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Unlike fluids at thermal equilibrium, biomolecular mixtures in living systems can sustain nonequi-
librium steady states, in which active processes modify the conformational states of the constituent
molecules. Despite qualitative similarities between liquid–liquid phase separation in these systems,
the extent to which the phase-separation kinetics differ remains unclear. Here we show that inho-
mogeneous chemical reactions can alter the nucleation kinetics of liquid–liquid phase separation in
a manner that is consistent with classical nucleation theory, but can only be rationalized by intro-
ducing a nonequilibrium interfacial tension. We identify conditions under which nucleation can be
accelerated without changing the energetics or supersaturation, thus breaking the correlation be-
tween fast nucleation and strong driving forces that is typical of phase separation and self-assembly
at thermal equilibrium.

In living systems, phase separation can occur at a
nonequilibrium steady state (NESS) as opposed to ther-
mal equilibrium [1, 2]. For example, in active intracellu-
lar condensates, biomolecules may be degraded or post-
translationally modified by enzymes that couple confor-
mational changes to the conversion of a chemical fuel,
such as ATP, to chemical waste [3]. Although chemi-
cally driven fluids can undergo phase transitions resem-
bling those of equilibrium systems, the phase behavior
can be much richer when the enzymes that drive the
reactions preferentially localize to one phase or when
chemical fuel gradients couple to the local density of the
phase-separating molecules [4–6]. For example, phase
separation taking place at a NESS can exhibit qualita-
tively different features compared to thermal equilibrium,
including suppressed coarsening, monodisperse phase-
separated droplet size distributions, and even sponta-
neous droplet division [7–10].

Driven chemical reactions can also affect the kinetics
of phase transitions, although the extent to which ki-
netic pathways at a NESS differ from those at equilib-
rium is not well understood. Not only do driven chemical
reactions provide additional control parameters beyond
temperature and concentration with which to control a
phase transition, but they might also alter the mecha-
nism of phase separation. This possibility contrasts with
the behavior of equilibrium phase-separating fluids, in
which strong thermodynamic driving forces are typically
necessary to initiate homogeneous nucleation at equilib-
rium unless the system is near a critical point [11, 12].
The consequences of this correlation between thermody-
namics and nucleation kinetics are well appreciated in
the context of molecular self-assembly, especially in cases
where strong driving forces are associated with kinetic
trapping [13–17]. In principle, living systems must con-
tend with similar trade-offs in order to harness phase
separation for biological functionality [18, 19].

Here we show that driven chemical reactions provide a
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mechanism to alter the nucleation pathway of a nonequi-
librium phase-separating fluid. To build intuition, we
first describe simulations of phase coexistence and nu-
cleation in a model of a fluid with driven chemical re-
actions, and we identify the conditions under which nu-
cleation at a NESS cannot be described by an equilib-
rium theory. Then, by introducing a general theoretical
framework, we show that the difference between equilib-
rium and nonequilibrium nucleation kinetics arises from
a nonequilibrium interfacial tension between the phases.
Our theoretical results establish how emergent interfacial
properties can tune the kinetics of phase separation and
self-assembly far from equilibrium.

In order to study nonequilibrium phase separation via
molecular simulation, we adopt the framework of stochas-
tic thermodynamics [20, 21] and consider an open system
connected to a particle reservoir (Fig. 1a). For simplicity,
we perform simulations using a two-dimensional square
lattice model, in which empty lattice sites represent sol-
vent. We assume that the particles have two internal
states: a bonding state (B) that promotes phase separa-
tion due to attractive nearest neighbor interactions with
bond energy ε < 0, and an inert state (I) that is isoen-
ergetic to an empty lattice site. The internal free-energy
difference between the internal states in the reservoir is
∆fres, so that the fugacities of the two states are related
by zB/zI = exp(−β∆fres), where β ≡ (kBT )−1. Our
model is closely related to the equilibrium lattice gas,
which exhibits a first-order phase transition between a
dilute vapor (v) phase and a condensed liquid (l) phase
below a critical temperature [22]. However, unlike the
equilibrium lattice gas, particle transitions between the
system and the reservoir in our model may not obey time-
reversal symmetry. The product of rates for inserting a
bonding particle, changing its internal state, and return-
ing it to the reservoir may therefore differ from that of the
reversed sequence by a factor exp(β∆µ), where ∆µ is the
chemical potential difference used to drive reactions be-
tween the internal states inside the system (Appendix A).
We assume that ∆µ is uniform throughout the system.

