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We analyze an unusual class of bosonic dynamical instabilities that arise from dissipative (or non-
Hermitian) pairing interactions. We show that, surprisingly, a completely stable dissipative pairing
interaction can be combined with simple hopping or beam-splitter interactions (also stable) to gen-
erate instabilities. Further, we find that the dissipative steady state in such a situation remains
completely pure up until the instability threshold (in clear distinction from standard parametric in-
stabilities). These pairing-induced instabilities also exhibit an extremely pronounced sensitivity to
wavefunction localization. This provides a simple yet powerful method for selectively populating and
entangling edge modes of photonic (or more general bosonic) lattices having a topological bandstruc-
ture. The underlying dissipative pairing interaction is experimentally resource-friendly, requiring
the addition of a single additional localized interaction to an existing lattice, and is compatible with
a number of existing platforms, including superconducting circuits.

Introduction.—Hamiltonian bosonic pairing interac-
tions (where excitations are coherently created or de-
stroyed in pairs) arise in many settings, and underpin
a vast range of phenomena. In the context of quan-
tum optics and information, they are known as para-
metric amplifier interactions, and are a basic resource
for generating squeezing and entanglement [1, 2]; they
also form the basis of quantum limited amplifiers [3]. In
condensed matter settings, bosonic pairing underlies the
theory of antiferromagnetic spin waves, interacting Bose-
condensates, and can also be used to realize novel topo-
logical band structures [4, 5].

Given the importance of bosonic pairing, it is interest-
ing to explore the basics of purely dissipative (or non-
Hermitian) bosonic pairing. Non-Hermitian dynamics
have garnered attention in a wide range of fields, from
condensed matter [6–8] to optics [9–11] to classical dy-
namical systems [12–14]. In this Letter, we provide a
comprehensive analysis of dissipative bosonic pairing in
a fully quantum setting, showing it possesses a number
of surprising and potentially useful features. We focus on
minimal, experimentally realizable models, where bosons
(e.g. photons) hop on a lattice, in the presence of a sin-
gle dissipative pairing interaction. Remarkably, we find
that while the dissipative pairing interaction on its own
yields fully stable dynamics, when combined with simple
lattice hopping (which is also stable), one can have dy-
namical instability. Further, close to such an instability,
the quantum steady state is perfectly pure, with a se-
lected subset of modes having high densities and strong
squeezing and/or entanglement correlations. The com-
plete state purity up until the instability threshold is a
clear distinction from more standard instabilities associ-
ated with Hermitian pairing terms. Dissipative pairing
is also distinct from the well-studied situation where a
system is driven with squeezed noise; in particular, driv-

𝐽2

𝐽1

𝜅𝜂2

𝜅

Ƹ𝑐

෠𝑏

ො𝑎

𝜅𝜂

a) b)

𝐽2 𝐽1
𝜅𝜂

Ƹ𝑐

෠𝑏

ො𝑎

b)a) ෝ𝒂𝒊,𝒋ෝ𝒂𝒊,𝒋
†

ෝ𝒂𝟏𝟖,𝟐𝟑ෝ𝒂𝒊,𝒋

Φ

𝒊 →

𝒋
→

𝒊 →

𝒋
→

ത1

ത0

𝐽2 𝐽1
𝜅𝜂

Ƹ𝑐

෠𝑏

ො𝑎

𝐽2 𝐽1
𝜅𝜂

Ƹ𝑐

෠𝑏

ො𝑎

FIG. 1. Stability diagram for a minimal three-mode bosonic
system (see inset) with loss on mode â (rate κ), gain on mode
ĉ (rate η2κ), and tunnel couplings J1, J2 (c.f. Eq. (3)). In
the absence of dissipative pairing, the system is dynamically
unstable above the dashed line. Adding dissipative pairing
iηκ(âĉ + h.c) shifts the onset of instability to the solid line,
see Eq. (4). Remarkably, this boundary is independent of J/κ,

where J =
√
J2
1 + J2

2 . The dissipative steady state remains
pure (with a high density) as one approaches instability, see
main text. Red lines in each plot are the same cut of pa-
rameter space, J/κ = 1.5 and J1/J2 = 0.75. Solid lines show
hopping, dashed line shows the dissipative pairing interaction.

ing a quadratic, particle-conserving system with squeezed
noise can never generate instability, whereas this readily
occurs with dissipative pairing.

