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Fractional quantum Hall states (FQHSs) at even-denominator Landau level filling factors (ν) are
of prime interest as they are predicted to host exotic, topological states of matter. We report here
the observation of a FQHS at ν = 1/2 in a two-dimensional electron system of exceptionally high
quality, confined to a wide AlAs quantum well, where the electrons can occupy multiple conduction-
band valleys with an anisotropic effective mass. The anisotropy and multi-valley degree of freedom
offer an unprecedented tunability of the ν = 1/2 FQHS as we can control both the valley occupancy
via the application of in-plane strain, and the ratio between the strengths of the short- and long-
range Coulomb interaction by tilting the sample in the magnetic field to change the electron charge
distribution. Thanks to this tunability, we observe phase transitions from a compressible Fermi liquid
to an incompressible FQHS and then to an insulating phase as a function of tilt angle. We find that
this evolution and the energy gap of the ν = 1/2 FQHS depend strongly on valley occupancy.

The energy dispersion of a two-dimensional electron
system (2DES) is quenched into flat bands, namely Lan-
dau levels (LLs), when subjected to a perpendicular
magnetic field (B⊥). The resulting dominance of the
Coulomb interaction leads to different classes of corre-
lated electron states depending on the LL index. In the
lowest (N = 0) LL, the FQHSs are generally observed
at odd-denominator LL filling factors (ν) on the flanks
of ν = 1/2 [1, 2]. These FQHSs can be effectively de-
scribed as the integer QHSs of composite fermions (CFs),
weakly-interacting quasi-particles emergent from pairing
each electron with two flux quanta. At ν = 1/2, the
electron-flux attachment leads to a zero effective mag-
netic field for the CFs and no FQHS is observed; in-
stead the CFs form a Fermi sea [1–3]. In the N = 1
LL, on the other hand, the node in the wavefunction
softens the short-range component of the Coulomb re-
pulsion, allowing the CFs to pair up and form a Bose-
Einstein condensate-type ground state [4–8]. A prime
example is the ν = 5/2 FQHS, observed in high-quality
GaAs 2DESs [4, 5], which is theoretically predicted to
be a spin-polarized (one-component), Pfaffian state [9]
with non-Abelian quasiparticles, and be of potential use
in topological quantum computing [10]. The full spin
polarization of the 5/2 FQHS has been confirmed in sev-
eral experiments [11–16], and there is also experimental
evidence suggesting that it is a Pfaffian state [5, 7].

In the N = 0 LL, ordinarily the Coulomb interaction
dominates and leads to a compressible state at ν = 1/2
[1–3]. However, when the electron layer thickness is in-
creased by widening the quantum well (QW), the short-
range Coulomb repulsion relaxes. This opens up the
possibility for CF pairing and thus an even-denominator
FQHS. A FQHS at ν = 1/2 has indeed been reported
in 2DESs confined to wide GaAs QWs where the charge
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FIG. 1. Observation of FQHS at ν = 1/2 in an X-valley oc-
cupied AlAs 2DES when subjected to a tilted magnetic field;
θ denotes the angle between B⊥ and total B.

distribution is bilayer-like but there is substantial inter-
layer tunneling [17–26]. Its origin, however, is still un-
der debate. Some of its aspects are consistent with a
two-component, ψ331, Halperin-Laughlin (Abelian) state
[19, 20, 27–33]. Recent experiments [21, 22] and theo-
ries [34–36], on the other hand, argue strongly in favor
of a one-component, Pfaffian state, in agreement with an
early theoretical description [37].

Here we report the observation of a ν = 1/2 FQHS in
a wide AlAs QW where there are multiple, anisotropic
conduction-band valleys whose occupancy can be tuned
continuously via the application of in situ strain.As high-
lighted in Fig. 1, we observe this state when the sample
is tilted in the magnetic field. We demonstrate its evo-
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FIG. 2. Sample description and valley tuning. (a) First Brillouin zone of bulk AlAs, showing anisotropic conduction band
valleys. (b) Sample geometry, showing the orientation of the two occupied valleys (X and Y) and the measured resistances
(R[100] and R[010]). Electrical contacts to the sample are denoted by 1-8. For R[100], we pass current from contact 8 to 2 and
measure the voltage between contacts 6 and 4. For R[010], the current is passed from 8 to 6 and we measure the voltage between
2 and 4. (c) Experimental setup for applying in-plane strain (ε). (d) Resistance of the sample at B = 0 and T ' 0.03 K,
measured as a function of ε. (e) Direction of tilted magnetic field with respect to the crystallographic directions.

lution as we control the valley which the 2DES occupies,
and the shape of the charge distribution as we tilt the
sample.

