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We show that non-Hermitian Ginibre random matrix behaviors emerge in spatially-extended
many-body quantum chaotic systems in the space direction, just as Hermitian random matrix be-
haviors emerge in chaotic systems in the time direction. Starting with translational invariant models,
which can be associated with dual transfer matrices with complex-valued spectra, we show that the
linear ramp of the spectral form factor necessitates that the dual spectra have non-trivial corre-
lations, which in fact fall under the universality class of the Ginibre ensemble, demonstrated by
computing the level spacing distribution and the dissipative spectral form factor. As a result of
this connection, the exact spectral form factor for the Ginibre ensemble can be used to universally
describe the spectral form factor for translational invariant many-body quantum chaotic systems
in the scaling limit where t and L are large, while the ratio between L and LTh, the many-body
Thouless length is fixed. With appropriate variations of Ginibre models, we analytically demon-
strate that our claim generalizes to models without translational invariance as well. The emergence
of the Ginibre ensemble is a genuine consequence of the strongly interacting and spatially extended
nature of the quantum chaotic systems we consider, unlike the traditional emergence of Hermitian
random matrix ensembles.

Introduction.– The discovery of the connection between
quantum chaos and random matrix theory (RMT) is of
great importance in theoretical physics because RMT
provides an approach that eliminates dependence on the
microscopic details and captures the universal character-
istics of an ensemble of statistically similar chaotic sys-
tems, constrained only by symmetries [1, 2]. Histori-
cally, the spectral correlation of the Gaussian ensembles
was discovered in chaotic mesoscopic systems for suffi-
ciently small energy scales or equivalently, sufficiently
late time scales [3, 4]. Recently, with the development
in random unitary circuits [5–18], particularly in the
time periodic or Floquet circuits, Recent analytic calcula-
tions of random matrix behaviour in spectral correlations
of spatially-extended many-body quantum chaotic sys-
tems been achieved [19–27]. While Floquet circuits have
given access to the study of non-trivial spectral proper-
ties in extended many-body systems — like the onset of
RMT behaviour [20, 25, 27–29], spectral Lyapunov expo-
nents [26], and novel scaling forms and limits [23, 25] —
translational-invariant (TI) circuits give rise, via the so-
called space-time duality, to non-Hermitian dual transfer
matrix (Fig. 1 red) with complex eigenvalues, the dual
spectrum. The study of many-body quantum system us-
ing space-time duality began in the study of the kicked
Ising model at the self-dual point [22, 30–33] and con-
currently in the transfer matrix approach in Floquet cir-
cuits [20, 25, 26]. Subsequently, numerous works have
investigated the non-unitary “dynamics” in the space di-
rection [34–38]. The objective of this paper is to pro-
vide evidence of the emergence of non-Hermitian Gini-
bre (GinUE) RMT-behaviour [39] in many-body quan-
tum chaotic (MBQC) systems in the thermodynamic and

scaling limit, in contrast to the emergence of standard
Gaussian Hermitian RMT ensembles in late time, as il-
lustrated below.

Heuristics.– One of the simplest non-trivial and
analytically-tractable quantities to diagnose chaos is the
spectral form factor (SFF), defined as [2, 19–23, 25–
29, 31, 41–55]

K(t, L) =
〈
|TrH [W(t, L)]|2

〉
=
〈
|TrH̃ [V(t, L)]|2

〉
(1)

where W(t, L) =
∏t
t′=1W (t′, L) is a time evolution

operator acting on Hilbert space H, and V(t, L) =∏L
j=1 V (t, j) is the corresponding dual operator (Fig. 1

red) performing “evolution” in space on dual Hilbert
space H̃. t and L denote the numbers of repeated ac-
tions of W and V , and can be treated as effective time
and system size respectively [56] . For Floquet systems,
one has W (t′, L) = W (L), while V (t, j) = V (t) for TI
systems with transfer matrix V (t). We can generally di-
agonalise V (t) with the eigenvalues {zj} ≡ {ρjeıφj} with
ρj , φj ∈ R.