Dissipative pairing becomes even more interesting
when combined with topological bandstructures. We find
that our new pairing instabilities are highly susceptible to
wavefunction localization of the underlying lattice Hamil-
tonian. Hence, if the lattice supports exponentially-
localized topological edge modes, we are able to selectiv-
ity excite and entangle them. Such topological systems
remain a cornerstone of condensed matter physics [15–
17] and photonics [18–20], and selectively exciting edge
modes has been the subject of a flurry of recent proposals
[21–26]. These are motivated by applications including
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topological lasing [23, 26–29] and topological amplifica-
tion and squeezing [24, 30–32]. However, these proposals
often require complicated momentum and/or energy se-
lectivity [24–26], as well as control over the entire lattice,
[24–26, 30]. Here, we are able to get edge-mode selectiv-
ity almost for free, using a single quasi-local dissipative
interaction.

Minimal model.—We start with a three-mode system
(bosonic annihilation operators â, b̂, ĉ) that exhibits much
of the surprising physics of interest. The key ingredient
will be a dissipative pairing interaction between â and ĉ,
that is an interaction generating dynamics of the form
∂t〈â〉 = −λ〈ĉ†〉 and ∂t〈ĉ†〉 = λ∗〈â〉. Because of the rela-
tive sign here, this dynamics cannot be obtained from a
Hermitian pairing interaction. Instead, it would seem to
correspond to a non-Hermitian effective Hamiltonian:

Ĥpairing = −i(λâ†ĉ† + h.c.). (1)

To obtain this Markovian dissipative dynamics in a
fully quantum setting, this dissipative interaction must
necessarily be accompanied by noise as well as local
damping and anti-damping [7, 33]. The resulting descrip-
tion has the form of a Lindblad master equation [34, 35].
Using a minimal noise realization of the interaction, and
letting ρ̂ denote the system density matrix, we obtain

˙̂ρ = L̂ρ̂L̂† −

{
L̂†L̂

2
, ρ̂

}
≡ D[L̂]ρ̂, L̂ =

√
κâ+ η

√
κĉ†.

(2)

This purely dissipative evolution generates local damp-
ing on â with strength κ, local anti-damping on ĉ with
strength η2κ, and a dissipative interaction of the form of
Eq. (1) with λ = ηκ/2. We take η < 1 (i.e. more local
damping than anti-damping), which ensures dynamical
stability (i.e. no tendancy for exponential growth) [36].

The dissipation in Eq. (2) is reminiscent of the dy-
namics generated by driving modes â, ĉ with broadband
two-mode squeezed (TMS) noise [37]. There are how-
ever crucial differences. Driving with TMS noise always
generates two dissipators; to make Eq. (2) equivalent to
injected TMS, we would thus have to add the additional
dissipator D[

√
κĉ + η

√
κâ†]. This complementary dissi-

pator would completely cancel the effective dissipative
interaction between a and c generated by D[L̂], leaving
only driving with correlated noise. There would thus be
no interaction from the dissipation in the equations of
motion between 〈â(t)〉 and 〈ĉ†(t)〉. In contrast, we will
show that in Eq. (2), the direct dissipative interaction
between modes â and ĉ plays a crucial role.

To see explicitly that dissipative pairing is distinct
from input TMS, we will add coherent hopping inter-
actions to our system, and consider the evolution of
average values. The hopping is described by Ĥ =
J1â
†b̂ + J2b̂

†ĉ + h.c, with the evolution now given by

∂tρ̂ = −i[Ĥ, ρ̂] + D[L̂]ρ̂. Because of linearity, the equa-
tions of motion for averages of mode operators are in-
sensitive to noise, and only influenced by interactions
(coherent and dissipative). For our system, a symme-
try argument [36] lets us reduce the dynamics of these
averages to the closed linear dynamics of the quadra-
tures ~v = (xa, pb, xc), where 〈â〉 = (xa + ipa)/

√
2, etc;

the orthogonal quadratures (pa, xb, pc) have an analogous
closed evolution. We find ∂t~v = −iD~v, where the dy-
namical matrix D = DJ + Dκ can be interpreted as an
effective 3× 3 Hamiltonian matrix, and

DJ =

 0 iJ1 0
−iJ1 0 −iJ2

0 iJ2 0

 , Dκ =
κ

2

 −i 0 −iη
0 0 0
iη 0 iη2

 .

