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The linear growth and nonlinear energy transfer of the electron drift instability (EDI) are exper-
imentally measured in the plume of a low-temperature, Hall effect discharge. A frequency-based
bispectral analysis technique applied to fast ion density fluctuation measurements shows a growth
rate function that is qualitatively similar to predictions from the linear instability dispersion rela-
tion, but an order of magnitude smaller. Calculation of the nonlinear transfer function indicates
multiple three-wave interactions between high-frequency resonances of the instability in addition to
an inverse energy cascade towards lower-frequency modes. These results are discussed in the context
of recent theoretical, numerical, and experimental efforts on the EDI in Hall effect discharges and
how the EDI may impact anomalous cross-field transport.

The onset and growth of instabilities is a nearly univer-
sal phenomenon in plasma physics [1–4]. Understanding
the dynamics of these instabilities is of practical impor-
tance as they can drive “anomalous” particle and energy
fluxes that dominate the plasma state. This transport
can result in undesirable effects such as poor confinement
and low efficiency [5]. The electron drift instability (EDI)
is a particularly widespread type of transport-inducing
wave that is known to impact several space-based and
low-temperature plasma devices with crossed electric and
magnetic fields [2, 5–7]. This electrostatic mode, which is
driven unstable by an E×B electron drift coupled to elec-
tron cyclotron resonances[8–11], has been linked to re-
duced efficiency in ion sources[12], anomalous heating of
particles in the magnetosphere[13], and self-organization
in pulsed magnetron sputtering devices[6].

Despite the widespread existence of the EDI, sev-
eral aspects of this instability remain poorly understood.
Foremost among these is the degree to which this in-
stability directly impacts anomalous particle and energy
flux. In practice, quantifying these effects requires an
understanding of the growth rate—the rate at which the
EDI extracts momentum from the background plasma—
and the power spectrum—the distribution of energy in
the waves as a function of frequency and lengthscale[14].
While there are many theories for these aspects of the
EDI[4, 15–19], there has yet to be a direct experimen-
tal measurement of the linear growth and nonlinear wave
coupling processes that govern the EDI spectrum. This
lack of experimental data speaks to a broader problem
commonly encountered in measuring wave dynamics in
low temperature plasmas [5]: established methods based
on length-scale bispectral analysis[20, 21], developed for
higher energy density plasmas, do not translate well to
space-based and low temperature systems. This stems
primarily from limitations in spatial resolution and spec-
tral bandwidth.

In light of these obstacles and the importance of under-
standing the processes that shape the EDI growth spec-
tra, we motivate in this Letter a frequency-based bis-
pectral analysis technique to make direct experimental

measurements of the linear growth and nonlinear energy
transfer of the EDI in a laboratory Hall effect discharge.
We describe in the following the theory of the method,
the experimental technique, and a comparison of the re-
sults to linear theory.

Our approach to measuring the EDI dynamics is based
on formulating a nonlinear governing wave equation for
its evolution. We then use experimental measurements
of the wave properties combined with a bispectral analy-
sis method adapted from the works of Ritz [20] and Kim
[21] to infer the parameters in the wave equation that
represent linear and nonlinear growth. Figure 1 shows
the geometry of the Hall effect discharge we investigated
with this approach. This device has azimuthal symme-
try with an axial electric field and radial magnetic field.
The resulting azimuthal E×B drift is the energy source
for driving the EDI unstable. For our analysis, we adopt
the local Cartesian coordinate system shown in Fig. 1.
Following the eikonal approximation (c.f. [22]), we rep-
resent the spectrum of oscillations as a superposition of
fluctuations in plasma potential, φ(~r, t) =

∑
~k,ω φ(~k, ω)

where we have invoked a two-scale representation of the

waves: φ(~k, ω) = φ̂(~k, ω) exp
[
i
(
~k · ~r − ωt

)]
. Here the

exponential denotes the rapidly oscillating component of
the mode in the EDI spectrum with real frequency, ω,
and real wavevector, ~k, while φ̂(~k, ω) is the more slowly
evolving complex amplitude of this mode.

To motivate a governing equation for φ(~k, ω), we con-
sider the evolution of each propagating mode in space
and time. This approach is inspired by Ref. [22] where
a governing equation for the complex amplitude of the
waves, φ̂(~k, ω), is derived from a perturbation analysis of
the electrostatic dispersion relation. In a departure from
this work, however, we also have included a term that
accounts for the evolution of the rapidly oscillating com-

ponent of the mode, exp
[
i
(
~k · ~r − ωt

)]
(c.f. [23]). We

thus find
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FIG. 1: H9 Hall thruster shown with axial electric field
(Ē), radial magnetic field (B̄), and probes placed in the

E ×B direction.

