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The fluctuations of the electromagnetic field are at the origin of the near-field radiative heat
transfer between nanostructures, as well as the Casimir forces and torques that they exert on each
other. Here, working within the formalism of fluctuational electrodynamics, we investigate the
simultaneous transfer of energy and angular momentum in a pair of rotating nanostructures. We
demonstrate that, due to the rotation of the nanostructures, the radiative heat transfer between
them can be increased, decreased, or even reversed with respect to the transfer that occurs in absence
of rotation, which is solely determined by the difference in the temperature of the nanostructures.
This work unravels the unintuitive phenomena arising from the simultaneous transfer of energy and
angular momentum in pairs of rotating nanostructures.

Radiative heat transfer between material structures
originates from the thermal fluctuations of the electro-
magnetic field [1]. When the distance between the struc-
tures is much smaller than the wavelength of the thermal
radiation, the radiative heat transfer can greatly surpass
the predictions of Planck’s law due to the contribution
of the near-field components of the electromagnetic field
[2–7]. If the dimensions of the structures also fall within
that range, the strong responses produced by their elec-
tromagnetic resonances provide a further enhancement
of the radiative heat transfer [8–15].

Another important phenomenon originating from the
vacuum and thermal fluctuations of the electromagnetic
field is Casimir interactions [16–19]. These interactions
produce forces and torques between neutral objects [20–
27], which can play an important role in the mechani-
cal behavior of nanostructures [28, 29]. For instance, the
Casimir force produces a friction for two parallel surfaces
in relative motion as well as for an atom moving near a
surface [30–32]. Analogously, the Casimir torque acting
on a rotating nanostructure generates a friction that op-
poses the rotation and eventually stops it [33–37]. For
systems containing multiple nanostructures, the Casimir
torque enables the transfer of angular momentum be-
tween them [38–40]. Furthermore, these phenomena can
even result in an analog to the Sagnac effect [41].

Radiative heat transfer and Casimir interactions are
usually investigated separately. The former is typi-
cally studied for ensembles of motionless nanostructures,
while, for the latter, it is common to assume that all of
the nanostructures are at the same temperature. How-
ever, as we show in this work, the interplay between ra-
diative heat transfer and Casimir interactions can give
rise to very interesting phenomena.

In this letter, we characterize the transfer of energy
and angular momentum in a pair of rotating nanostruc-
tures with different temperatures and rotation frequen-
cies. Thanks to the simultaneous study of both phenom-
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FIG. 1. The system under study consists of two axially sym-
metric nanostructures separated by a distance l along the z
axis. The nanostructures have dimensions D1, d1 and D2, d2,
are at temperatures T1 and T2, and rotate with frequencies
Ω1 and Ω2. The temperature of the environment is T0.

ena, we demonstrate that the rotation of the nanostruc-
tures can significantly modify the radiative heat transfer
between them. In absence of rotation, the energy trans-
fer is determined by the difference in the temperature of
the nanostructures, and is always directed from the hot
nanostructure to the cold one [11, 12, 42]. However, when
the nanostructures rotate, the radiative heat transfer can
be enhanced, reduced, or even reversed, i.e., made to go
from the cold nanostructure to the hot one, by adjusting
their rotation frequencies. Our results, which are based
on the fluctuational electrodynamics framework [43, 44]
and the dipolar approximation [45–49], provide the theo-
retical foundations to understand how the transfer of an-
gular momentum modifies the transfer of energy in pairs
of rotating nanostructures.

The system under consideration is depicted in Figure 1.
It consists of two axially symmetric nanostructures sep-
arated by a distance l along their symmetry axis, which
we choose to be the z axis. The nanostructures have
dimensions D1, D2 and d1, d2 along the directions per-
pendicular and parallel to the z axis, respectively. They
rotate around the z axis with rotation frequencies Ω1

and Ω2. The temperatures of the nanostructures, as de-
fined in the frame at rest with each of them, are T1 and
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T2 while, for the environment, it is T0. We assume that
the size of the nanostructures is significantly smaller than
both their separation and the relevant wavelengths of the
system, which are determined by the temperature of the
nanostructures as well as their rotation and resonance
frequencies. These assumptions allow us to work within
the dipolar approximation, in which the nanostructures
are modeled as electric point dipoles.

