 6-dimensional phase290

space distributions and new types of compound diag-291

nostic measurements. By adding longitudinal beam ma-292

nipulations, such as transverse deflecting cavities paired293

with dipole spectrometers, to the beamline used here, full294

phase space distributions can be characterized through a295

series of quadrupole strength and deflecting cavity phase296

scans.297
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