Interconversion between B and I states can occur either
directly or via exchange with the reservoir. The ratio of
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FIG. 1. Simulating driven chemical reactions at a phase-separated NESS. (a) Schematic of an open system with
inhomogeneous chemical reactions. The effective internal free-energy differences between the B and I states in the liquid
and vapor phases are ∆fl and ∆fv, respectively. (b) An example steady-state distribution in an inhomogeneous model.
(c) Phase diagram for equilibrium (green), nonequilibrium homogeneous (blue), and inhomogeneous (orange) models, and
(d) quantification of the inhomogeneous reactions assuming βε = −2.95, k◦ = 10−1, and ρv = 0.05 at coexistence. The shaded
(unshaded) region indicates where liquid (vapor) is stable for all models in (c) and for the inhomogeneous model only in (d).

the direct forward and backward B
 I reaction rates is
controlled by ∆µ in accordance with “local detailed bal-
ance” [20, 21]. Meanwhile, the reservoir-mediated path-
way is governed by ∆fres. The steady-state populations
are therefore influenced by the relative fluxes through
these competing pathways, which can be tuned by spec-
ifying the rate for I → B transitions, kI→B. If kI→B is
constant, then the chemical reactions are homogeneous.
By contrast, if kI→B is influenced by the local environ-
ment, then we refer to the reactions as inhomogeneous.
In our lattice model, fluids with inhomogeneous chemical
reactions have a kI→B rate that depends on the nearest-
neighbor particles and thus on the local potential energy.

To quantify inhomogeneous chemical reactions at a
NESS, we introduce an effective internal free-energy
difference, β∆f ≡ − ln(ρB/ρI) + ln〈exp(−β∆uI→B)〉I,
where ρB and ρI are the steady-state number densities
of particles in the B and I states, respectively, and
the second term represents an average of the potential
energy change due to converting an I to a B particle at
steady state (Appendix A). At equilibrium, ∆f = ∆fres.
At a NESS, an explicit dependence of kI→B on the local
potential energy causes ∆f to differ between the liquid
and the vapor phases, such that ∆∆f ≡ ∆fl −∆fv 6= 0.
Although this mapping between nonequilibrium and
equilibrium models is not exact in general, measuring
∆∆f provides crucial insight into the differences between
fluids with inhomogeneous and homogeneous reactions.

We illustrate the differences between homogeneous and
inhomogeneous chemical reactions by performing kinetic
Monte Carlo simulations [23] of a particular nonequilib-
rium fluid model. We consider a fluid in which ∆fres > 0,
meaning that the I state is more populous in the vapor
phase, while bonding stabilizes the B state in the liquid
phase (Fig. 1a). We implement chemical reactions by as-
suming Markovian transitions and local detailed balance,
such that reactions taking place inside the system are
controlled by ∆µ (Appendix A). We obtain homogeneous
reactions if we set kI→B equal to a constant, k◦, which
represents the ratio between the timescales for internal
state changes and particle diffusion. To obtain inhomo-
geneous reactions, we assume that the I → B transition

rate is a decreasing function of the local potential energy,
u, at a lattice site (Appendix A). We emphasize that due
to local detailed balance, this choice of kI→B implies that
both the I → B and B → I rates are enhanced at low
potential energy when positive chemical drive is applied,
resulting in an increased ∆f in the liquid relative to the
vapor phase (Fig. 1a).