K(t, L) =

〈∑
i

ρ2Li +
∑
i6=j

[
ei(φi−φj)ρiρj

]L〉
(2)

We are denoting as 〈. . .〉 the ensemble average over sta-
tistically similar systems. In the absence of extra sym-
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FIG. 1. Regime diagram of spectral form factor K(t, L) (Eq
1) for many body quantum chaotic systems with translational
invariance in space and time, with ‘Bump’, random matrix
‘Ramp’ (RMT) and ‘Plateau’ regimes. For fixed t and in-
creasing L (purple), the SFF exhibits an initial linear ramp
behavior (yellow) which necessarily requires non-trivial spec-
tral statistics of the dual spectra. Inset: Diagrammatical rep-
resentation of equality of the spectral form factor computed
using the dual transfer matrix (Eq 1) , with unitary 2-gate
(green), Floquet operator W (L) (blue), dual transfer matrix
V (t) (red).

metries, RMT predicts K(t, L) ∼ tL for TI Floquet sys-
tems. This can be understood as the spectrum of W (L)
splits in L momentum sectors which emerges because of
TI. If correlations between sectors vanish, the spectral
form factor results from the sum of the usual linear-
in-t behavior within each momentum sector [23]. For
many-body systems, this RMT behavior emerges when-
ever t > tTh(L) or equivalently L < LTh(t), where tTh(t),
LTh(L) are respectively the many-body SFF Thouless
time and length, related by LTh(tTh(L)) = L. The Thou-
less time is a system-dependent quantity which charac-
terises the time scale for the onset of chaos in the two-
point level correlation and in general is expected to grow
with system size L [23] (with the relevant exception of
the dual–unitary circuits [22, 31, 36, 41, 57–59]). It is
insightful to re-interpret these considerations in terms of
the spectrum of V (t). From Eq. (2), we see that if phase
correlations could be neglected, K(t, L) & eλ(t)L, with
λ(t) = maxi ln ρi for L � LTh(t). We label this regime
as the “Exponential bump” region in Fig. 1. Thus, the
existence of the “Ramp” regime, characteristic of RMT,
for L . LTh(t) implies that the off-diagonal term in (2)
necessarily display non-trivial correlation, such that the
exponential behaviour of the diagonal term in (2) could
be compensated. We emphasize that this heuristic ar-

gument applies to generic translational invariant MBQC
systems. The characterisation of the spectral statistics
of V (t) will be the main objective of this letter. As we
show below, such dual spectral statistics falls under the
universality class of Ginibre ensemble, which can be seen
as the most generic rotation invariant Gaussian ensem-
ble, once all relevant symmetries have been taken into
account (e.g. space-time translational invariance).
Models. – We consider three one-dimensional random

unitary circuits as models of MBQC, namely the brick-
wall model, the random phase model, and the kicked
Ising model. All three models can be written as the oper-
ator W(t, L) =

∏t
t′=1W (t′, L) =

∏L
r=1 V (t, r) = V(t, L)

where W (t′, L) and V (t, r) refer respectively to the time
and space transfer matrix shown in blue and red in
Fig. 1, acting on the Hilbert space with dimensions
qL and qt respectively, with q being the on-site dimen-
sion [56]. The circuit is composed of unitary two-gates
u(t′, r) and one can define the space-time dual of u via
ucdab(t

′, r) = vdbca(t′, r). The precise definitions of the gates
u(t′, r) are given in the supplementary material [40], and
are not crucial for our discussion as long as the models are
chaotic and have no conserved quantities. We define four
setups resulting from the combination of translational in-
variance in space and time: (a) Temporally and spatially
random unitary circuits, where all u-s are drawn inde-
pendently. In this case, spectral correlations are trivial
in both space and time directions, with K(t, L) ∼ 1 for all
t, L [23]; (b) Temporally periodic, i.e. Floquet, and spa-
tially random (Floquet) circuits, where u(t′, r) = u(t′′, r)
for all t′, t′′ and r; (c) Temporally random and spatially
TI random circuits, where u(t′, r) = u(t′, r′) for all t′, r
and r′; and (d) Floquet and spatially TI (TIF) circuits,
where u(t′, r) = u(t′′, r′) for all t′, t′′, r and r′.
Dual spectral statistics.– We start by focusing on TI

