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We provide strong evidence of the spin-nematic state in a paradigmatic ferro-antiferromagnetic
J1–J2 model using analytical and density-matrix renormalization group methods. In zero field,
the attraction of spin-flip pairs leads to a first-order transition and no nematic state, while pair-
repulsion at larger J2 stabilizes the nematic phase in a narrow region near the pair-condensation field.
A devil’s staircase of multi-pair condensates is conjectured for weak pair-attraction. A suppression
of the spin-flip gap by many-body effects leads to an order-of-magnitude contraction of the nematic
phase compared to näıve expectations. The proposed phase diagram should be broadly valid.

Introduction.—Liquid crystals—which combine prop-
erties of a liquid and a solid that seem mutually
exclusive—were considered an exotic state of matter for
nearly a century before becoming ubiquitous in technol-
ogy [1, 2]. Their quantum analogues have been hypothe-
sized and pursued in several contexts, such as electronic
nematic states in strongly correlated materials [3–6], spin
nematics in frustrated magnets [7–17], and supersolids
in He4 and cold atomic gases [18–21]. Quantum spin ne-
matics are particularly elusive, as they should interpolate
between a magnetically ordered spin solid and a spin liq-
uid, another exotic and elusive state [22, 23]. Like spin
liquids, spin nematics lack conventional dipolar magnetic
order, but instead break spin-rotational symmetry with
quadrupolar or higher-rank multipolar ordering [24–26],
making their experimental detection challenging [27].

An earlier study has proposed an intuitive view of
the nematic states as of the Bose-Einstein condensates
(BECs) of pairs of spin excitations with a gap in the
single-particle sector [26]. In a nutshell, a nematic state
occurs if a conventional order due to a BEC of single spin
flips [28] is preempted by a BEC of their pairs. Since the
bound states (BSs) of magnons in ferromagnets (FMs) do
not Bose-condense [29, 30], it was suggested that mag-
netic frustration can facilitate nematic pair-BEC [26], a
concept explored in several classes of frustrated magnets
theoretically [31–46] and experimentally [8–17].

One of the simplest paradigmatic models for this sce-
nario is the J1–J2 ferro-antiferromagnetic (AFM) S=1/2
Heisenberg model on a square lattice in external field,

H = J1
∑
〈ij〉1

Si · Sj + J2
∑
〈ij〉2

Si · Sj − h
∑
i

Szi , (1)

where 〈ij〉1(2) denotes the first (second) nearest-neighbor
bonds, the field h= gµBH, J1 =−1 is set as the energy
unit, and J2>0. The FM is a ground state for small J2;
for large J2 it is a stripe AFM [47]; see Fig. 1(a).

Prior studies on this model [31–33] have proposed the
nematic state to intervene between FM and AFM phases
in a broad region similar to the one shown in Fig. 1(a).
However, this contradicts the robust numerical evidence
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FIG. 1. (a) The näıve h–J2 phase diagram of model (1) based
on the single spin-flip and pair-BEC hc1 and hc2 lines. Lines
and symbols show analytical and DMRG results, respectively.
(b) The actual phase diagram of the model (1) in the zoomed
region of (a), with the first-order, multi-pair, and pair-BEC
transitions emphasized. (c) The zoomed sector of (b) showing
the extent of the nematic phase near pair-BEC field.

of a direct FM-AFM transition in zero field [47], high-
lighting a common pitfall of claiming the nematic state
based on correlations that are subsidiary to a prevalent
dipolar order. It also shows that the nematic state of
BEC pairs may be superseded by other instabilities.

In this Letter, we combine analytical and numeri-
cal density-matrix renormalization group (DMRG) ap-
proaches to provide unambiguous conclusions on the ne-
matic state in the J1–J2 square-lattice model.
D-wave pair-BEC.—Pairing is ubiquitous in physics

[48, 49]. In model (1), the pairing of two spin flips shar-
ing an attractive FM J1-link occurs in the polarized state.
Since the model is 2D, one expects a BS in the s-wave
channel for an arbitrarily weak attraction, or any J2, as in
the Cooper problem for superconductivity [48]. Yet, the
prior works give a finite J2-range for the pairing [31, 32]
and provide no insight into the pairs’ d-wave symmetry.
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FIG. 2. (a) Magnon energies εk at h>hc2 for J2 =0.7 and 0.4, schematics of magnon pairing, and gaps ∆Q(0). (b) The pairing
gap ∆ vs J2 from theory (lines) and DMRG (symbols). (c) εk for J2 = 0.7, nodes of the dx2−y2 -wave harmonic (white lines),
and schematics of the d-wave. (d) The h–J2 phase diagram of the model (1) by DMRG, field h is relative to hc2. Symbols mark
the FM (black), nematic (red), and AFM (blue) phases. Phase boundaries are inferred from the midpoints between the data.
Cyan circle marks a switch to the pair-attraction and green circle to the first-order transition (solid line). Inset: Schematics of
the true h–J2 phase diagram in Fig. 1(b). The nematic region and the deviation from the hc2-line are exaggerated.