(3)

The off-diagonal ±iη κ2 terms in Dκ are the dissipative
interaction, which surprisingly adds a Hermitian contri-
bution at the level of the dynamical matrix. This mir-
rors the fact that had we started with a non-dissipative
Hermitian pairing interaction, we would generate a non-
Hermitian dynamical matrix [38]. Note that the hopping
dynamics on its own generates stable dynamics, as does
the dissipative dynamics on its own. More formally, both
the matrices DJ and Dκ have no eigenvalues with pos-
itive imaginary part and hence are dynamically stable
(in the Lyapunov sense [39] that there is no tendency for
exponential growth).

We now come to our first surprise: while each part
of our dynamics (hopping, dissipation) is stable individ-
ually, combining them can lead to instability. We find
that for the full dynamics, whenever J1 6= J2, there will
be a critical value of η beyond which we have exponential
growth. Specifically, one can show [36] that the dynami-
cal matrix in Eq. (3) will be unstable if

η > min (|J1/J2| , |J2/J1|) . (4)

We stress that this phenomenon is distinct from recently
studied “dissipation-induced instabilities” [40], where the
purely dissipative dynamics is already unstable on its
own. Again, in our case the system is always stable in
the dissipation-only limit J1 = J2 = 0.

The instability threshold Eq. (4) can be understood
from a simple perturbative argument that is formally
valid only when κ � J1, J2 (akin to a Fermi’s Golden
Rule (FGR) calculation). If we define |ψi〉(i = 1, 2, 3)
to be the (non-degenerate) eigenvectors of DJ , and treat
Dκ as a small perturbation on top of this, then to first
order |ψi〉 has a relaxation rate:

Γi = −Im〈ψi|Dκ|ψi〉. (5)

If an eigenmode has more amplitude on ĉ than â, there
will be a value of η < 1 at which Eq. (5) is negative.
This corresponds exactly to the condition in Eq. (4), and
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is easy to understand intuitively (i.e. the eigenmode sees
more anti-damping than damping). Surprisingly, this
simple FGR argument turns out to be exact to all orders
in κ: Eq. (4) is not perturbative [36]. We stress that this
is a non-obvious phenonmenon. For example, consider
a modified model where we eliminate dissipative pairing
by replacing D[L̂] → D[

√
κâ] + D[

√
κηĉ†] in our master

equation. We are left with just incoherent gain and loss.
In this case, the instability threshold would depend sen-
sitively on the value of κ, with the FGR prediction only
valid for κ→ 0, see Fig. 1.

We thus see that even at the semiclassical level, the
dissipative pairing interaction yields surprises: instabil-
ity from the combination of two individually-stable dy-
namical processes, with a threshold that is independent
of the overall dissipation scale. Note that the above phe-
nomena could alternatively be described (in a squeezed
frame) as the interplay of asymmetric loss and Hermitian
pairing interacting (see [36] for details and application to
2-mode models).

Extension to quantum lattices.—We now explore dissi-
pative pairing in general multi-mode lattice systems, fo-
cusing on the possibility of non-trivial dissipative steady
states. Consider an N -site bosonic lattice, with annihi-
lation operators âi for each site. The coherent dynamics
corresponds to a quadratic, number conserving Hamil-
tonian Ĥ =

∑
ij Hij â

†
i âj . The only constraint we im-

pose is that H possesses an involutory chiral sublattice
symmetry U , such that UHU† = −H; our simple three-
site model also had this symmetry. Chiral symmetry en-
sures that for every eigenmode ofH with non-zero energy,
there is a different eigenmode with an opposite energy.

