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Deployable structures capable of significant geometric reconfigurations are ubiquitous in nature. While 4

engineering contraptions typically comprise articulated rigid elements, soft structures that experience material 5

growth for deployment mostly remain the handiwork of biology, e.g., when winged insects deploy their wings 6

during metamorphosis. Here we perform experiments and develop formal models to rationalize the previously 7

unexplored physics of soft deployable structures using core-shell inflatables. We first derive a Maxwell con- 8

struction to model the expansion of a hyperelastic cylindrical core constrained by a rigid shell. Based on these 9

results, we identify a strategy to obtain synchronized deployment in soft networks. We then show that a single 10

actuated element behaves as an elastic beam with a pressure-dependent bending stiffness which allows us to 11

model complex deployed networks and demonstrate the ability to reconfigure their final shape. Finally, we 12

generalize our results to obtain three-dimensional elastic gridshells, demonstrating our approach’s applicability 13

to assemble complex structures using core-shell inflatables as building blocks. Our results leverage material 14

and geometric non-linearities to create a low-energy pathway to growth and reconfiguration for soft deployable 15

structures. 16

Decades of engineering research have led to the development of a broad range of deployable structures whose 17

shapes vary from compact, folded configurations to expanded and operational configurations. Examples range 18

from mundane umbrellas to ultralight spacecraft and antennas [1]. The field remains very active, with recent de- 19

velopments leveraging the newest insights from physics and mathematics, as well as the advanced computational 20

power and manufacturing techniques available today to create mechanical metamaterials, architected structures, 21

origami and kirigami systems [2–8]. Yet, most man-made deployable structures differ from those found in na- 22

ture’s long-evolving fauna, which not only use joints [9–11] but frequently comprise materials that grow, stretch, 23

and bend to transform [12–14]. However, biology’s simple strategy, which inherently uses lightweight and soft 24

materials, is much more challenging to engineer. The rigid elements connected by a finite number of moving 25

joints are replaced by continuously deformable soft materials undergoing large deformations in potentially all di- 26

rections. In the thrust for biomimicry, there has been a push to develop, design, and manufacture shape-morphing 27
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Figure 1: Vein-like deployable structure. (a) Images of a cicada deploying its wings following molting its ex-

oskeleton. (b) Sequence of images showing a wing-like structure that expands synchronously in a plane as pres-

sure increases (scale bar, 15 cm). The prediction of the shape by elastic beams is drawn in red.

matter that can robustly and predictably change shape (e.g., mechanical metamaterials [15], 4D printed materi-28

als [16–19], and soft robotics [20–22]). A key challenge and opportunity for these systems made of soft solids is29

the susceptibility to mechanical instabilities such as bulging, buckling, or wrinkling [23–27].30

Here we take inspiration from the expansion of wings during metamorphosis (see Fig.1a) in holometabolous31

insects to design soft structures whose expanded shapes can be programmed by the arrangement of vein struc-32

tures. When insects (e.g., dragonflies, butterflies, cicadas) emerge, their wings are a compact, crumpled network33

of interconnected fluidic segments (veins) connected by a wrinkled membrane. Hemolypmh, a blood-like fluid, is34

injected into the wing [28, 29], which first unfurls in a couple of minutes and then stiffens into its robust, flight-35

worthy, expanded form. The cross-section of dragonfly wing veins shows a composite ultrastructure composed of36

a core-shell structure with an endocuticle rich in rubber-like protein (resilin [30]) surrounded by a rigid, thin ex-37

ocuticle [31]. Motivated by this structure, we build a core-shell inflatable consisting of a soft hyperelastic rubber38

tube enclosed in inextensible sleeves whose length exceeds that of the tubes. We take advantage of the material39

nonlinearities of the hyperelastic elastomer which can undergo large deformation at constant pressure through a40

propagative instability [32–34]. While not detrimental to the inflation of a single tube, this instability hampers41

the smooth inflation of a network of hyperelastic tubes since when the instability occurs in one tube, all the in-42

jected gas in the network diverts to a single bulge (see movie S1). By limiting the core radial expansion, we alter43

the bulging instability to allow multiple elements to inflate at once (see movie S1). As detailed next, we show44

that a network of artificial veins connected by an inextensible and pleated membrane can be inflated to achieve a45

target shape (Fig.1b and movie S2) and is a low-energy pathway strategy for growth and reconfiguration of soft46
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deployable structures. 47

We first investigate how an inextensible shell impacts the bulging instability of hyperelastic balloons. In our 48

core-shell system, a shell of radius Rs and shear modulus µs constrains a softer hyperelastic core of initial radius 49

R < Rs and modulus µ� µs. Fig. 2a shows the pressure recorded during the inflation of a latex tube constrained 50

by polytubing shells of various radii Rs and pre-wrinkling conditions. In all cases, we observe a monotonic 51

increase in pressure up to a maximum Pm followed by a pressure drop and a quasi-constant plateaued propagating 52

pressure Pp. In effect, our constructs undergo a bulging instability at Pm (see inset in Fig. 2a and movie S1), 53

but the pressure drop after the instability Pm − Pp appears to be reduced as Rs decreases. Experiments with 54

straight, thick acrylic shells and finite element simulations with undeformable, straight, frictionless shells and a 55