The paring of two spin flips can be solved by an exact
formalism [29, 41]. It yields the näıve phase diagram of
the model (1) shown in Fig. 1(a), where hc1 = 4J2 − 2
is the line of the single spin-flip BEC and the FM-AFM
border in the classical limit, which is preempted by the
pair-BEC at hc2 for any J2. DMRG energies for 16 × 8
cylinders with fixed numbers of spin flips yield hc1 and
hc2 values in nearly-perfect agreement (symbols).

The magnon pairing gap ∆, sketched in Fig. 2(a), is
the difference of these fields, ∆≡hc2−hc1, which agrees
with the weak-coupling result of the Cooper problem [48]

∆ ≈ J2 e−πJ2 , (2)

for J2 � 1, but in the d-wave channel. Fig. 2(c) ex-
plains the predominance of the d-wave. The nodes of
the dx2−y2 harmonic of the attraction potential, V dq ∝
(cos qx− cos qy), avoid crossing the magnon band min-
ima at Q=(0, π)[(π, 0)], see Fig. 2(a), while the nodes of
other harmonics do cross them, rendering pairing in these
channels unfavorable [50]. The spatial extent of the BS
in (2) can be estimated as ξ∝

√
J2/∆∝ eπJ2/2, relating

deviations of the DMRG from exact results in Fig. 2(b)
at larger J2 to the finite-size effect [51].

Phase diagram.—With the pairing problem in the FM
state solved exactly, its d-wave symmetry and J2-extent
elucidated, a nematic phase is expected to exist below the
pair-BEC transition hc2 down to the single spin-flip BEC
hc1, where the single-particle gap closes and the AFM or-
der prevails, see the phase diagram in Fig. 1(a). However,
as we demonstrate, the many-body effects strongly alter
some of these expectations, see Figs. 1(b), 1(c), and 2(d).

Generally, for a BEC condensate to form a superfluid

phase its constituents must repel [28, 52]. This is the
case for the pair-BEC for large (repulsive) J2, implying
that the nematic phase must occur in some region below
the hc2-line, which is unaffected by many-body effects.

As the pair binding energy 2∆ increases for smaller
J2, see Fig. 2(b), one also expects a change of the pair-
pair interaction from repulsive to attractive. With the
numerical evidence for that presented below, this change
occurs at about J2≈0.6, marked by a cyan circle in the
phase diagrams in Figs. 1(b) and 2(d).

The pair-attraction has two effects. First, the FM-
nematic phase boundary in Figs. 2(d) and 1(b) is pulled
above the hc2-line, superseded by a BEC of the multi-pair
states [53]. Second, the nematic region shrinks as the
critical pair density for a transition to the dipolar state
is reached more readily. Ultimately, at about J2 ≈ 0.5
(green circle in Figs. 2(d) and 1(b)), the nematic phase
ceases altogether. In a sense, while the pair-binding gets
stronger, the stiffness of the phase vanishes, leading to
a first-order collapse of the FM into AFM phase with a
finite canting of spins, explaining the zero-field results of
Ref. [47] and substantiating the proposal of Ref. [54].

The most striking change concerns the näıve nematic-
AFM phase boundary in Fig. 1(a). The hc1-line cor-
responds to a closing of the single-magnon gap for the
non-interacting magnons. However, in the presence of
the pair-BEC, this gap is strongly reduced due to attrac-
tion to the pair condensate [50], dramatically extending
the AFM phase above the hc1-line and leading to about
an order-of-magnitude contraction of the näıve nematic
phase according to DMRG [55]; see Figs. 1 and 2(d).
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Our Fig. 2(d) and Figs. 1(b) and 1(c) quantify all of the
trends described above: the narrow nematic region be-
low the hc2-line, the change to the pair-attractive regime
for J2.0.6 leading to multi-pair transitions and further
narrowing of the nematic region, and first-order transi-
tion for J2.0.5 together with a shift of the FM-to-AFM
boundary from the hc2-line to smaller J2.