(temporal random) models (case c), where the transfer
matrix V (t) has a well-defined spectrum and exhibits no
additional symmetries since the model is temporarily dis-
ordered. As the spectrum is complex, in order to anal-
yse its correlations, we resort to a) level spacing distri-
bution and b) a natural generalization of SFF, known
as the dissipative spectral form factor [47]. The SFF
of a generic complex spectrum is exponentially growing
or decaying due to the imaginary parts of the complex
eigenvalues. To circumvent this problem, dissipative SFF
instead treats the complex spectrum as a set of points in
the plane and assess the distribution of their euclidean
distances. Indeed, for a non-Hermitian operator with
spectrum {zn = xn + iyn : xn, yn ∈ R}, the connected
part is defined as

Kc(t, s) :=

〈∣∣∣∣∣∑
n

eixnt+iyns

∣∣∣∣∣
2〉
−

∣∣∣∣∣
〈∑

n

eixnt+iyns

〉∣∣∣∣∣
2

,

(3)
where t and s are two generalized time variables. We
organise them into the complex time τ ≡ t+ is ≡ |τ | eıθ,
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FIG. 2. Universal correlations for representative many body random quantum circuits [40], showing approach to corresponding
quantities computed for the Ginibre ensemble (green). (a): Dissipative spectral formm factor (3) of the dual spectra of the brick
wall model, for t = 3, 4, 5, 6 from light to dark red. (b): Nearest neighbour spacing distribution of the dual spectra of the brick
wall model (on site dimension q = 2, t = 6, purple), random phase model (q = 3, t = 8, burgundy), and zero momentum sectors
of translational invariant Floquet brick wall model (q = 2, t = 7, red) and random phase model (q = 3, t = 10, gold). Kicked
Ising model away from the self dual point at J = 0.75Jc (grey) shows the distribution corresponding to the symmetric Ginibre
ensemble (pink curve obtained from N = 2187) due to time reversal symmetry [40]. (c): Scaling collapse of the spectral form
factor κTI(x) for two models and κGin(x), for the Ginibre ensemble (8), against x = L/LTh or L/L∗ with excellent agreement,
where LTh is Thouless length, and L∗ is the inverse mean level spacing for Ginibre ensemble. (d): L/LTh (dots) and L∗ (dashed
line) against time t, used for the collapse in the main panel. For Ginibre, we define an effective time via N := qt. (e): Scaled
spectral form factor KTIF(t, L)/L for translational invariant Floquet brick wall model (q = 3, t = 2, 3, 4, red) and the numerical
fit of KTIF−Gin(t, L)/L (green) against L with darker colors for larger t. We fit KTIF−Gin(t, L) to KTIF(t, L) by tuning L∗

F and
L∗

TI in Eq. (12), which are plotted against time t as blue and red respectively in (f).

and will abusively use the polar coordinate (|τ |, θ) to
parameterise the arguments of Kc. As a yardstick for
the generic behavior of Kc, we consider the GinUE, sam-
pled by taking N -by-N random matrices with indepen-
dent complex Gaussian matrix element with variance
σ2 = v/N . In other words, the probability density for
a matrix M is ∝ exp[−N/(2v) TrMM†], and is thus ro-
tational invariant. Therefore, the GinUE is expected to
capture the spectral correlations of sufficiently generic, or
“chaotic”, complex non-Hermitian matrices, in a similar
fashion to how the Gaussian and Circular unitary ensem-
ble are the universality class for unitary and hermitian
matrices respectively [47, 60]. The dissipative SFF can be
computed explicitly for GinUE [47]. Keeping the leading
contribution in N , Kc simplifies to

Kc,Gin(|τ |, θ) =
N

v

(
1− e−

v|τ|2
4N

)
. (4)

which is rotational symmetric and shows a (dip-)ramp-
plateau behaviour [61], analogous to the SFF for closed
quantum systems: At |τ | . ∆−1 ∼