Our material platform is a 2DES, with density n =
1.45×1011 cm−2 and mobility µ = 7.5×105 cm2/Vs, con-
fined to a 45-nm-wide AlAs QW. Electrons in bulk AlAs
occupy three ellipsoidal valleys (X, Y, and Z), centered at
the X points of the Brillouin zone, with their major axes
lying in the [100], [010], and [001] crystallographic direc-
tions [Fig. 2(a)]. However, this three-fold degeneracy is
lifted when we grow an AlAs QW on a GaAs substrate be-
cause the biaxial, in-plane compression in the AlAs layers
originating from the lattice mismatch between AlAs and
GaAs pushes the Z valley higher in energy relative to X
and Y [38–42]; we denote the growth direction as [001].
The 2D electrons therefore occupy only valleys X and
Y, with their major axes lying in the plane along [100]
and [010], respectively [Fig. 2(b)] [38–42]. Each valley
possesses an anisotropic Fermi sea with longitudinal and
transverse electron effective masses of ml = 1.1m0 and
mt = 0.20m0, where m0 is the free electron mass.

We can break the degeneracy between the X and Y
valleys and control their relative occupancy by apply-
ing an in-plane, uniaxial strain ε = ε[100] − ε[010], where
ε[100] and ε[010] are the strain values along [100] and [010]
[40, 41]. This is achieved by gluing the sample to a
piezo-actuator [Fig. 2(c)], and applying a voltage bias
(VP ) to its leads to control the amount of strain [40, 41].
Figure 2(d) demonstrates how we tune and monitor the
valley occupancy. Here we show the sample’s piezore-
sistance as a function of ε [measurement configurations
are shown in Fig. 2(b)]. When ε = 0, the two valleys
are degenerate and equally occupied [43], and the 2DES
exhibits isotropic transport, namely, the resistances mea-
sured along [100] and [010] (R[100] and R[010]) are equal,
even though the individual valleys are anisotropic. For
ε > 0, as electrons transfer from X to Y, R[100] decreases
[black trace in Fig. 2(d)] because the electrons in Y have
a small effective mass and therefore higher mobility along

[100]. (Note that the total 2DES density remains fixed
as strain is applied; see Fig. S8 of the Supplemental Ma-
terial [44].) R[100] eventually saturates at a low value,
when all electrons are in Y [8, 41, 45]. For ε < 0, R[100]

increases and saturates at a high value as the electrons
are transferred to X which has a large mass and a low
mobility along [100]. As expected, R[010] behaves oppo-
site to R[100]; [red trace in Fig. 2(d)]. Note that such
a continuous valley tuning is not possible in other mul-
tivalley systems, such as Si [46] or single-layer graphene
[47, 48].

We further tune the 2DES properties by mounting the
sample on a rotatable stage and rotating it in situ around
[010], thus applying an in-plane magnetic field (B||) along
[100], as shown in Fig. 2(e). For ε < 0, the long axis of
the occupied valley (X) is oriented parallel to B‖, whereas
for ε > 0, when Y is occupied, this axis is oriented per-
pendicular to B‖. We also performed self-consistent cal-
culations of the charge distribution and electron Fermi
sea at different B|| [49].

Figure 3 demonstrates the evolution of the transport
traces as we tilt the sample to introduce a B|| component.
The top panels (a) are for the case when the electrons
occupy only the X valley. At θ = 0o, there is no FQHS
at ν = 1/2. As we tilt the sample, a FQHS develops
at ν = 1/2 near θ ' 32o as manifested by the deep
minima in both R[100] and R[010] traces, and a plateau
centered at 2h/e2 [see Fig. 1 for an enlarged version
of the red trace in the center panel of Fig. 3 (a)]. At
larger θ, the ν = 1/2 FQHS weakens and is replaced
by an insulating phase that raises both R[100] and R[010]