To reveal the resultant phase diagram in Figs. 1(b)
and 1(c), we use iterative zooming because the width of
the nematic region and the shift of the transition lines
are hard to discern on the scale of Fig. 1(a). They are
derived from Figure 2(d), which is based on the DMRG
results discussed below, with each symbol corresponding
to an individual simulation.

DMRG results.—DMRG calculations are performed
on the Lx×Ly-site square-lattice cylinders with mixed
boundary conditions, and width Ly=8. [56]

We use three complementary approaches. The first is
long-cylinder “scans,” in which the magnetic field is var-
ied along the length of the 40×8 cylinder, with different
phases and their boundaries coexisting in one system.
These 1D cuts through the phase diagram are very use-
ful [57–61], allowing one to differentiate first- and second-
order transitions by varying the ranges of the scans. Since
the parameter gradient can impose unwanted proxim-
ity effects, we use such scans judiciously as the first ex-
ploratory measure of the nematic phase.

The second approach utilizes 20×8 cylinders, with an
aspect ratio that approximates the 2D behavior in the
thermodynamic limit [62]. To obtain BEC boundaries
in Fig. 1, the pairing gap in Fig. 2(b), and multi-pair
energies, we perform calculations for fixed numbers of
spin flips (fixed total Sz) as a function of h and J2.

Lastly, the same cylinders are simulated without fix-
ing total Sz to allow for symmetry-broken phases that
are induced by weak edge fields. The broken symmetry
allows us to measure local order parameters instead of
their correlation functions [57–61]. The decay of the in-
duced orders away from the boundary also serves as an
excellent indicator of their stability in the 2D bulk.

Our Figure 3 showcases the described approach and its
results for J2 = 0.55 and h= 0.445; see the leftmost red
circle in Fig. 2(d), just above hc2 = 0.441 for this value
of J2. Fig. 3(a) shows the spin configuration, with ar-
rows’ length equal to the local ordered moment 〈S〉. In
Fig. 3(b) bonds represent the nearest-neighbor pair wave-
function 〈S−i S

−
i+x(y)〉, which is directly related to the

quadrupole-moment order parameter [39], and Fig. 3(c)
provides a quantitative measure of them along the length
of the cluster. A pairing field 0.1S−i S

−
i+y (spin-flip field

0.1S−i ) is applied at the left (right) edge.

In order to avoid the pitfalls of the earlier work [31],
an important step in the search for the nematics is to
rigorously rule out dipolar orders, since nematic correla-
tions also exist in them as a subsidiary of the multipole
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expansion. As one can see in Fig. 3(a) and 3(c), the
magnetization is markedly suppressed from full satura-
tion away from the boundary, 〈Sz〉 < 1

2 , but shows no
sign of canting. In the same region, the quadrupolar or-
der parameter is clearly developed, with 〈S−i S

−
i+y〉& 0.1

and its d-wave character evident from the opposite sign
of the horizontal and vertical bonds in Fig. 3(b). On the
other hand, the induced canting on the right edge decays
away from it with no detectable 〈S−i 〉 in the bulk; see
Figs. 3(a) and 3(c), which indicate a gap to one-magnon
excitations and the absence of the dipolar order.

Altogether, the analysis presented in Fig. 3 leaves no
doubt for the presence of the d-wave nematic state for
the chosen values of h and J2. We point out again that
without the pinning field, the nematic state still exists
and can be detected through the pair-pair correlations
instead of the local order parameter, but they are no more
informative and less visual than the results in Fig. 3.

In Figure 4, we show a long-cylinder scan for J2 = 0.7
with varied h. From Fig. 1(a) one expects to see the
nematic phase from the single-magnon-BEC to the pair-
BEC fields, from hc1 = 0.792 to hc2 = 0.966. Instead, we
observe a robust AFM phase with substantial dipolar or-
der 〈S−i 〉 all the way up to a vicinity of hc2; see Figs. 4(a)
and 4(b). Although 〈Sz〉 in Fig. 4(b) drops precipitously
in a narrow field range near hc2, varying the limits of the
scan suggests second-order transition(s).