We are interested in simultaneously studying the trans-
fer of angular momentum and energy between the rotat-
ing nanostructures. To characterize these transfers, we
calculate, respectively, the power radiated by the nanos-
tructures and the electromagnetic torque acting on them.
Within the dipolar limit, the torque acting on nanostruc-
ture 1 is given by M1 = 〈p1(t)×E1(t)〉·ẑ, while the power
that it radiates is P1 = −〈E1(t) · ∂p1(t)/∂t〉. Here, p1(t)
and E1(t) represent the self-consistent electric dipole and
electric field in nanostructure 1 and the brackets indicate
the average over fluctuations, which we perform using the
fluctuation-dissipation theorem [33, 50, 51]. Following
the procedure described in [52], we obtain the following
expressions for the torque:

M1 = −
∫ ∞
−∞
dω
[
F+N−1 −G+N−2

]
(1)

and the power radiated:

P1 =

∫ ∞
−∞
dωω

[
F+N−1 −G+N−2 + F zNz

1 −GzNz
2

]
, (2)

where N−i = n(Ti, ω − Ωi) − n(T0, ω) and Nz
i =

n(Ti, ω)/2− n(T0, ω)/2, with n(T, ω) = [exp(h̄ω/kBT )−
1]−1. Furthermore, the functions F ν and Gν are de-
fined as F ν = (2h̄/π)|hν |2Im{χν1}Im

{
g0 + αν2(gν)2

}
and

Gν = (2h̄/π)|hνgν |2Im{χν1}Im{χν2}, with hν = [1 −
αν1α

ν
2(gν)2]−1, χνi = ανi − g0|ανi |2, g0 = 2ik3/3, gν =

exp(ikl)[(1−δνz)k2/l+(1−3δνz)(ik/l
2−1/l3)], k = ω/c,

and δνµ being the Kronecker delta. Importantly, we can
obtain analogous expressions for nanostructure 2 by in-
terchanging the indices 1↔ 2 in Equations (1) and (2).

In these expressions, αzi represents the component of
the polarizability of the nanostructure along the z axis,
which is not affected by the rotation. On the other hand,
α±i denotes the components of the effective polarizability
seen from the frame at rest, in the basis formed by the
unit vectors ê± = (x̂± iŷ)/

√
2. The calculation of these

components is not trivial. If the intrinsic response of
the nanostructure is assumed to remain unchanged by
the rotation, and the Coriolis and centrifugal effects are
neglected, the effective polarizability only accounts for
the effect of the Doppler shift caused by the rotation
[23, 33–35, 55–58]. However, it was later shown that the
inclusion of these effects gives rise to corrections that can
partially or completely cancel the effect of the Doppler
shift and introduce other dependences with the rotation
frequency [40, 59–61].

Equations (1) and (2) allow us to calculate the transfer
of angular momentum and energy between the rotating

nanostructures by numerically computing the integrals
over frequency. Nevertheless, they do not provide direct
insight into the physical mechanisms behind these phe-
nomena. Here, instead, we derive closed-form analytical
expressions by considering the following approximations.
First, we assume that the rotation frequencies Ω1 and
Ω2, as well as the thermal frequencies θ1 = 2πkBT1/h̄
and θ2 = 2πkBT2/h̄, are all much smaller than both
c/l and the resonance frequencies of the nanostructures
ωr,1 and ωr,2. Second, we assume that D1 � d1 and
D2 � d2, which allows us to neglect the component of
the polarizabilities along the z axis for both nanostruc-
tures. Moreover, as shown in [52], we describe α±i us-
ing a harmonic oscillator model and taking into account
the Coriolis and centrifugal effects. With the approx-
imations described above, the polarizability reduces to
α±i (ω) ≈ ai[1 + i(ω ∓ Ωi)γi/ω