We now add a single dissipative pairing interaction to
the lattice, between two arbitrary sites 0, 1. Motivated by
our three-mode example, we take 0, 1 to be on the same
sublattice (as defined by the chiral symmetry). The full
dynamics on the lattice is given by [41]

∂tρ̂ = −i[Ĥ, ρ̂] +D[L̂]ρ̂, L̂/
√
κ = â0 + ηâ†

1
. (6)

Our goal is to understand instabilities and steady states
of this setup. Note that previous work studied chiral-
symmetric bosonic lattices driven by single-mode squeez-
ing [42]. Such systems are completely distinct from our
setup: they do not have any dissipative pairing inter-
action, never exhibit dynamical instability, and (unlike
what we describe below) always yield steady states with
a spatially uniform average density.

We start by diagonalizing Ĥ. Using chiral symmetry,
we can write Ĥ =

∑
α≥0 εα(d̂†αd̂α− d̂

†
−αd̂−α). Eigenmode

annihilation operators are given in terms of real space
wavefunctions by d̂±α =

∑
i ψ±α[i]âi. Ĥ is invariant un-

der two-mode squeezing transformations that mix a pair
of ±α modes [36]: for arbitrary rα, φα ∈ R, if we take

β̂±α ≡ cosh(rα)d̂±α + eiφα sinh(rα)d̂†∓α, (7)

then Ĥ =
∑
α εα(β̂†αβ̂α − β̂

†
−αβ̂−α).

We would like to find a set of rα, φα such that:

L̂ =
√
κ
∑
α

Nα(β̂α + β̂−α). (8)

If this is possible, the system dynamics are stable, and
we will have a unique steady state (vacuum of the β̂±α
operators). Achieving Eq. (8) requires for each α > 0
[36]:

tanh rα = η

∣∣∣∣ ψα[1]

ψα[0]∗

∣∣∣∣ , φα = arg

(
ψα[1]

ψα[0]∗

)
. (9)

with |Nα|2 = |ψα[0]|2(1− | tanh rα|2).

We now make a crucial observation: Eq. (9) only has a
solution if η < (|ψα[0]∗/ψα[1]| ≡ ηα). If this condition is
violated for a particular α, then the dynamics is unstable:
in this case, we are forced to write L̂ in terms of a Bogoli-
ubov raising operator in the (α,−α) sector, implying that
the dissipation looks like anti-damping in this sector. At
a heuristic level, for η > ηα, the α modes see more gain
than loss. Overall stability requires η < min ηα ≡ ηc, a
condition that is independent of the dissipation strength
κ. We thus have a generalization and rigorous justifica-
tion of the surprising FGR-like instability condition in
Eqs. (4) and (5) we found for the three-mode model.

Our arguments above imply that as long as η < ηc,
we are dynamically stable and have a pure steady state,
where each (α,−α) pair is in a two-mode squeezed vac-
uum with a squeezing parameter given by Eq. (9). This
will in general be a highly entangled state. Further, as
η → ηc from below, the squeezing parameter of the criti-
cal modes is diverging, meaning that we will have a pure
state where a small subset of modes contribute to a di-
verging photon number. Note this is very distinct from
just incoherent gain and loss, which never has a pure
steady state. This behaviour is also completely distinct
from standard parametric instabilities, where the steady
state becomes extremely impure as one approaches in-
stability [43, 44]. The mode selectivity leads to a highly
non-uniform density that can be exploited for applica-
tions, as we now discuss.