Fig. 4(b) shows that near hc2 the nematic order param-
eter dominates the dipolar one, suggesting the presence
of the nematic phase. This behavior is markedly differ-
ent from the case of the quadrupolar order occurring as a
byproduct of the dipolar one in the pure AFM model [50].
However, because of the proximity effects of the neigh-
boring phases, it is difficult to make definite conclusions
on the extent of the nematic region based solely on the
results of Fig. 4(b), besides the fact that it is much nar-
rower than suggested näıvely in Fig. 1(a).

Thus, we carry out the fixed-parameter, 20×8 clus-
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ter calculation as in Fig. 3 for several values of h along
the path of the scan in Fig. 4(b). The results for three
such fields, 0.9, 0.96, and 1.0, are shown in Figs. 4(c)-(e).
Fig. 4(d) mirrors Fig. 3(c), clearly placing h=0.96 in the
nematic region. The finite-size scaling of the nematic or-
der shows little change [50], indicating the near-2D char-
acter of our results. The h=1.0 point in Fig. 4(e) shows
saturated ordered moment and a decay of both pair and
spin-canting away from the boundaries, confirming a po-
larized FM state. The h= 0.9 point in Fig. 4(c) demon-
strates a strong presence of both dipolar and quadrupolar
orders—a sign of the AFM phase. For all the (J2, h) data
points contributing to the phase diagram in Fig. 2(d), we
performed the same type of analysis.

In Figure 5, we present the results of the same analysis
for J2 = 0.45, with the scan in h from 0.0 to 0.2. Unlike
the case of Figure 4, where the evolution of magnetiza-
tion suggests second-order transitions, in Fig. 5(a) and
5(b) one can notice that the canting of spins changes to
a fully polarized state rather drastically. The transition is
at about h≈0.14, which is also noticeably higher than the
pair-BEC value of hc2 =0.12 from Fig. 1(a). Another fea-
ture is the “scale-invariance” of the scan, demonstrated
in Fig. 5(c) by zooming on the narrow field range of 0.12
to 0.16, suggesting the first-order character of the tran-
sition. The fixed-parameter calculations described above
also find no nematic region between the AFM and FM
states, supporting our scenario that pair attraction leads
to a first-order collapse of the multi-pair state directly
into the dipolar instead of the nematic phase, in a broad
agreement with the proposal of Ref. [54].

The AFM-FM transition remains first-order down to
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zero field with the boundary shifting to J2≈0.39 from the
pair-BEC value of J2≈0.408, see Fig. 1(b), in agreement
with J2 =0.394 from the earlier study [47].

Multi-pair states.—For J2.0.6 (left of the cyan circle
in Fig. 2), spin-flip pairs attract each other and can form
multi-pair states. As a result, the actual transition from
the FM phase is above hc2 and is into the condensates
of these multi-pair states. Furthermore, the quadrupo-
lar nematic phase also extends above the hc2 line, see
Figs. 2(d) and 1(b), for the same reason the dipolar AFM
phase is pulled up above the hc1 line.

In the regime associated with the pair-attraction, we
identified condensations from the FM phase into the
states with four, six, and eight magnons in a 16×8 cluster,
see Ref. [50]. They form a devil’s staircase of diminish-
ing ranges of J2 before reaching the first-order transition
point at J2≈0.5, bearing a resemblance to the results of
Refs. [39, 40]. However, an unambiguous confirmation of
the higher-multipolar orders associated with the multi-
pair BECs is beyond the present study because of the
finite-size effects and weak higher-order pairing.

Summary.—We have established the actual extent of
the d-wave nematic phase in the phase diagram of the
paradigmatic J1–J2 model using analytical and DMRG
insights. The nature of the d-wave pairing is explained
and the criteria for the existence of the pair-BEC are
elucidated. The sequence of the multi-pair BEC transi-
tions is suggested to bridge the d-wave pair-BEC and the
first-order FM-AFM transition lines.

The nematic state is not stable at zero field and in
the J2 region close to the FM-AFM border because re-
pulsive pair-pair interactions are generally required to
ensure finite stiffness of the pair-BEC state. A suppres-
sion of the single-spin-flip gap by an attraction to the
pair-condensate is shown to lead to a dramatic order-of-
magnitude contraction of the nematic phase compared to
the näıve expectations. The hallmark of the remaining
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nematic region is the significant drop in the magnetiza-
tion in a very narrow field range near saturation without
any dipolar order. Our work provides vital guidance to
the ongoing theoretical and experimental searches of the
elusive quantum spin-nematics, arming them with real-
istic expectations. The proposed scenario and the phase
diagram can be expected to be valid for a wide variety of
models and materials.
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