2
r,i], where γi is the non-

radiative damping of the electromagnetic resonance, and
ai is a constant with units of polarizability. Finally, we
neglect multiple scattering effects, i.e., hν ≈ 1. Upon
applying all of these approximations, the torque acting
on nanostructure 1 can be approximated by

M1

C
= −(Ω1 − Ω2)

(
θ21 + θ22

)
− 2 (Ω1 − Ω2)

3
, (3)

and the power radiated by

P1

C
=

Π1

C
+

1

2
(θ21 − θ22)(Ω1 − Ω2)2

+
(
Ω2

1 − Ω2
2

) [1

2

(
θ21 + θ22

)
+ (Ω1 − Ω2)

2

]
.

(4)

Here, Π1 = C(θ41 − θ42)/10 represents the power radiated
by nanostructure 1 when neither of the nanostructures
rotate, which has the same dependence with temperature
as the Stefan-Boltzmann law. Furthermore, C, defined
as

C =
h̄

6π

(
γ1γ2

ω2
r,1ω

2
r,2

)(a1a2
l6

)
,

contains all of the information of the electromagnetic re-
sponse of the nanostructures, and, in particular, of their
material properties. Again, analogous expressions for
nanostructure 2, i.e., M2 and P2, can be obtained by
interchanging the indices 1↔ 2.

The expressions above fully describe the transfer of
angular momentum and energy between the two nanos-
tructures. Examining them, we can readily verify that
M1 +M2 = 0 and P1 +P2 = 0, which tells us that, under
the approximations considered above, there is no transfer
of angular momentum or energy between the nanostruc-
tures and the environment. For this reason, the two ro-
tating nanostructures behave as a closed system. This is,
indeed, expected, since the transfer to the environment
occurs through far-field radiation, which, with the ap-
proximations detailed above, is negligible compared with
the near-field interactions that determine the transfer be-
tween the nanostructures. Therefore, in the remainder of
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FIG. 2. Effective temperature ratio ξ for two nanostructures
rotating with different frequencies. The dashed lines indicate
the values of Ω1 and Ω2 for which the ratio is equal to one.

this work, we refer to P1 as the power transferred between
the nanostructures.

Equations (3) and (4) show that the torque and the
power transferred depend on both the temperatures and
the rotation frequencies of the two nanostructures. In
particular, the sign of the torque is determined by the
difference between the rotation frequencies of the nanos-
tructures, and therefore vanishes when their rotation is
synchronized. On the other hand, the temperature of the
nanostructures only affects the magnitude of the torque,
which remains finite even for θ1 = θ2 = 0, provided that
Ω1 6= Ω2.

The power transferred, however, shows a very different
behavior: both its sign and magnitude depend on a non-
trivial interplay between the rotation frequencies and the
temperatures of the nanostructures. Interestingly, exam-
ining the last term of Equation (4), we note that it is
possible to obtain a nonzero P1 even when the nanostruc-
tures have equal temperatures. In other words, the ro-
tation of the nanostructures enables a transfer of energy,
as if there were a temperature difference between them.
To analyze this effect, we calculate the ratio between the
temperatures ξ = θ1/θ2 that two nonrotating nanostruc-
tures need to have to produce the same power transferred
as two rotating nanostructures with equal temperatures
θ1 = θ2. This ratio, which is given by

ξ =

{
1 + 10

Ω2
1 − Ω2

2

θ22

[
1 +

(Ω1 − Ω2)
2

θ22

]}1/4

,

is plotted in Figure 2 as a function of both Ω1 and Ω2.
Examining these results, we observe that, for |Ω1| > |Ω2|,
ξ > 1, while for, for |Ω1| < |Ω2|, the opposite is true. This
means that, for nanostructures with equal temperatures,
the power is always transferred from the nanostructure
with the larger magnitude of rotation frequency to the
nanostructure with the smaller one. Furthermore, the
minimum and maximum values of ξ are achieved when

FIG. 3. Power transferred between two rotating nanostruc-
tures normalized to Π1 for θ1 = 1.5θ2. The black solid and
dashed curves signal P1/Π1 = 0 and P1/Π1 = 1, respectively,
while the labels indicate the regimes in which: P1/Π1 > 1 (i),
0 < P1/Π1 < 1 (ii), and P1/Π1 < 0 (iii).

the magnitude of the rotation frequency of one of the
nanostructures is much smaller than the other. On the
other hand, when |Ω1| = |Ω2| (dashed lines), the temper-
ature ratio is one and, therefore, the power transferred
vanishes.