at high B⊥. This evolution is qualitatively similar to
the one seen in 2DESs confined to wide GaAs QWs [50],
and can be explained as follows. With increasing θ, B||
reduces the interlayer tunneling [51]. This can be seen
from the calculated charge distributions shown in Fig.
3(a) insets. For an intermediate amount of tunneling,
there is a FQHS at ν = 1/2, consistent with the findings
of recent theories that predict a Pfaffian state in 2DESs
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FIG. 3. Tilt-evolution of magnetoresistance data near ν = 1/2 for different valley occupancies, all traces taken at T ' 0.03 K,
and the tilt angles are indicated in each panel. The direction of B|| is along [100], i.e., along R[100]. (a) and (b) contain data
for cases when the electrons occupy only X or only Y valley, respectively. In both (a) and (b), with increasing θ, the 2DES at
ν = 1/2 undergoes transitions from a compressible phase to an incompressible FQHS, and then finally to an insulating phase.
However, the transitions happen at relatively smaller θ for case (a) where the electrons occupy the X valley. Insets in each
panel show the calculated charge distribution for the corresponding B|| that is experienced by the electrons at ν = 1/2 [49].
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FQHS from T -dependence of R[100] (black) and R[010] (red) for the two valleys.

confined to wide QWs with appropriate tunneling [34–
36]. At larger θ, as the tunneling is further reduced, the
ν = 1/2 FQHS is weakened, and is eventually engulfed by
insulating phases that signal the formation of a bilayer
Wigner crystal phase [50, 52–54].

In Fig. 3(b) we show the evolution of the 2DES with θ
when all the electrons are placed in the Y valley. We ob-
serve a qualitatively similar evolution, but with a notable
exception: the ν = 1/2 FQHS is strong near θ ' 43o,
much larger than θ ' 32o observed for the X-valley case
[Fig. 3(a)]. Note that in Fig. 3(a) the 1/2 FQHS is al-
ready very weak at θ = 36.0o and the insulating phase
is setting in in full force. In contrast, for the Y-valley
case in Fig. 3(b), at θ = 37.6o the FQHS at ν = 1/2 has

barely emerged.

To highlight the difference between the X- and Y-valley
evolutions, in Fig. 4 we summarize the relative strength
of the ν = 1/2 FQHS as a function of B||. As shown
in Fig. 4(a) inset, we define the strength of the FQHS
by the value of resistance at ν = 1/2 (R1/2) normalized
to the background resistance on the flanks of ν = 1/2
(Rbg). In Fig. 4(a) we show data for the “hard axis,”
i.e., data based on R[100] when the X valley is occupied
[black traces in Fig. 3(a)], and R[010] when Y is occupied
[the red traces in Fig. 3(b)]; these are shown in orange
and green colors in Fig. 4(a), respectively. Data for the
“easy axis”, i.e., based on red traces in Fig. 3(a) and
black traces in Fig. 3(b), are shown in Fig. 4(b). In
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both Figs. 4(a) and (b), the ν = 1/2 FQHS is strongest
at B|| ' 8 T when the electrons are in the X valley and
at B|| ' 12 T when they are in Y.

It is clear in Figs. 3 and 4 that a larger B||, or equiv-
alently larger θ, is required for the emergence of the
ν = 1/2 FQHS in the Y-valley case compared to X. This
can be explained by the fact that, in a quasi-2DES with fi-
nite (i.e., non-zero) electron layer thickness, the influence
of an applied B|| on the charge distribution and interlayer
tunneling depends on the electron’s orbital motion and
its effective mass in the direction perpendicular to B||;
see, e.g. Ref. [55]. Our calculated charge distributions,
shown as insets in Fig. 3 plots, become more bilayer like,
implying a lower interlayer tunneling, at a much smaller
θ in (a) compared to (b). This is consistent with the
appearance of the ν = 1/2 FQHS at smaller θ in (a),
assuming that an appropriate (intermediate) amount of
tunneling is required to observe the 1/2 FQHS [34–36].