We identify the conditions for nonequilibrium phase
coexistence with both homogeneous and inhomogeneous
reactions by equating the total probability of being in the
vapor versus the liquid phase at steady state (Fig. 1b).
This is analogous to the equal pressure construction
in equilibrium grand-canonical phase-coexistence simu-
lations [24], and implies that the open system transi-
tions between the liquid and vapor phases with equal
forward and backward rates. To this end, we use a form
of nonequilibrium umbrella sampling [25] to calculate the
steady-state probability as a function of the number den-
sity of bonding particles, p(ρB) [26]. As is characteris-
tic of a first-order phase transition, we observe a barrier
with respect to − ln p(ρB) that scales with the lattice
length L as the system size is increased [27]. Based on
the value of the order parameter ρ∗B at the top of this
barrier, we determine the steady-state probabilities of
the vapor and liquid phases, pv ≡

∫ ρB∗

0
p(ρB)dρB and

pl ≡
∫ 1

ρB∗
p(ρB)dρB, respectively. We then define the di-

mensionless thermodynamic driving force between bulk
phases to be β∆Φ ≡ L−2 ln (pl/pv) and associate phase
coexistence with ∆Φ = 0 (Fig. 1c). As anticipated, mea-
suring ∆∆f between coexisting phases confirms that only
the potential-energy dependent choice for kI→B results
in inhomogeneous reactions, regardless of ∆µcoex, the
nonequilibrium drive at coexistence (Fig. 1d).

We can now address the central question of this work:
To what extent can equilibrium descriptions of nucle-
ation be applied to phase separation at a NESS? The
most widely used theoretical framework for describing
nucleation in systems ranging from atomic and molecular
fluids to colloidal and biomolecular materials is classical
nucleation theory (CNT) [11, 12]. In its most general
form, equilibrium CNT predicts that nucleation follows
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FIG. 2. Nucleation kinetics at a NESS obey classi-
cal nucleation theory (CNT) with modified interfa-
cial properties. (a) A schematic illustration of diffusion on
an (equilibrium) free-energy landscape, F (n). (b) Tests of
CNT and the nucleation theorem (inset) for nonequilibrium
homogeneous (blue) and inhomogeneous (orange) models un-
der far-from-equilibrium conditions (at β∆µcoex = 1.87 using
the same parameters as Fig. 1c,d). Solid and dashed curves
show the equilibrium prediction and a fit of the inhomoge-
neous results to the CNT rate equation, respectively.

a minimum free-energy pathway along a reaction coordi-
nate corresponding to the size of a nucleus of the stable
phase. This pathway crosses a free-energy barrier that
arises from the competition between the lower thermo-
dynamic potential of the stable phase and the positive
interfacial free energy between the nucleus and the bulk
metastable phase. CNT predicts that the homogeneous
nucleation rate density is the product of a prefactor and a
Boltzmann factor corresponding to the height of the bar-
rier, ∆F ∗; the prefactor is the product of the monomer
number density, ρ1; the speed along the reaction coor-
dinate at the top of the barrier, D∗; and the Zeldovich
factor, Γ, that accounts for fluctuations that cross the
barrier but return to the metastable state (Fig. 2a). Af-
ter taking into account the interfacial free energy due to
the macroscopic line tension and microscopic nucleus size
fluctuations, CNT has been shown to provide a quanti-
tative description of nucleation in the two-dimensional
equilibrium lattice gas model [28].

We employ forward-flux sampling (FFS) [29] to com-
pute the nucleation rate density, I, and the commitment
probability to the stable phase, φ(n), using the largest
nucleus size, n, as the reaction coordinate. The critical
nucleus size, n∗, is found where φ(n∗) = 1/2 [30], and
the Zeldovich factor can be calculated by fitting φ(n) to
an approximately harmonic barrier in the vicinity of n∗.
We also independently measure the number density of
bonding-state monomers in the vapor phase, ρ1, and the
diffusion coefficient, D∗, from nucleus-size fluctuations
near n∗ [31]. We are therefore able to isolate the factor
in the CNT rate equation that pertains to the (nonequi-
librium) nucleation barrier by computing ln(I/ρ1D

∗Γ) as
a function of the supersaturation, S ≡ exp(β∆Φ), which
we control by tuning ∆µ (Appendix B).