Gent hyperelastic core show very similar behavior (see SI section ’FEM simulations for a constrained balloon’ 56

and the dashed lines in Fig. 2a). 57

To model the bulging instability of core-shell systems, we use the classical Maxwell construction (described 58

in detail in SI section ’Maxwell construction’). The Maxwell construction for phase coexistence at a pressure Pp 59

in cylindrical balloons requires the work done by the change in volume (Vb − Vu) between the bulged volume Vb 60

and quasi-unstretched volume Vu to equal the work done by the membrane stretching. 61

Pp(Vb − Vu) =
∫ Vb

Vu

P (V )dV. (1)

Equation (1) has the geometric solution of equal areas between the isobar Pp and the membrane pressure-volume 62

relationship P (V ) as illustrated in Fig. 2b. In our system, the shell has the primary function of altering the 63

pressure-volume relationship and thus the solution to equation (1). 64

We consider the shell to be inextensible PRs/µshs � 1 and to freely wrinkle under compression PR3
s/µh

3
s � 65

1 (see SI section ’Core-shell inflatable assumptions’). In practice, as the core is inflated to the shell radius, the 66

shell maintains the excess stress as pressure keeps increasing. Therefore the shell provides a geometric constraint 67

that prevents the radial expansion of the core above the shell radius Rs as pressure increases. As illustrated in 68

Fig. 2b, this geometric constraint causes the pressure P (V ) to diverge at the volume V ∗
b where the core fills the 69

shell. Applying Maxwell’s construction, we find that core-shell structures have a higher propagating pressure Pp 70

as the shell determines the maximum volume V ∗
b of the core’s bulged region during inflation. 71

In Fig. 2c we report the rescaled pressure drop (Pm − Pp) /Pm plotted against the core-shell radius ratio 72

Rs/R for experiments and simulations. All the data collapse on a master curve, confirming that the system is 73

scale-invariant and that both pre-wrinkling and the shell material have no measurable effect. The pressure drop 74

decreases monotonically from the unconstrained value (for Rs/R & 5.8 the bulged radius is less than the shell 75

radius) to approximately zero for Rs/R ≈ 2 (which is the core circumferential stretch at the onset of bulging). 76

Our Maxwell construction implemented using a hyperelastic Gent model for the core (details in Method section 77

’Relaxed Maxwell construction’) compares favorably with experiments (see the line in Fig. 2c). Note that in 78

experiments, the plateau pressure is noisy when a shell is used (see the error bars in Fig. 2c). For the most 79

constrained systems (Rs/R ' 2) the pressure drop can even become negative, so that the system is at times above 80

the critical building pressure Pm. 81
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Figure 2: Inflation of core-shell balloons. (a) Representative pressure curves of the tubes during inflation. The

solid lines represent wrinkled shells, the dashed lines represent straight shells, and the dotted line is no shell.

Color represents the core-shell radius ratio (see the color bar in (c)). The inset shows typical images of core-shell

inflation (scale bar, 30 cm). (b) Schematic for the Maxwell construction for the bulging of a cylindrical balloon

and a core-shell balloon. (c) Plot of the pressure drop against the core-shell radius ratio. Markers represent exper-

iments (circles: R = 3.7 mm, squares: R = 7.3 mm) and finite element simulations (diamonds). The line is the

Maxwell construction model (see SI section ’Relaxed Maxwell construction’). The error bars represent the range

of the pressure measurements in plateaued region following the bulging instability. (d) Plot of the accumulated

length for a balloon system and core-shell system during inflation. Inset shows schematic of experiment.
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We leverage this predictive knowledge to help smoothly expand an interconnected network of inflatables. To 82

nucleate and propagate bulges in all inflatable concomitantly, we minimize the pressure drop (Pm − Pp) using 83

shells of radius Rs ≈ 2R. In Fig. 2d we report the cumulative change in length of four of our interconnected 84

inflatables (R = 3.7 mm, L = 10 cm and Rs = 9.1 mm, Ls = 17.5 cm), with (red) or without (blue) shells. 85

As evident from the figure, we observe the nearly simultaneous expansion of all core-shell inflatables, while in 86

the same system without the shell, only one core expands. We attribute this nearly simultaneous expansion to 87

the significant fluctuations of the pressure plateau in our inflatables. These fluctuations allow the pressure in 88

the system to exceed the critical pressure Pm, even after bulging has occurred, thereby enabling other bulges to 89

nucleate. 90

Now that we understand how our core-shell system expands, we investigate the shape and mechanics of a 91

deployed core-shell inflatable. Once inflated, the core-shell system becomes noticeably more rigid for example, 92

it is able to sustain its own weight. We perform three-point bending mechanical tests on a single inflatable to 93

quantify this effect while varying the pressure. The force versus deflection curves are shown in Fig. 3a for a latex 94

core and a pre-wrinkled polyester fabric shell for pressures ranging from Pp ≈ 100 kPa to roughly 5Pp. For a 95

given pressure, the force initially increases linearly with the deflection before eventually softening akin to the 96

bending of hollow tubes [35]. Within the experimental pressure range, the force required to bend the core-shell 97

inflatable increases with the pressure. We extract an effective bending stiffness Beq from the data to quantify this 98

stiffening. This equivalent stiffness increases linearly with the pressure as reported in Fig. 3b. 99