√
N , it increases

quadratically ' |τ |2/4 in large N until it plateaus at
N at a time comparable to the inverse of the mean
level spacing ∆ in the complex plane. Remarkably,
the quadratic ramp of dissipative SFF for GinUE is
drastically different from the corresponding behaviour
for Gaussian unitary ensembles, which is linear in time.
The quadratic ramp is sensitive to the variation of
density of states across the complex plane, and thus
unfolding is required to uncover the true long-range

dual spectral correlations [40]. In Fig. 2a, we show for
TI random phase model, as a representative example,
a good collapse of Kc(|τ |, θ)/Kc(|τ | → ∞, θ) against
|τ |∆, approaching GinUE behaviour (4) as the dual
system size t increases, with a similar approach for other
models [40], demonstrating universality.

To provide further evidence of emergence of GinUE, we
probe the spectral correlation at the scale of mean level
spacing in the complex plane using the nearest-neighbour
spacing distribution in Fig. 2b, and complex spacing ra-
tio [62] in [40], for the three different TI models. We
find signatures of level repulsion consistent with the cor-
responding RMT universality classes (including the ones
with time reversal symmetry [40]), and with the dissipa-
tive SFF results around the ∆−1 region.

SFF of GinUE.– With the insight that dual-spectral
correlation falls under the universality class of GinUE, it
is natural to ask whether this information can be used
to understand the behavior of the SFF. As before, we
start by focusing on TI systems, where, in the absence of
extra symmetries, the correlation of the dual spectrum
are captured by the standard GinUE, whose joint prob-
ability distribution function of eigenvalues {zj} is known
exactly [63]. We model the SFF in (1), by replacing the
transfer matrix V (t) with VG drawn from the GinUE of
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size N , and obtain [40]

KGin(N,L) :=
〈∣∣Tr

[
V LG
]∣∣2〉

=N2δL,0 +
vL
(

(L+N)!− N !(N−1)!
(N−L−1)!

)
NL(L+ 1)(N − 1)!

.

(5)
In matching the predictions of (5) with many-body mod-
els, we encode t dependence in the matrix size N , whose
functional form will be specified later. In the limit
of large N at fixed large L, KGin(N,L) = vLL(1 +
O(L4/N2)). The crossover scale L∗TI =

√
N is related

to the inverse of mean level spacing ∆ in the complex
plane. This suggests a scaling limit where L and N are
sent to infinity with x = L/L∗TI fixed and one has

κGin(x) ≡ lim
L,N→∞
x=L/L∗TI

KGin

vLL
=

2 sinh
(
x2

2

)
x2

. (6)

In fact, the above scaling form of GinUE shares similar-
ities with the scaling forms proposed for TI (temporal
random) systems in [23], given by

κTI−MBQC(x) = lim
L,t→∞

x=L/LTh(t)

KTI−MBQC

L
, (7)

for TI systems, where instead of L∗TI in GinUE, the
system-dependent many-body Thouless length LTh(t) is
used to define the scaling limit. Now, given that (i) the
spectral correlation dual spectra of many body chaotic
systems falls under the GinUE universality class; (ii) a
linear ramp in L naturally emerges from (5) for L� L∗TI,
coinciding with the appearance of the linear-ramp in SFF
of chaotic systems; we conjecture that the scaling form of
GinUE describes the scaling form of TI chaotic systems
once L∗TI and LTh(t) are identified, i.e.

κTI−MBQC(x) = κGin(x) ≡ κTI−Gin(x) , (8)

To test this claim, we simulate both sides of (8), for TI
brick wall model, random phase model, and GinUE in
Fig. 2c and find an excellent collapse. We note that the
scaling limit in (7) differs from the infinite-q result ob-
tained for the random phase model in [23] which dis-
agreed with the finite-q numerical simulations. The uni-
versality of κ(x) implies that the microscopic details are
only reflected in the function LTh(t), and not in the
scaled function κ(x), as observed in [23]. Also, the va-
lidity of Eq. (8) indicates that the effective size N of
the equivalent GinUE matrix shall not be fixed from the
dual Hilbert space dimension (= q2t), but rather from the
emerging Thouless length, i.e. N = L∗2 ∼ LTh(t)2 � q2t