Dissipative pairing and topological edge states.— The
physics discussed above is particularly striking when ap-
plied to chiral hopping Hamiltonians Ĥ that have topo-
logical bandstructures. There are many such models, as
chiral symmetry is a key part of the standard classifica-
tion of topological bandstructures [45]. As our dissipa-
tive interaction always pairs opposite energy modes, edge
modes will only be paired with edge modes, bulk modes
only with bulk modes. Moreover, it is easy to ensure
that the correlated steady-state photon density is con-
centrated on the edges. Edge-mode wavefunctions are
exponentially damped in the bulk, so Eq. (9) tells us for
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FIG. 2. Steady state correlation functions for a 99-site
SSH chain with δ = −0.65. There is a single jump oper-
ator of the form of Eq. (6) with 0 = 4 and 1 = 0, and
η = 0.999ηc ∼ 0.045. The squeezing correlation functions
show a pure, single-mode squeezed state exponentially local-
ized to the edge. Inset: Schematic of the dissipatively stabi-
lized SSH chain. A single jump operator generates a dissipa-
tive pairing interaction, selectively exciting the edge mode.

an edge state α

tanh rα = η

∣∣∣∣ψα[1]

ψα[0]

∣∣∣∣ ∝ ηe(d0−d1)/ζL , (10)

where d1,0 is the distance from 1 and 0 to the edge, re-
spectively, with ζL the localization length scale of the
edge modes. If d0−d1 > 0 (i.e. the gain site closer to the
edge than the loss site), we obtain a super-exponential en-
hancement in the squeezing parameter of the edge modes.
This yields large populations and squeezing on the edge
(while still having a pure state), see Figs. 2 and 3.

For large enough systems, the bulk modes will be
nearly translationally invariant, implying they will have
tanh rα = η. Thus, by spreading the two sites out over a
few localization lengths ζL, a weak pump rate η � 1
can set tanh rα ∼ 1 for only the edge modes. Here,
the total number of excitations in the bulk would be
very small, 〈n̂α〉 = O(η2), whereas the number of ex-
citations in the edge mode, as one approaches instabil-
ity, will be super-exponentially enhanced and scales like:
〈n̂α〉 = O([1− ηe(d0−d1)/ζL ]−1).

The upshot is that by using a single dissipative pair-
ing interaction, we can selectively populate, squeeze and
entangle edge modes of a topological bosonic band struc-
ture. Such states could be useful for applications in topo-
logical photonics [19], and are reminiscent of topological
lasing states [23, 26] (which typically require complex
schemes to only pump the edge states). We analyze this
physics more carefully below for two prototypical topo-
logical hopping models (see Fig. 3).

SSH Chain.—A paradigmatic topological model is the
SSH chain [46, 47], see Fig. 2 inset. This is a linear, 1D
lattice with staggered hopping strengths, given by the
Hamiltonian:

Ĥ = −J
N−1∑
i=1

(1 + (−1)iδ)â†i âi+1 + h.c. (11)

Such a model has been realized with bosons in a variety
of experiments (e.g. [27–29, 48]). The topological regime
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FIG. 3. (a) is a 24 × 24 site Hofstadter Lattice, which has
uniform hopping and a quarter flux per plaquette Φ = 1

4
Φ0.

There is a single dissipator of the form of Eq. (6), with 1 =
(11, 23) and 0 = (12, 20), and with η = 0.999ηc ∼ 0.0007.
The color corresponds to local steady state photon number,
which is exponentially localized to the edges of the lattice.
(b) is the same system, now showing steady state squeezing
correlations between the randomly chosen edge site (18,23)
and the rest of the lattice. Every edge site has exponentially
enhanced squeezing with every other edge site on the same
sublattice.

of Ĥ admits one (two) protected edge modes if there are
an odd (even) number of lattice sites, with a localization
length ζL = (1 + δ)/(1 − δ). As α → −1, ζL → 0, and
the edge modes become infinitely localized.

We consider for simplicity an odd number of lat-
tice sites (see [36] for even N). This yields a sin-
gle zero-energy edge mode, localized on a single sub-
lattice. Hence, if we place the pairing dissipator on
the correct sublattice, we can selectively excite just the
edge mode into a single-mode squeezed vacuum with a
super-exponentially enhanced squeezing parameter. The
dissipative steady state for such a situation is plotted
in Fig. 2. We thus have a resource-friendly approach
for creating topologically-protected, bright non-classical
squeezed light, using an SSH chain with a single, quasi-
local, linear dissipator. One could imagine using the sta-
bilized photons by weakly coupling the edge lattice site
to an output waveguide, see [36] for more details. Note
that topological features of the SSH chain are protected
against disorder in the hopping coefficients up to the bulk
gap 2|δ|J . We find that the qualitative nature of the dis-
sipative steady state is also protected against hopping
disorder over a similar scale (see [36]).
Hofstadter Lattice – 2D topological systems admit ex-

tended boundaries, allowing one to more easily study en-
tanglement properties. Motivated by this, we consider
a finite, quarter-flux Hofstadter lattice [49]. This corre-
sponds to a square lattice with a quarter magnetic flux
quanta per plaquette (see Fig. 3) giving the Hamiltonian:

Ĥ =
∑
m,n

â†m,nâm+1,n + eiπm/2â†m,nam,n+1 + h.c., (12)

which has been realized experimentally in Refs. [50–52].
This Hamiltonian supports exponentially localized
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modes which propagate chirally around the edge [50, 51,
53, 54]. The fact that they are extended around the full
edge is critical for generating long-range entanglement.

With the same prescription of adding a dissipative in-
teraction of the form of Eq. (6) with 1 on the edge and 0
in the bulk, the steady state solution has exponentially
localized edge photon density, with nearly all-to-all edge
correlations, Fig. 3. For a fixed η, these sites will obey a
volume-law scaling in entanglement entropy, [36], where
maximally separated edge sites are now highly entangled,
Fig. 3. Having all edge sites lie on the same topological
boundary is crucial for this to occur [36].

In the limit that η → ηc, the steady state will be dom-
inated by the topological edge modes approaching insta-
bility. Treating the edge as a ring, we can label these
by their momenta k; the steady state has all momenta k
and k+π in a TMS vacuum. Close enough to instability,
a single momentum will dominate, generating uniform
edge photon densities, see Fig. 3a, and a “checkerboard”
of correlations, see Fig. 3b. The checkerboard is a result
of the chiral symmetry, which admits only correlations
within a sublattice. The values of the correlations and
densities can be understood directly from Eq. (10), where
〈n̂i,j〉 ∼ sinh(rk)2 and 〈âi,j âi′,j′〉 ∼ sinh(rk) cosh(rk)
are super-exponentially enhanced compared to the bulk
modes. This gives an arbitrary amount of entanglement
between any two edge sites on the same sublattice as
η → ηc. This also means that for a relatively weak di-
mensionless pumping (η < 10−3 in Fig. 3), the steady
state can still have a large number of photons (O(102) in
Fig. 3), that is completely independent of the strength of
the dissipation κ compared to the Hamiltonian.

Implementation– The basic master equation is natu-
rally suited for any circuit- or cavity-QED experimental
platform that can generate tunable couplings, along with
an engineered lossy mode. Quantum systems that have
been able to successfully create topological photonic or
phononic lattices spans superconducting circuits [48, 52],
micropillar polariton cavities [27], photonic cavities [55],
photonic crystals [53], ring resonators [28, 29, 50, 51, 56],
and optomechanics [57, 58]. In order to generate the
requisite jump operator in Eq. (6), one can couple the

dissipation sites to an auxilliary bosonic mode b̂ with the
interaction

ĤI = gb̂†(â0 + ηâ†
1
) + h.c. (13)

In the limit that the auxiliary mode b̂ is very lossy with
a loss rate κ � g, this gives the desired jump operator,
with an effective strength Γ = 4g2/κ, [59]. This allows
one to easily engineer the desired reservoir with few ad-
ditional resources.

Conclusions– We have demonstrated that dissipative
pairing interactions lead to a previously unexplored class
of instabilities in bosonic systems, where stable Hamil-
tonians and stable dissipation combine to give unstable

dynamics. We have shown that these instabilities are
incredibly sensitive to topological boundaries, providing
a new mechanism to selectively excite topological edge
modes without needing any momentum or frequency se-
lectivity. Moreover, the steady state of the dynamics
remains pure all the way up to the instability point, al-
lowing one to populate the edge with an arbitrary number
of zero-temperature excitations. Our ideas are compat-
ible with a variety of different experimental platforms,
and require few resources to implement.
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