We first test the prediction of the fundamental nucle-
ation theorem, n∗ = −∂ ln(I/ρ1D

∗Γ)/∂ lnS + 1, for nu-
cleating a stable liquid phase from a supersaturated va-
por phase [12]. This prediction holds as long as the inter-
facial free energy is independent of the supersaturation,
regardless of the functional form of the nucleation barrier.
The results of representative simulations shown in the in-
set of Fig. 2b demonstrate excellent agreement between
the critical nucleus sizes obtained from FFS, n∗FFS, and
the sizes inferred from this theorem, n∗nuc. thm.. This pro-
vides evidence that the fundamental premise of CNT—
namely, that the rate-limiting step coincides with the
formation of a critical nucleus of the stable bulk phase—
applies to nucleation at a NESS in the regime β∆Φ . 1.

However, when examining the supersaturation depen-
dence of the apparent nucleation barrier (Fig. 2b), we
discover a surprising deviation from the equilibrium lat-
tice gas: Although the interfacial contribution still scales
with the perimeter of the two-dimensional nucleus, the
inferred line tension, σ, differs from the equilibrium value,
σeq. This deviation only occurs in the case of inhomo-
geneous reactions, which can be seen by comparing the
homogeneous and inhomogeneous results with the equi-
librium barrier height in Fig. 2b. These observations in-
dicate that CNT can be extended to describe phase sepa-
ration at a NESS, but that the nucleation rate can differ
by orders of magnitude from predictions based on equilib-
rium interfacial properties in the case of nonequilibrium
inhomogeneous reactions.

Our simulations reveal that the liquid–vapor interfa-
cial properties are influenced by how far the system is
driven out of equilibrium. To illustrate this effect, we
perform simulations corresponding to an isothermal ex-
periment in which the total number of particles is con-
served, such that βε and ρv are held constant. We find
that the line tension for inhomogeneous reactions devi-
ates farther from the equilibrium value as we increase
β∆µ at coexistence (Fig. 3a). We also find that the in-
terfacial properties depend on the relative timescale, k◦,
between I 
 B transitions and the rate of particle at-
tachment to the nucleus, normalized by its perimeter.
To test the sensitivity of the line tension to the ratio of
these timescales, we calculate the line tension deviation,
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FIG. 3. Inhomogeneous reactions at a NESS alter the
interfacial tension, which strongly affects the nucle-
ation kinetics. (a) Deviation of the nonequilibrium line ten-
sion, ∆σ ≡ σ−σeq, as determined from nucleation rate calcu-
lations, with respect to β∆µcoex and k◦ (inset). The simula-
tion parameters are the same as in Fig. 1c,d. (b) Comparison
of nonequilibrium nucleation rates, I, to corresponding equi-
librium rates, Ieq, at constant supersaturation, S = 1.27 (see
text). Orange and blue colors indicate nonequilibrium inho-
mogeneous and homogeneous models, respectively. Symbols
report FFS results, and lines show theoretical predictions.

∆σ, while holding ∆fres +∆µ constant (inset of Fig. 3a).
We find that ∆σ is nonzero over a wide range of k◦, with
the greatest deviation occurring when these timescales
are comparable (k◦ ≈ 1). However, we recover the equi-
librium line tension in the limit of either zero reactive
flux (k◦ → 0) or infinitely fast reactions (k◦ → ∞), as
the system reverts either to a true equilibrium or to a
NESS in which ∆∆f → 0, respectively.

We can understand these results by considering a the-
oretical model that captures the qualitative behavior of
the nonequilibrium interface. We make the approxima-
tion that particle exchange between the open system and
the reservoir relaxes to the steady-state distribution more
quickly than the local environment around a particle
changes. Within this “Fixed Local Environment approX-
imation” (FLEX), the steady-state number densities ρ̃I

and ρ̃B map to an effective equilibrium system with fu-

gacities z̃I and z̃B (Appendix C). Examining the inter-
nal free-energy difference β∆f ≡ − ln(z̃B/z̃I) within the
FLEX framework shows that a common effective equi-
librium describes both phases if kI→B is constant, cor-
responding to homogeneous reactions, regardless of ∆µ.
Conversely, a different effective equilibrium is needed for
each phase if kI→B depends on u, corresponding to inho-
mogeneous reactions.