A noteworthy observation in Figs. 3 and 4(a,b) is that
the 1/2 FQHS appears to be stronger when electrons are
in the X valley; compare the orange data points to those
in green in Figs. 4(a,b). We can further quantify this
via measuring a “pseudo energy gap” (1/2∆) for the 1/2
FQHS as summarized in Figs. 4(c,d) [56, 57]. We find
that 1/2∆ ' 0.135 K when the electrons are in the X val-
ley [Fig. 4(c)], noticeably larger than ' 0.085 K for when
they are in Y [Fig. 4(d)]. We can partly attribute this
to how B|| affects the Fermi sea and the effective mass of
the quasi-2D electrons in our system (see Refs. [44, 58–
60]. From our self-consistent calculations [49], we find
mass anisotropy ratios m[100]/m[010] ' 3.5 for X electrons
at B|| = 7.7 T and m[010]/m[100] ' 8.5 for Y electrons
at B|| = 11.7 T where the 1/2 FQHS is strong. The
much larger mass anisotropy for the Y-valley electrons
might explain the smaller energy gap for the 1/2 FQHS.
Larger mass anisotropy is generally expected to weaken
the FQHSs [61], although the energy gaps could be quite
robust and very large anisotropies would be needed to
reduce the gaps significantly [62, 63]. Besides Fermi sea
anisotropy, it is also likely that the different energy gaps
measured in Figs. 4(c,d) result from the different elec-
tron charge distributions and tunneling for the different
valley populations and different B|| (Fig. 3 insets).

We also measured the evolution of the 1/2 FQHS for
the case where no in-plane strain is applied so that X
and Y are equally occupied at B = 0 [Fig. 2(d)]. The
evolution, as detailed in the Supplemental Material [44],
is similar to the case where only Y is occupied, i.e., the
1/2 FQHS is strongest at B|| ' 12 T; see the blue data
points in Figs. 4(a,b). This may appear surprising at first
sight, but it can be readily explained based on the fact
that, for a B|| applied along the [100] direction, namely
the long axis of X and short axis of Y, the Y-valley en-
ergy shifts to smaller values compared to the X valley
[44, 58]. Again, the shift is related to how, in a quasi-
2DES with finite layer thickness, the coupling of B|| to

the electrons’ orbital motion and the resulting shift in
energies and deformation of the charge distribution de-
pend on the effective mass perpendicular to the direction
of B|| [58].

Before closing, we emphasize that the calculation re-
sults shown in Fig. 3 insets should be interpreted cau-
tiously. These are essentially Hartree calculations and
ignore electron correlations. Moreover, they assume that
B⊥ = 0 [49]. As shown in Ref. [55], at large B||, the elec-
tron Fermi sea in a quasi-2DES indeed splits and shows
a bilayer behavior when a large B|| is applied [44]. In
the presence of a large B⊥, however, the measured Fermi
sea for the CFs near ν = 1/2 remains connected at large
B|| and exhibits only moderate anisotropy [64]. This is
true whether the ground state at ν = 1/2 is compress-
ible [64], or is an incompressible FQHS [21]. In the case
of an incompressible, CF, ground state at ν = 1/2, the
experimental finding of the connectivity of the CF Fermi
sea has in fact been corroborated qualitatively by nu-
merical, many-body calculations [65]. This connectiv-
ity, as well as the presence of numerous one-component
(odd-numerator) FQHSs such as ν = 3/5, 5/9, 3/7, and
5/11 on the nearby flanks of the ν = 1/2 FQHS provide
strong evidence that the 1/2 FQHS is likely also a one-
component state, presumably a Pfaffian state as recent
theories conclude [34–36]. While we do not have an ex-
perimental measure of the shape or connectivity of the
CF Fermi sea at large B⊥ in our sample, we do observe
several odd-numerator FQHSs on the flanks of the 1/2
FQHS (Fig. 1), similar to what is seen in 2D electron
and hole systems confined to GaAs wide QWs [19–23].

In summary, we observe transitions from a compress-
ible CF phase to an incopressible FQHS to an insulating
phase at ν = 1/2 as a function of increasing B|| in a
quasi-2DES confined to an AlAs QW with tunable valley
occupancy and anisotropic Fermi-sea and effective-mass.
We show that the transitions and the strength of ν = 1/2
FQHS depend strongly on the relative orientation of B||
with respect to the axes of the occupied valley. The data
can be explained qualitatively based on the coupling of
B|| to the orbital motion of the quasi-2D electrons, but a
quantitative description awaits rigorous many-body cal-
culations. Our results demonstrate a unique tuning of
the even-denominator ν = 1/2 FQHS through control-
ling the valley occupancy and B||.
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