The results of Figure 2 demonstrate that, for two
nanostructures with equal temperatures, the rotation in-
duces a transfer of energy and hence is effectively equiva-
lent to a temperature difference. Therefore, if the nanos-
tructures have different temperatures, we expect the ro-
tation to modify the power transferred and even allow its
direction to be changed. In order to explore this possi-
bility, in Figure 3, we plot P1/Π1 as a function of Ω1 and
Ω2 for θ1 = 1.5θ2. We use black solid and dashed curves
to indicate the frequencies for which P1/Π1 is equal to 0
and 1, respectively. These curves separate the results into
three different regimes. In the first regime, P1/Π1 > 1,
so the rotation serves to increase the power transferred
between the nanostructures with respect to the nonro-
tating case. The enhancement is maximum when the
nanostructures rotate in opposite directions but with the
hotter nanostructure rotating faster than the colder one.
The second regime is characterized by 0 < P1/Π1 < 1,
which means that the rotation reduces the power trans-
ferred. In this case, the contribution to P1 of the terms
in Equation (4) that depend on the rotation frequencies
counteract Π1, thus producing a decrease in the power
transferred. When the combination of these terms sur-
passes Π1 in magnitude, the power transferred changes its
direction, going from the colder nanostructure to the hot-
ter one. This corresponds to the third regime for which
P1/Π1 < 0. Importantly, this effect is maximized when
the nanostructures rotate in opposite directions with the
colder nanostructure rotating faster than the hotter one.
The results of Figure 3 confirm that the transfer of angu-
lar momentum between the rotating nanostructures mod-
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FIG. 4. Power transferred (black curve) and rates of change
in mechanical energy (blue curves) and internal energy (red
curves) for nanostructure 1 (solid curves) and 2 (dashed
curves). All quantities are normalized to |Π1|. We assume
Ω1 = 0.5 θ2 and θ1 = 1.5 θ2. Regions of negative (positive) P1

are indicated with a purple (green) background.

ifies the transfer of energy. Indeed, when Ω1 = Ω2, the
transfer of angular momentum vanishes (since M1 = 0)
and, expectedly, P1 = Π1.

In order to get insight into the physical mechanisms
that give rise to the different regimes illustrated in Fig-
ure 3, we analyze the change in the internal energy of
the nanostructures. For nanostructure 1, this quantity is
defined as U̇1 = −P1 −M1Ω1, where −M1Ω1 represents
the rate of decrease of its mechanical energy. Notice that
we define the internal energy as all of the energy of the
nanostructure that is not mechanical. Upon insertion of
Equations (3) and (4), we obtain

U̇1

C
= −Π1

C
+ θ22 (Ω1 − Ω2)

2
+ (Ω1 − Ω2)

4
,

with a similar expression for nanostructure 2 obtained
by interchanging the indices 1↔ 2. While the first term
of the equation corresponds to the power radiated in ab-
sence of rotation, the rest of the terms, which are always
positive, only contribute when there is a difference in the
rotation frequencies. We can also compute the change in
the internal energy of the entire system, which is given
by

U̇1 + U̇2

C
= (θ21 + θ22)(Ω1 − Ω2)2 + 2(Ω1 − Ω2)4.

Interestingly, this quantity always increases, regardless
of the temperatures of the nanostructures. Note that,
since this is a closed system, this increase in the internal
energy must come from a decrease in the mechanical en-
ergy of the system. The equations above provide us with
information about the equilibrium conditions for the sys-
tem. In particular, to simultaneously obtain U̇1 = 0 and
U̇2 = 0, it is necessary that θ1 = θ2 and Ω1 = Ω2.