To predict the nonequilibrium interfacial tension from
FLEX, we employ a solid-on-solid model [32] of an in-
terface at coexistence. We first find β∆µcoex by setting
SFLEX ≡ [ρ̃B/(1− ρ̃B)]u=2ε = 1, where the fixed local en-
vironment u = 2ε is assumed based on the particle–hole
symmetry of the equilibrium lattice gas. We then cal-
culate the effective energy of attaching a single bonding-
state adatom to a flat interface, βε̃ ≡ ln [ρ̃B/(1− ρ̃B)]u=ε,
at the coexistence points β∆µcoex (Appendix D). Impor-
tantly, ε̃ only differs from ε with nonequilibrium inhomo-
geneous reactions. Finally, we estimate the nonequilib-
rium line tension by evaluating an equilibrium expression
for σ(βε̃) [33] (solid curves in Fig. 3a). In our inhomo-
geneous simulations, kI→B is a decreasing function of u,
leading to a lower ∆f and thus a higher population of
bonding-state particles at the interface than would be
expected based on the effective equilibrium model of the
bulk liquid phase. This enrichment of bonding-state par-
ticles at the interface relative to the liquid phase reduces
the effective adatom bonding energy in our theory, such
that |ε̃| ≤ |ε|, and lowers the effective free-energy cost of
the interface.

Our key insight from this theory is that nonequilib-
rium interfacial properties emerge when the bulk phases
and the liquid–vapor interface are described by differ-
ent effective equilibrium models. Consequently, when
ε̃ 6= ε, bonding particles attached to the interface of
a critical nucleus may be attracted either more or less
strongly, per nearest-neighbor interaction, than in the
bulk liquid phase. Our theory captures both the sign and
the approximate functional form of ∆σ with respect to
β∆µcoex, as well as the nonmonotonic dependence of ∆σ
on the relative reaction timescale k◦. While the precise
form of ∆σ depends on our choice of simulation parame-
ters, the generality of our theory suggests that a nonzero
∆σ can arise whenever the effective internal free-energy
difference is a function of the local environment.

Finally, to highlight the control over nucleation rates
imparted by inhomogeneous reactions, we compare the
nonequilibrium nucleation rate to that of an equilibrium
fluid with the same βε, S, and ρv (Fig. 3b). In agreement
with our theory, our simulations show that the nucleation
rate can be increased by orders of magnitude relative
to the corresponding equilibrium system by driving the
fluid far from equilibrium (β∆µ � 1). The magnitude
of this effect is far greater in the inhomogeneous than
in the homogeneous model due to the dominant role of
the line tension in determining the nucleation barrier,
and thus the nucleation rate. Inhomogeneous reactions
can therefore break the usual relationship between high
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supersaturation and fast nucleation, offering a novel way
to control nucleation kinetics in nonequilibrium fluids.

In conclusion, we have introduced a strategy for sim-
ulating nonequilibrium phase transformations within the
framework of stochastic thermodynamics. By showing
that inhomogeneous chemical reactions can give rise to
nonequilibrium interfacial tensions, our work reveals a
mechanism for decoupling nucleation rates from thermo-
dynamic driving forces at a NESS. Our findings provide
further evidence [1, 2] that nonequilibrium phase trans-
formations may follow the same phenomenological laws
as equilibrium systems under rather general conditions.
Detecting nonequilibrium effects may thus require careful
measurements of interfacial material properties.

We emphasize that our qualitative results do not de-
pend on the specific form of the reaction rates: The only
essential ingredient is an inhomogeneously driven reac-
tion that is either promoted or suppressed by variations
in the local potential energy. For example, if the reactive
flux through the driven pathway is enhanced at low po-
tential energies, as in our simulations, then our model can
describe either preferentially driven deactivation (B→ I)
in the liquid phase or preferentially driven activation
(I → B) in the vapor phase. The former scenario repre-
sents an implicit description of enzyme-mediated deacti-
vation, in which the chemical fuel is uniformly distributed
but the enzymes that catalyze B→ I reactions preferen-
tially partition into the condensed, low-potential-energy
phase. Such a scenario has been proposed to describe in-
homogeneous enzyme distributions associated with stress
granules and other biological condensates [3, 34, 35].