∂φ(~k, ω)

∂t
+ ~vg ·

∂φ(~k, ω)

∂~r
= γωφ(~k, ω) (1)

+ i
(
~k · ~vg − ω

)
φ(~k, ω) +

∑
ω=ω1+ω2
~k=~k1+~k2

V Q
1,2φ(~k1, ω1)φ(~k2, ω2).

On the left hand side, the first term of Eq. 1
represents the change in time while the second is
the convection in space at the group velocity ~vg =

−∂~kε
(1)
r (~k, ω)/∂ωε

(1)
r (~k, ω). Here ε(1)(~k, ω) is the dielec-

tric response to first order. On the right hand side,
the first term denotes the linear growth of the wave

γω = −ε(1)
i (~k, ω)/∂ωε

(1)
r (~k, ω). This physically is the rate

at which energy is extracted from the background plasma
as the mode propagates. It primarily impacts the mag-
nitude of the complex wave amplitude, φ̂(~k, ω). We note
that this definition for linear growth, which results from
an expansion of the dielectric response of the plasma, is
contingent on the existence of an imaginary component
of the dielectric. While in the case of wave propagation
entirely perpendicular to the magnetic field, the dielec-
tric function of the EDI is entirely real [10], the presence
of a component parallel to the magnetic field leads to
an imaginary component of the dielectric [24]. In turn,
we have found for the range of parallel wavenumbers we
anticipate for this study, the above definition of linear
growth is approximately equal to the imaginary com-
ponent of the frequency roots of the dispersion. The
second term in Eq. 1 stems from the evolution of the
rapidly oscillating component of the wave. The third
term represents the change in the wave induced from
three-wave coupling interactions that satisfy ~k = ~k1 ±~k2

and ω = ω1±ω2. The coefficient V Q
1,2 is a weighting func-

tion for the strength of each three-wave interaction and
is related to the second order dielectric response[22].

Eq. 1 is a framework for relating change in wave am-
plitude to linear growth and nonlinear contributions. To

translate this result into a form that can be analyzed ex-
perimentally, we Fourier transform with respect to time:

~vg ·
∂φ̂f
∂~r

=
(
γf + i~kr · ~vg

)
φ̂f +

∑
f=f1+f2

V Q
1,2φ̂f1 φ̂f2 , (2)

where we have introduced φ̂f , the complex amplitude of
the Fourier transform with respect to time at frequency,
f = ω/2π in the EDI spectrum. We note that in trans-
lating Eq. 1 to Eq. 2, we have made the approximation
that if there is a set of frequencies f1, f2 that satisfies
f1 ± f2 = f , there is only one set of wavevectors, ~k1,~k2,
that satisfies ~k1 ± ~k2 = ~k. This is consistent with the
form of the EDI that applies to our plasma (Fig. 2a) and
allows us to simplify the summation in Eq. 2 to frequency
combinations.

To arrive at a method for experimentally inferring the
growth, we consider Eq. 2 for the configuration shown in
Fig. 1 where two electrostatic probes are separated az-
imuthally by distance, ∆y. These probes simultaneously
measure the time-based Fourier spectrum at each loca-
tion to yield Xf = φ̂f (y) and Yf = φ̂f (y+∆y). Based on
these two measurement locations, we can discretize Eq. 2
with respect to the azimuthal coordinate to find

Yf = LfXf +
∑

f=f1+f2

Q1,2
f Xf1Xf2 , (3)

where we have linear and nonlinear transfer functions:

Lf =
[(
γf(y)/vg(y) + iky

)
∆y + 1− i∆Θf

]
ei∆Θf (4)

Q1,2
f = ei∆ΘfV Q

1,2∆y/vg(y).

Here ∆Θf is the phase difference between the two
measurement points for oscillations at frequency f
and is determined from the cross-power spectrum:
exp (i∆Θf ) = YfX

∗
f/|YfX∗

f |. Additionally, we have
introduced the azimuthal linear growth rate, γf(y) =

γf − Re
(
X−1

f

[
vg(x)∂xXf + vg(z)∂zXf

)]
). This nomen-

clature reflects the fact that the formalism only tracks
changes in the azimuthal wave properties. This term
may differ from the total growth if there are contribu-
tions from the orthogonal directions. We return to this
point in the discussion. Finally, we multiply Eq. 2 by
the complex conjugate quantities, X∗

f and X∗
f1
X∗

f2
re-

spectively, to yield

YfX
∗
f = LfXfX

∗
f +

∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f (5)

YfX
∗
f1X

∗
f2 = LfXfX

∗
f1X

∗
f2 +

∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f1X

∗
f2 .