(Fig. 2d).
Beyond translational invariance.– We now extend the

previous considerations to Floquet systems. We first con-
sider with spatial randomness (case b) and then we in-
corporate TI (case d), and demonstrate the emergence of

GinUE–like behaviour with and without TI. To incorpo-
rate time periodicity, we first observe that the transfer
matrix becomes invariant under time translations, and
thus its spectrum can be split in time momentum or fre-
quency sectors. In the inset of Fig. 2b and [40], we respec-
tively compute the dissipative SFF and spacing distribu-
tion for the dual spectrum in each sector, and confirm
the emergence of Ginibre statistics. Time translation
implies V (t, r) = TV (t, r)T−1, where T shifts the dual
system over one period. For simplicity, we assume invari-
ance under one site translation, with T |s = s1s2 . . . st〉 =
|s2s3 . . . sts1〉, generalization to longer unit cells being
straightforward. For each configuration s, we define its
associated period as the minimal τ = 1, . . . , t such that
T τ |s〉 = |s〉. To formulate the statistical properties of
the ensemble, we restrict the Hilbert space to the set
of computational basis {|s〉} translational invariant with
only period t. Indeed, the fraction of configurations with
maximal period goes to 1 for large t (and/or obviously
for large q). Using No to denote the number of dis-
tinct orbits under the translation operation, we formally
have a dimension for the restricted dual Hilbert space
dim(H̃) = tNo. Then, we model the transfer matrix
V (t, r) by a random matrix VG with complex Gaussian
entries and covariance〈

[VG]ss′ [VG]∗pp′
〉

=
1

No

∑
τ,τ ′

δsT τ (p)δs′T τ′ (p′)J(τ − τ ′) ,

(9)
where J(τ − τ ′) controls the correlation between ma-
trix elements. As pointed out in [64] via a semiclas-
sical expansion, the emergence of SFF linear ramp us-
ing RMT K(t) = t in single-particle chaotic Floquet
systems can be associated to the pairing between two
periodic orbits, which can happen in t possible ways
(t being the discrete length of the orbit here). In ex-
tended chaotic systems, the factor of t corresponds to
the possible values of τ = 1, . . . , t for local pairing of or-
bits [20, 45]. The interaction between neighbouring local
degrees of freedom forces similar pairings between local
orbits, quantified here by the function J(τ − τ ′). A sim-

ple calculation gives KF−Gin(t, L) =
〈
|Tr[VG(t, L)]|2

〉
=∑

{τ}
∏L
i=1 J(τi−τi+1) =

∑
ω[Ĵ(ω)]L [40], with Ĵ(ω) the

Fourier transform of J(τ). We thus see that the SFF
behavior in the scaling limit depends on Ĵ(ω). For sim-
plicity, we suppose J(τ − τ ′) = δτ,τ ′ + f(t)h(τ − τ ′),
where f(t) decays to zero on the scale of the Thouless
time, and the function h(τ − τ ′) controls the correlation
between neighbouring pairings. Within this formulation,
the scaling limit depend on the details of the Fourier
transform ĥ(ω). However, the exact calculation in the
random phase model at infinite q [20, 23, 40] leads to

h(τ − τ ′) = 1 − δτ,τ ′ which implies ĥ(ω) = tδω,0 − 1.
Numerical evidence supports the claim that in general

ĥ(ω 6= 0)/ĥ(ω = 0)
t→∞→ 0. Under this assumption, one
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recovers the emergent Potts model of SFF [40] and the
universal result from [20, 23],

κF−Gin(x) = lim
L,t→∞

x=L/L∗F(t)

KF−Gin − t = ex − x− 1 , (10)

with L∗F(t) = [f(t)ĥ(0)]−1. Hence, we have for case b

κF−Gin(x) = κF−MBQC(x) . (11)