Our results are applicable to a range of experimen-
tal systems broadly described as living or active. Our
prediction of a nonequilibrium surface tension could be
tested in the context of intracellular condensates using
light-activated corelets [36], which have recently been ap-
plied to study condensate nucleation in vivo [19]. Our
model could also be applied to synthetic active polypep-
tide coacervates [37–39] or DNA liquids [40] in which the
association/hybridization reactions are engineered to re-
spond to energy input in a manner that is dependent
on the local protein/DNA concentration. In both con-
texts, our results suggest a road map for controlling self-
assembly kinetics far from thermal equilibrium.

This work is supported by the National Science Foun-
dation (DMR-2143670).
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Appendix A: Nonequilibrium lattice-gas model

FIG. A1. Kinetic scheme of particle exchange and in-
ternal chemical reactions. In our simulations of an open
system, each lattice site stochastically transitions between be-
ing unoccupied (E) or being occupied by either a bonding (B)
or inert (I) particle with the specified transition rates.

We extend the two-dimensional square lattice-gas
model by incorporating two particle internal states: a
bonding state (B) and an inert state (I). B-state parti-
cles interact with nearest-neighbor B-state particles with
bonding strength ε < 0. By contrast, I-state particles
are isoenergetic to empty lattice sites and thus do not in-
teract with nearest-neighbor particles. Here we consider
an open system in contact with a particle reservoir, such
that B and I-state particles have fugacities zB and zI,
respectively, in the reservoir. Open systems have similar
advantages for studying nonequilibrium phase transitions
as the grand-canonical ensemble does for equilibrium sys-
tems, including the elimination of interfaces and a result-
ing reduction of finite size effects [24].

Utilizing the framework of stochastic thermodynamics,
we model the kinetics of particle insertion, removal, and
reactions between internal states using Markovian tran-
sitions that obey local detailed balance [20, 21]. Particle
insertion and removal rates depend on the reservoir fu-
gacities, zB and zI; the local potential energy u due to
nearest-neighbor interactions at a particular lattice site;
and the base exchange rate, D, between the open sys-
tem and the reservoir (Fig. A1). Reactions between the
B and I states occur with forward and backward rates
kBI and kIB. We introduce dimensionless ratios between
tje reaction and particle-exchange rates, kB→I ≡ D−1kBI

and kI→B ≡ D−1kIB, for notational simplicity. We simu-
late the stochastic evolution of the system via the kinetic
Monte Carlo method [23].

We define the nonequilibrium drive ∆µ along the
single-cycle network (Fig. A1) in the B-to-I direction,

β∆µ = ln
[
zBkB→I/zIkI→Be

βu
]
. (A1)

Time-reversal symmetry is broken when the system is
driven out-of-equilibrium (∆µ 6= 0), resulting in a
nonzero net probability current. Rearranging Eq. (A1)
gives the local detailed balance condition for I
 B reac-
tions in terms of the chemical drive ∆µ,

kB→I/kI→B = exp(βu+ β∆fres + β∆µ), (A2)

where β∆fres ≡ − ln(zB/zI) is the internal free-energy
difference in the reservoir.

In our simulations, we consider two specific choices
for the backward reaction rate, kI→B, in order to
model homogeneous and inhomogeneous chemical reac-
tions. For homogeneous systems, we set kI→B equal
to a constant k◦ representing the ratio between the
timescales for chemical reactions and particle trans-
port. For inhomogeneous systems, we assume that
kI→B is u-dependent and takes a Metropolis form,
kI→B = k◦min[1, exp(−βu− β∆fres − β∆µ)]. Note
that kB→I follows from the local detailed balance con-
dition, Eq. (A2), in both cases.