The first equation is the complex form of a discretized
wave energy equation. The second represents the third
moment of the wave-dynamics, i.e. the cross-bispectrum.
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With experimental measurements of the moments in
Eq. 5, e.g. Xf1Xf2X

∗
f , the system can be solved for

the linear, Lf , and nonlinear, Q1,2
f , transfer functions.

In turn, from these measurements, we can infer the az-
imuthal growth rate, γf(y) = (Re[Lf ]−1)(vg(y)/∆y). We
also can use our experimentally-informed estimates of
the transfer functions to determine aspects of the non-
linear coupling. Most relevantly, we introduce a govern-
ing equation for the wave energy density, Pf = |φ̂|2, by
multiplying Eq. 2 by the complex conjugate. This yields
in the azimuthal direction ∂yPf = 2γfPf + Tf where
Tf represents the energy flux transferred to the mode of
frequency f by nonlinear coupling from other modes in
the spectrum. Following Ref. [20], we can relate this last
term to the nonlinear transfer function:

Tf = (vg(y)/∆y)Re

 ∑
f=f1+f2

e−i∆ΘfQ1,2
f Xf1Xf2X

∗
f

 .
(6)

We solve our governing equations following the algo-
rithmic approach developed by Ritz [20] and later modi-
fied by Kim [21]. While in this previous work, the spatial
Fourier transform of Eq. 1 was considered, we have for-
mulated our equations in terms of the time-based Fourier
transform. We adopted this approach because it was not
possible to insert a sufficient number of probes in our
small scale plasma to perform spatial transforms. De-
spite our use of a frequency based analysis, the form
of equations remains the same and thus the same algo-
rithm can be applied. To this end, this analysis method
has two key requirements. The first is ensemble aver-
aging the various moments in Eq. 5 over multiple mea-
surements to reduce stochastic noise[25]. The second re-
quirement is that the ensemble averaged power spectra,
Pf = 〈XfX

∗
f 〉 ≈ 〈YfY ∗

f 〉, are stationary between the two
probe locations[21]. This assumption is justified by the
azimuthal symmetry of the discharge (Fig. 1).

As a last step before we can leverage experimental data
to solve the governing equations, we need an estimate
of the group velocity. While in principle we could de-
termine this group velocity directly from experimental
measurements of the dispersion, ω(ky), spatial aliasing
from the probe spacing precluded a direct measurement
of the wavenumbers of interest. We discussed this alias-
ing limitation at length in Ref. [18]. Ultimately, in this
previous work, we were able to conclude from an analysis
of the EDI resonances that the dispersion of the mea-
sured oscillations in the test article (Fig. 1) follows the
real component of the theoretical EDI dielectric response:
[11, 24]:

ε(1) = 1 + k2λ2
De + g(Ω, X, Y ) −

k2λ2
Deω

2
pi

(ω − kxvp)2
, (7)

where g(Ω, X, Y ) is the Gordeev function, Ω = (ω −
kyVd)/ωce, X = (k2

x + k2
y)ρ2, and Y = k2

zρ
2. Here VD

FIG. 2: (a) Dispersion relation of the EDI at the probe
location (b) Experimentally measured power spectra for

both probe locations. (c) Comparison between the
measured azimuthal growth rate γf(y) (left axis) and

the growth rate calculated from the dispersion relation
γf (right axis).

denotes the azimuthal electron drift, ωce is the electron
cyclotron frequency, ωpi is the ion plasma frequency,vp is
the axial ion beam velocity, λDe is the Debye length, and
ρ = Vthe/ωce is the electron Larmor radius at thermal
velocity Vthe =

√
Te/Me where Te is expressed in terms

of energy. To evaluate Eq. 7, we employed plasma pa-
rameters from previous studies of the test article: n0 =
8 × 1017m−3, ωce = 53 GHz, VD = 526 km/s, vp = 14
km/s, and Te = 15 eV[26]. Furthermore, we have as-
sumed an axial wavenumber number of kx = ky sin(15o)
based on estimates of the wave propagation angle[18, 27]
and a radial wavenumber of kzλDe = 0.03, where λDe is
the Debye length. This corresponds to a wavelength on
the order of the channel width [28–30].