Translation invariant Floquet case. – For TI Floquet
systems (case d), we model the transfer matrix with (9),
except that TI is imposed, i.e. VG(t, r) = VG(t, r′) for all
r, r′. In practice, Eq. (9) implies that different frequency
sectors are statistically decoupled. We can thus evaluate
KTIF−Gin for this model, using Eq. (5) within each sector
and replacing the variance v/N → Ĵ(ω)/No. Using the
results in Eqs. (6,10), one obtains for L 6= 0,

KTIF−Gin(t, L) = KGin(No, L)KF−Gin(t, L)

∼ LκTI−Gin

(
L

L∗TI

)[
κF−Gin

(
L

L∗F

)
+ t

]
,

(12)

and sees that the emerging scaling form depends on the
ratio between the relevant length scales, namely L∗F and
L∗TI. For instance, if L∗TI � L∗F at large t, the appropriate
scaling limit has x = L/L∗TI fixed, giving the scaling form

κ
(TI)
TIF−MBQC(x) := lim

L,t→∞
x=L/L∗TI

KTIF−Gin

tL
= κTI−Gin(x)

(13)
On the contrary, if L∗F � L∗TI at large t, the appropriate
scaling limit has x = L/L∗F fixed leading to

κ
(F)
TIF−MBQC(x) := lim

L,t→∞
x=L/L∗F

KTIF−MBQC

L
− t = κF−Gin(x)

(14)
To test this, in Fig. 2e, we simulate the TI Floquet brick
wall model as a representative example, and show that
an excellent fit can be obtained using Eq. (12), with L∗F
and L∗TI as fitting parameters in Fig. 2f. While we cannot
determine the large-t behaviour of L∗TI L

∗
F from the finite

size data, we can extrapolate that L∗TI � L∗F for this
model, and obtain a consistent scaling collapse of (13) in
[40].

Discussion. The emergence of universal Ginibre be-
haviour complements the known emergence of Gaussian
unitary ensemble in such systems, and opens up a new av-
enue to characterize quantum chaos. We emphasize that
the emergence of GinUE is a many-body quantum phe-
nomenon: Firstly, the construction of spacetime duality
requires spatial structure. Secondly, the crossover be-
tween linear ramp to exponential behaviours around LTh

(or tTh) and the scaling collapse in the scaling limit is a
manifestation of many-body quantum effect — the (con-
nected) SFF of Gaussian and Circular ensembles have no
exponential regime at all.
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[62] L. Sá, P. Ribeiro, and T. c. v. Prosen, Complex spacing
ratios: A signature of dissipative quantum chaos, Phys.
Rev. X 10, 021019 (2020).

[63] J. Ginibre, Statistical ensembles of complex, quaternion,
and real matrices, Journal of Mathematical Physics 6,
440 (1965), https://doi.org/10.1063/1.1704292.

[64] M. V. Berry, Semiclassical theory of spectral rigidity, Pro-
ceedings of the Royal Society of London A: Mathemati-
cal, Physical and Engineering Sciences 400, 229 (1985).

[65] R. Hamazaki, K. Kawabata, N. Kura, and M. Ueda, Uni-
versality classes of non-hermitian random matrices, Phys.
Rev. Research 2, 023286 (2020), arXiv: 1904.13082.

https://doi.org/10.1103/PhysRevLett.125.250601
https://doi.org/10.1103/PhysRevLett.128.190402
https://doi.org/10.1088/1751-8113/49/37/375101
https://doi.org/10.1088/1751-8113/49/37/375101
https://doi.org/10.1088/1751-8113/49/37/375101
https://doi.org/10.1103/PhysRevB.100.064309
https://doi.org/10.1103/PhysRevX.11.021040
https://doi.org/10.1103/PhysRevX.11.021040
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1063/1.1704292
https://doi.org/10.1063/1.1704292
https://arxiv.org/abs/https://doi.org/10.1063/1.1704292
https://doi.org/10.1098/rspa.1985.0078
https://doi.org/10.1098/rspa.1985.0078
https://doi.org/10.1098/rspa.1985.0078
https://doi.org/10.1103/PhysRevResearch.2.023286
https://doi.org/10.1103/PhysRevResearch.2.023286

	Many-body quantum chaos and emergence of Ginibre ensemble
	Abstract
	References