Figure 4 compares the value of the power transferred
(black curve) with the rates of change of the mechan-
ical (blue curves) and internal energy (red curves) of
the nanostructures. We use solid and dashed curves

for nanostructures 1 and 2, respectively. We assume
Ω1 = 0.5Ω2 and θ1 = 1.5θ2 and plot all of the values
as a function of Ω2. Unlike in Figure 3, here, we nor-
malize all of the quantities to |Π1| so their sign is not
altered. We signal the regions in which the power trans-
ferred is reversed using a purple background, while the
green background indicates that P1 goes in the direction
of Π1. As expected, the boundaries between these two
regions are located at the values of Ω2 for which the red
and blue curves cross, since, at these points, the power
transferred between the nanostructures vanishes. Fur-
thermore, in the regions where the direction of the power
transferred is reversed, the rate of decrease in mechani-
cal energy of the colder nanostructure, −M2Ω2, is larger
than all of the other terms analyzed. This means that, for
the colder nanostructure, the decrease in mechanical en-
ergy is larger than the increase in its internal energy. For
the hotter nanostructure, on the other hand, we observe
the exact opposite situation, that is, U̇1 > −M1Ω1. This
combination of behaviors is at the origin of the reversal of
the direction of the power transferred. Indeed, the power
transferred satisfies 2P1 = U̇2 − U̇1 + M2Ω2 − M1Ω1.
Therefore, in order to reach P1 < 0 for θ1 > θ2, it is
necessary that −M2Ω2 + M1Ω1 > U̇2 − U̇1. This condi-
tion is clearly satisfied in the regions with a purple back-
ground, thus confirming that the change in the direction
of the power transferred is associated with the imbalance
between the decrease in the mechanical energy and the
change in the internal energy of the nanostructures.

In summary, we have studied the simultaneous trans-
fer of energy and angular momentum in a pair of ro-
tating nanostructures. To that end, working within the
framework of fluctuational electrodynamics and the dipo-
lar approximation, we have derived analytical expressions
for the torque and power transferred between the nanos-
tructures. We have shown that, for equal temperatures
but different rotation frequencies, there is a power trans-
ferred from the nanostructure that rotates faster to the
one rotating at a slower frequency. When there is also a
difference in the temperatures of the nanostructures, the
power transferred displays a rich behavior arising from
the nontrivial interplay between temperature and rota-
tion frequency. In particular, we have shown that, de-
pending on the rotation frequency of the nanostructures,
the power transferred can be enhanced or reduced with
respect to that of a nonrotating pair. Furthermore, it is
also possible to reverse the direction of the transfer of
energy, making it go from the colder to the hotter nanos-
tructure. It is worth noting that our results are derived
in the limit in which the thermal and rotation frequencies
are much smaller than the resonances of the nanostruc-
tures. Therefore, the behaviors described here can be
enhanced by exploiting the electromagnetic resonances
of the system. Moreover, although we have considered a
pair of nanostructures as a canonical example, our model
can be readily applied to any material structure with a
dipolar resonance as, for instance, a large molecule. Im-
portantly, the range of temperatures for which the ef-
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fects described in this work can take place is determined
by the rotation frequencies of the nanostructures. This
means that for temperatures of the order of 1K, the ro-
tation frequencies need to be ∼ 100 GHz. These rotation
frequencies are within experimental reach for molecules
like fullerenes [62] and are one to two orders of magni-
tude beyond the rotation frequencies already achieved for
nanostructures [63–65]. Our work provides fundamental
understanding of how the transfer of angular momen-
tum produced by the Casimir torque modifies the trans-
fer of energy in rotating nanostructures. Therefore, the
results of this work can be exploited to find new avenues
to control the radiative heat transfer between nanoscale

objects.
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99, 062509 (2019).

[60] D. Pan, H. Xu, and F. J. Garćıa de Abajo, Phys. Rev.
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