Fig. 2a) shows the dispersion inferred from the solu-
tion of Eq. 7 using these experimental measurements of
background properties. The result is approximately lin-
ear with slight undulations at the cyclotron resonances:
ky = nωce/Vd, where n is the harmonic number. At
wavenumbers below the first cyclotron resonance (f < 2
MHz), the dispersion transitions to the so-called modi-
fied two-stream instability (MTSI) [4, 17]. We ultimately
used the dispersion shown in Fig. 2a) to infer the group
velocity in the azimuthal direction. Furthermore, when
used with our experimental data, we convert from a func-
tion of wavenumber, vg(k), to a function of frequency
vg(ω) through the dispersion relation (ω(k)). We also
convert the theoretical growth rate from wavenumber to
frequency space, γk −→ γf , for comparison with the mea-
sured growth rate using the same method.

We now turn to experimentally assessing the wave
properties of the EDI. For our investigation, we employed
the H9, a 9-kW class Hall effect thruster (Fig. 1) with
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FIG. 3: (a) Nonlinear transfer function |Q1,2
f |. (b)

Nonlinear power transfer function, Tf .

approximately 30 cm diameter and 15 cm depth. We op-
erated this system at a 300 V 15 A discharge on xenon
gas in a 6 m × 9 m vacuum facility. Base pressures
during testing, as measured in the plane of the thruster,
were 3 × 10−6 Torr-xenon. We used two ion saturation
probes with a separation of 1 cm, following the method
described in Ref. [18], to estimate oscillations in ion den-
sity. For the dispersion relation of the EDI [15] subject
to the Hall thruster plasma properties, it can be shown
that these density measurements are a proxy for poten-
tial oscillations: n̂i/ni0 ≈ φ̂/Te, where x̂ is the perturbed
density or potential.

We placed the probes 6 mm downstream of the thruster
exit plane, which was approximately 1-2 mm downstream
of the peak E ×B velocity. The probe signals were sam-
pled at 100 MHz for 2 mega-samples and then subdi-
vided into 2000 realizations for ensemble averaging. As
discussed in Ref. [18], this probing method relies on in-
serting an element into the plasma and thus may perturb
the measurement. While we cannot preclude the possi-
bility of probe-induced effects, we found thruster opera-
tion remained unchanged with probe insertion, and the
features of the EDI spectra persisted in the downstream
locations where probe perturbations are expected to be
less severe.

Leveraging these experimental methods, we first con-
sider the ensemble averaged power spectra, 〈XfX

∗
f 〉 and

〈YfY ∗
f 〉 at each probe location (Figure 2b). Both spec-

tra are characterized by broadband turbulence in the 100
kHz - 2 MHz range with discrete peaks spaced approxi-
mately 7 MHz in the high frequency range. We previously
showed that these peaks are correlated with cyclotron
resonances of the EDI [18]. The close correspondence
between the two power spectra also confirms the station-
ary assumption.

Figure 2c) shows the azimuthal growth rate calculated
from the adapted Ritz and Kim algorithm, γf(y), com-
pared to the growth rate predicted from the theoretical
dispersion relation, γf , determined from Eq. 7. This re-
sult is, to the authors’ knowledge, the first experimental
measurement of EDI growth in this type of crossed-field
device. We qualify this result by noting we did not at-

tempt to measure spatial gradients of the spectra in the
axial and radial directions—finite values of these may
lead to a difference in γf(y) and γf . Regardless, we find a
number of novel insights from the comparison of theory
and measurement. First, there is qualitative agreement
in the curve shapes—both trends exhibit peaked growth
at several of the same frequencies. This is physically intu-
itive as these frequencies correspond to the cyclotron res-
onances where energy is most efficiently extracted from
the plasma. Second, unlike the theoretical dispersion,
the measured growth exhibits a negative value at the fre-
quencies related to the MTSI (f ∼ 1.5 MHz). This ob-
servation is a departure from previous numerical studies
of the MTSI where active damping was not observed, e.g
[17]. Physically, our result suggests that the spectrum
loses energy to the plasma at this smaller frequency/
longer length-scale. This damping could be attributed to
a number of effects such as ion-neutral collisions or spa-
tial gradients in the plasma preventing the propagation
of long wavelength (low frequency) EDI/MTSI modes.
Third, the magnitudes of the experimentally-measured
azimuthal growth rates, γf(y), are an order of magnitude
smaller than the values inferred from the theoretical dis-
persion relation, γf .