We quantify the extent of inhomogeneous chemical re-
actions by estimating the effective free-energy difference
between the two particle internal states, ∆f , from sim-
ulations of each bulk phase. A lattice configuration is
defined by the lattice-site occupancies, {c(r)}, where
c ∈ {E,B, I} and zE = 1. The equilibrium probability
that the tagged site at the origin, r = 0, is in state i is

peq
i(r=0)

peq
j(r=0)

=

(
zi
zj

)〈
e−β

∑
r′ u[i,c(r′)]−u[j,c(r′)]

〉
j(r=0)

, (A3)

where summation is over the nearest-neighbor sites r′ of
the tagged site, u[i, j] is the potential energy between
nearest-neighbor lattice sites in states i and j, and angle
brackets indicate an ensemble average conditioned on the
tagged site being in the indicated state. We use Eq. (A3)
to define the effective ∆f by substituting peq with the
NESS distribution, p, and averaging over the NESS,

β∆f = − ln

(
pB

pI

)
+ ln

〈
e−β

∑
r′ u[B,c(r′)]

〉
I(r=0)

. (A4)

Appendix B: Determining the interfacial tension in
nonequilibrium nucleation simulations

The free-energy landscape along the nucleus-size reac-
tion coordinate, n, in the equilibrium lattice gas is [28]

βF (n) = βσ
√

4πn− β∆Φn+ 5/4 lnn+ d, (B1)

where d is a constant chosen to equate the B-state
monomer number density in the vapor phase, ρ1,
and exp[−βF (1)], such that the barrier height is
∆F ∗ ≡ F (n∗)− F (1). From the CNT rate density,
I = ρ1D

∗Γ exp(−βF ∗), we obtain

ln

(
I

ρ1D∗Γ

)
= β∆Φ(n∗−1)−βσ

√
4π(
√
n∗−1)−5/4 lnn∗,

(B2)

where n∗ = 25/(−βσ
√

4π +
√

4πβ2σ2 + 20β∆Φ)2 is the
critical nucleus size, and ln(I/ρ1D

∗Γ) is an approxi-
mately linear function of 1/β∆Φ with slope proportional
to −σ2 (Fig. 2b). Using FFS simulations on a 64 × 64
lattice, we measure ρ1 in the vapor phase and calculate
D∗ by analyzing the diffusive behavior of the reaction co-
ordinate when n ≈ n∗. The Zeldovich factor, Γ, is found
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independently by fitting the commitment probabilities,
φ(n), calculated in FFS simulations,

φ(n) ≈ 1

2
erf
[
Γ
√
π(n− n∗)

]
+

1

2
, (B3)

where erf is the error function, and we have assumed that
the landscape is approximately parabolic near n ≈ n∗.
We obtain the line tension, σ, by fitting Eq. (B2) over
a range of β∆Φ values determined from nonequilibrium
umbrella sampling, using σ as the sole fitting parameter.

Appendix C: Fixed Local Environment
approXimation (FLEX)

In the Fixed Local Environment approXimation
(FLEX), we assume that particle exchange between the
open system and the reservoir relaxes to the steady state
more rapidly than any change in the local configuration,
or environment, around a tagged lattice site. Specifically,
we represent the configuration around a tagged lattice
site by a fixed number of nearest-neighbor B-state parti-
cles (Fig. A2). We then calculate the single-site steady-
state distribution, ρ̃i, from the Markovian transition net-
work shown in Fig. A1; ρ̃i may be regarded as the number
density of a particle, if i = B or I, or a vacancy, if i = E.

We map our nonequilibrium model to an effective equi-
librium that has the same steady-state distribution ρ̃ as
that predicted by FLEX. To this end, we define effec-
tive fugacities in the open system, z̃B ≡ (ρ̃B/ρ̃E) exp(βu)
and z̃I ≡ ρ̃I/ρ̃E, and the single-site partition function

ξ̃ = 1 + z̃B + z̃I. Depending on the functional form of
kI→B, the effective fugacities may depend on u, and the
liquid and vapor phases may be mapped to different ef-
fective equilibrium models. We therefore calculate the
effective internal free-energy difference, ∆f , between the
B and I states in the open system, as in Eq. (A4). Within
FLEX, β∆f ≡ − ln(z̃B/z̃I) is related to β∆fres by