Knowing the rigidity of our core-shell structures, we leverage their slenderness (Ls � Rs) to model the 100

non-linear mechanics of our inflatables as Kirchhoff rods, i.e., a one-dimensional model for inextensible and 101

unshearable elastic rods (see SI Section 3). For a network, each element thus has its own system of equations, 102

with the key parameters being the deployed length, which is the length of the unwrinkled shell Ls, and the stiffness 103

of the element Beq. These equations are then coupled with the appropriate boundary and jump conditions at the 104

connecting points, which depend on the type of connection and are derived on a case-by-case basis (see SI section 105

’Boundary and jump conditions’). We find a favorable agreement between the model and experiment, e.g., in the 106

case of the wing-like network of Fig. 1 and for the three-point bending experiments (Fig. 3b inset). Furthermore, 107

the fact that Beq ∝ P greatly broadens the range of accessible shapes since it is possible to control the stiffness 108

of individual elements by connecting them to different pressure sources. We leverage this effect to dynamically 109

reconfigure the network once deployed by varying the pressure inside a few key elements, all of which can be 110

modeled by our reduced Kirchhoff model. 111

In Fig. 3c an outer element of length `o encloses an inner one of length `i attached to a separate pressure 112

source (both beams are torque free at their ends). By manipulating the relative pressures of the two elements, we 113

control the inner and outer rod bending stiffness Bi and Bo independently. As illustrated in Fig. 3c, the inner rod 114

buckles when we decrease its stiffness (comparatively to the outer one) by decreasing the pressure, which changes 115

the global shape of this simple 2-rod network from a wide to a narrow loop. To quantify this reconfiguration, we 116

measure the buckling amplitude a of the inner beam and plot it in dimensionless form as a function of the stiffness 117

ratio in Fig. 3d for a variety of rod length ratios `i/`o. As one could intuitively expect, the longer the inner 118

element, the larger the shape change upon reconfiguration. As shown in Fig. 3c and d, our reduced rod network 119
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Figure 3: Mechanics of inflated core-shell structures. (a) Force displacement curves of core-shell inflatables

undergoing three point bending tests at different pressures. Color represents pressure (see color bar (b)). (b)

The effective bending stiffness Beq plotted against the pressure difference P . Error bars show the local stiffness’s

standard deviation for the deflection range measured. (c) Images of an inflatable network where the pressures P of

the inner and outer beams are controlled independently (scale bar, 30 cm) compared to our model. (d) Amplitude

of the inner beam deflection from (c) plotted against the outer beam stiffness:inner beam stiffness ratio. Markers

are experimental data (triangle markers represent images in (c)). The lines are the predicted amplitudes from our

model. Error bars are smaller than the markers.

6



model is fully capable or predicting these shape changes and thus can be used to design complex reconfigurable 120

and deployable structures. 121

Because the core-shell network can be captured by elastic rods, we adapt the geometric approach developed 122

for elastic gridshells [36] to design three-dimensional deployable structures. As an example, we build a flat 123

network that deploys into a hemisphere (Fig. 4a). Specifically, we create an elastic gridshell from a square lattice 124

of core-shell inflatables with joints that can freely shear by using the geometry of Chebyshev nets [36]. Our square 125

network is chosen so that each element’s shell length Ls matches the target hemisphere section length. Last, we 126

attach rigidly the boundary of our grid to the required flat contour. Fig. 4b and movie S3 show the inflation of 127

such a network using latex tubing in pre-wrinkled polyester fabric. The deployed form is well captured by the 128

proposed Chebyshev net and is amenable to different geometries [36]. 129

In closing, we note that our model is scale-invariant. As such our theoretical framework and its ensuing 130

conclusions are potentially relevant to biological systems, e.g. for the healthy deployment of insect wings during 131

metamorphosis, and could be leveraged to design the future generation of robotic insects [37]. In effect, the 132

inherently soft materials we used can undergo large deformations in both the deployed and undeployed states, 133

thereby making these systems robust and suitable for miniaturization. Furthermore, we have demonstrated that 134

our inflatables are reconfigurable via the modulation of their effective bending stiffness, which is achieved by 135

controlling their internal pressure. Similar effects on controllable bending stiffness have been seen in pressurized 136

hyperelastic tubes [38] and layered systems with internal friction [39] and have been theorized to play a role in 137

cell stability [40]. Finally, we note that the inflation progression from undeployed to local bulges to fully deployed 138

shows intermediate higher order modes (see Fig. 4b and movie S3), indicating the potential to build multi-stable 139

networks with configurations that could be accessed via sequential deployment [8, 19]. 140
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Figure 4: Deployable elastic gridshells. (a) Design process for a deployable elastic gridshell from core-shell

inflatables. (b) Inflation of a deployable elastic gridshell (scale bar, 25 cm).
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