We consider two limiting cases to interpret this last
result. The first scenario is if spatial growth in the axial
and radial directions is negligible, γf = γf(y). This is
plausible as the instability’s energy source is primarily in
the E×B direction. In this case, our result would suggest
there is a mechanism that maintains the shape of the the-
oretical growth but depresses the magnitude. Previous
numerical studies on the EDI, for example, have proposed
quasi-linear distortion of the electron distribution func-
tion by the waves may lead to such a result [8, 29]. As a
second interpretation, we consider the case where there
is finite spatial growth in the axial direction but neglect
radial growth by symmetry. In this case, it can be shown
that γf ≈ γf(y) +(vp/2)P−1

f ∂xPf—the total growth rate
is the combination of the measurement and a contribu-
tion dictated by axial convection of wave energy. Assum-
ing the typical gradient length-scales in the axial direc-
tion are on the order of 1 mm [18], the convective term
could dominate such that γf ≈ (vp/2)P−1

f ∂xPf . This
type of scaling, which is a major departure from linear
theory, is consistent with previous numerical investiga-
tions where it was suggested that after quasi-linear dis-
tortion occurs, wave convection may dictate the growth
[8, 29].

We next consider the nonlinear growth by showing in
Figure 3a) the magnitude of the nonlinear transfer func-
tion (|Q1,2

f |). The intensities in this result indicate the
degree to which the frequency combination, f1 and f2,
couples to a third mode at f1 ± f2. Negative frequen-
cies in Figure 3a) denote taking the difference between
f1 and f2. The near-zero amplitudes in the upper right
and lower left quadrants generally indicate that there
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is no coupling from lower to higher frequency modes:
|f1| + |f2| > f1, f2. There is an exception along the
line f1 + f2 = 45 MHz, but we suspect these results are
non-physical as the spectral content in this region ap-
proached the noise floor. On the other hand, the intensi-
ties are largest with clearly defined peaks in the top-left
and bottom-right quadrants and close to the -45◦ axis.
The content in these regions indicates strong coupling
from high to low order modes |f1|, |f2| > f . Physically,
the combination of trends in Fig. 3a) are indicative of an
inverse cascade where energy is nonlinearly coupled from
higher to lower frequency modes.

Fig. 3b) illustrates this inverse cascade explicitly by
showing the total nonlinear power transfer rate, Tf . The
negative peak at the high frequencies commensurate with
the cyclotron resonances (f = 5-10 MHz) indicates that
some of the energy that is linearly coupled into the
waves from the plasma(Fig. 2c) is then transferred away
through nonlinear processes. This energy is then de-
posited at the lower frequency range where the dispersion
transitions into the MTSI (f < 2 MHz). This transfer is
represented by the positive peak in Tf in this frequency
range. The energy then is removed from the spectrum
through linear damping (Fig. 2c). This experimental
interpretation agrees with recent simulations that sug-
gested the saturation of the EDI involves an initial linear
growth of high frequency resonances followed by a non-
linear inverse energy cascade[4, 17, 28]. Although, we
note that comparisons to simulation are only appropri-
ate for the final stationary state of the oscillations: our
method only resolves the saturated state and cannot de-
tect the different stages of evolution explored in Ref[17]
before the instability reaches saturation.

In summary, we have performed the first direct experi-
mental measurements of the nonlinear and linear growth
of the EDI in a Hall effect discharge. We have shown
that while the measured linear growth confirms the EDI
is driven unstable by cyclotron resonances, there are no-
table departures from simple linearized theory. We also
have found experimental evidence that a nonlinear energy
cascade to lower frequencies and larger length-scales ex-
ists. Both of these experimental insights have direct im-
plications for understanding the application-driven ques-
tion of how this instability interacts with the funda-
mental plasma state. Indeed, in order to approximate
“anomalous” wave-driven transport, we must know both
the effective growth rate and shape/magnitude of the
power spectra [14]. As numerical simulations and ex-
perimental results have previously suggested, however,
simple linear theory based on assuming a thermalized
distribution is not sufficient to capture the actual growth
rate[26]. Our experimental findings confirm this conclu-
sion.

With this in mind, the measurement of the growth
rate as a function of position in the plasma could lead
to simplified models of cross-field transport that would

enable predictive modelling of crossed-field devices. To
this point, one interpretation of our experimental results
is that the growth rate may simply depend on wave con-
vection. As was previously discussed in Ref. [29], this
assumption may be leveraged to identify simple closure
models. Finally, we remark that in order to make our
measurements, we have used a technique adapted from
previously derived bispectral analysis that is more con-
ducive for use in low temperature plasmas with smaller
devices. This same methodology, in principle, can be
extended to a wide range of systems beyond the EDI
to answer outstanding questions about the physics of
transport-inducing instabilities.
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Roberts and T. Marks of the University of Michigan for
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