β∆f = β∆fres +ln

[
1 + kI→B(1 + eβ∆fres)eβ∆µ

1 + kI→B(1 + eβ∆fres)

]
. (C1)

Eq. (C1) predicts the requirements for coexisting phases,
which have different average potential energies per lattice
site, to be thermodynamically inhomogeneous: For ∆f to
be u-dependent, kI→B must be u-dependent and chemical
drive must be applied (∆µ 6= 0). These conditions are
consistent with the simulation results shown in Fig. 1d.

Appendix D: FLEX prediction of the nonequilibrium
interfacial tension

Phase coexistence in the two-dimensional equilibrium
lattice gas occurs at µ = 2ε, where µ is the particle chem-
ical potential, due to particle–hole symmetry [22]. The
resulting supersaturation S ≈ exp[β(µ− 2ε)] in the equi-
librium model can be interpreted as the ratio ρ/(1 − ρ)

vapor phase
kink

adatom (B) adatom (I)

interface

liquid phasetagged site

FIG. A2. FLEX schematic of a single-layer configura-
tion at a liquid–vapor interface. The effective bonding
energy at the interface is obtained from the steady-state dis-
tribution at the tagged site under a fixed local configuration.
Colors correspond to the same lattice-site states as in Fig. A1.

at a tagged lattice site with exactly two neighboring par-
ticles, where ρ is the particle number density. Assuming
that particle–hole symmetry is a reasonable approxima-
tion for the effective equilibrium as well, we define the
FLEX supersaturation, SFLEX, based on the steady-state
distribution at a tagged lattice site with u = 2ε,

SFLEX ≡
[

ρ̃B

1− ρ̃B

]
u=2ε

=
z̃B(2ε; ∆µ)e−2βε

1 + z̃I(2ε; ∆µ)
. (D1)

We then predict the NESS coexistence point by solving
for the chemical drive at which SFLEX = 1, subject to an
imposed total particle density in the vapor phase.

We use FLEX to predict the interfacial tension by con-
sidering the attachment of a single bonding-state par-
ticle to a flat liquid–vapor interface in a solid-on-solid
model at phase coexistence. We focus on the effective
bonding energy βε̃ of a single adatom, since the coex-
istence condition SFLEX = 1 implies that the formation
of a kink on the interface (Fig. A2) incurs no (effective)
free-energy cost. To determine βε̃, we apply FLEX to a
tagged adatom site with u = ε at the predicted coexis-
tence point, ∆µcoex. Because the equilibrium free-energy
cost to attach an adatom to a flat interface is βε, we de-
fine the effective bonding energy βε̃ in the same way:

βε̃ ≡ ln

[
ρ̃B

1− ρ̃B

]
u=ε

= ln

[
z̃B(ε; ∆µcoex)

1+z̃I(ε; ∆µcoex)

]
−βε. (D2)

In homogeneous systems, this prediction reduces to
βε̃ = βε, meaning that the effective adatom interaction
strength does not change no matter how far the system
is driven out of equilibrium. However, in the case of in-
homogeneous chemical reactions, βε̃ may differ from βε.

Finally, we predict the nonequilibrium interfacial ten-
sion, σ, using the adatom interaction strength βε̃ at the
interface and the equilibrium formula [33]

σ(ε̃) =

√
4ε̃β−2

πχ(β)

∫ β

βc

K ′
(

8[cosh(β′ε̃)−1]

[cosh(β′ε̃)+1]2

)[
cosh(β′ε̃)−3

sinh(β′ε̃)

]
dβ′,

(D3)
where K ′ is the elliptic integral of the first kind, χ(β) =
[1 − sinh−4(βε̃/2)]1/8, and βc is the inverse critical tem-

perature given by βc|ε̃| = 2 ln(1 +
√

2). We find that
this FLEX prediction qualitatively explains the decreas-
ing trend of the line tension with respect to the nonequi-
librium drive in the inhomogeneous model (see Fig. 3a).
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