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We report on measurements of sequential Υ suppression in Au+Au collisions at
√
sNN = 200 GeV

with the STAR detector at the Relativistic Heavy Ion Collider (RHIC) through both the dielectron
and dimuon decay channels. In the 0-60% centrality class, the nuclear modification factors (RAA),
which quantify the level of yield suppression in heavy-ion collisions compared to p+p collisions, for
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Υ(1S) and Υ(2S) are 0.40±0.03 (stat.)±0.03 (sys.)±0.09 (norm.) and 0.26±0.08 (stat.)±0.02 (sys.)±
0.06 (norm.), respectively, while the upper limit of the Υ(3S) RAA is 0.17 at a 95% confidence level.
This provides experimental evidence that the Υ(3S) is significantly more suppressed than the Υ(1S)
at RHIC. The level of suppression for Υ(1S) is comparable to that observed at the much higher
collision energy at the Large Hadron Collider. These results point to the creation of a medium at
RHIC whose temperature is sufficiently high to strongly suppress excited Υ states.

Keywords: STAR, heavy-ion collisions, Υ suppression

A primary goal of the Relativistic Heavy Ion Col-
lider (RHIC) is to create and study the properties of
the Quark-Gluon Plasma (QGP) [1–4]. Quantum chro-
modynamics (QCD) predicts that the confining poten-
tial of a heavy quark-antiquark pair is color-screened in
the QGP [5], leading to the dissociation of quarkonium
states. Such a static dissociation is expected to happen
when the quarkonium state size is larger than the Debye
screening length of the medium [6], which is inversely
proportional to the medium temperature. In addition,
dynamical dissociation, arising from inelastic scatterings
between quarkonia and medium constituents, can also
lead to quarkoninum breakup, whose impact becomes
more profound with increasing medium temperature and
for quarkonia of larger sizes [7–9]. Consequently, quarko-
nium states of different sizes suffer from different lev-
els of suppression in the QGP (“sequential suppression”)
compared to the vacuum expectation [8, 10, 11]. Heavy
quarkonia are therefore considered promising probes to
study the color deconfinement, in-medium QCD force,
and the QGP’s thermodynamic properties [12].

In heavy-ion collisions, sequential suppression of char-
monium states has been observed, with the yield of
the larger ψ(2S) mesons further reduced compared to
J/ψ [13–18]. Compared to charmonia, bottomonia
(Υ(1S), Υ(2S), and Υ(3S)), with Υ(1S) being the small-
est in size and Υ(3S) the biggest, provide a longer lever
arm in probing the QGP. According to lattice QCD cal-
culations based on a complex quark-antiquark potential,
the span of the dissociation temperature for the three
bottomonium states is about a factor of four larger than
that for the two charmonium states [8]. Furthermore,
bottomonia are considered cleaner probes than charmo-
nia since the regeneration contribution, originating from
deconfined heavy quark-antiquark pairs combining into
quarkonium states, is expected to be smaller for bot-
tomonia due to the smaller production cross section of
bb̄ quarks [19, 20]. When interpreting Υ measurements
in heavy-ion collisions, Cold Nuclear Matter (CNM) ef-
fects, arising from the presence of nuclei in the collision
but not related to the QGP, need to be considered [21–
23]. The CNM effects can be quantified through mea-
surements of Υ production in d+Au collisions at RHIC
[24], which show a hint of suppression for the three Υ
states combined.

Sequential suppression of the three Υ states has
been observed in Pb+Pb collisions at the LHC [25–27].
In Au+Au collisions at the center-of-mass energy per
nucleon-nucleon pair (

√
s
NN

) of 200 GeV [24] and U+U
collisions at

√
sNN = 193 GeV [28] at RHIC, previous

measurements revealed a hint of stronger suppression for
Υ(2S+3S) compared to Υ(1S) with a significance of less
than 1.5σ. To fully utilize the constraining power of
quarkonium sequential suppression on the QGP’s tem-
perature profile and modifications to the QCD force in
the QGP [12] at RHIC, differential measurements of
ground and excited Υ states separately with improved
precision are crucially needed.

In this Letter, we report the latest measurements of
the suppression of Υ(1S), Υ(2S) and Υ(3S) production
in Au+Au collisions at

√
sNN = 200 GeV. Υ mesons are

reconstructed through both dielectron and dimuon de-
cay decay channels. The suppression is quantified with
the nuclear modification factor (RAA), which is the ra-
tio of the quarkonium yield measured in nucleus-nucleus
(A+A) collisions to that in p+p collisions, scaled by
the average number of binary nucleon-nucleon collisions
(Ncoll). Results are presented as a function of the col-
lision centrality and the Υ transverse momentum (pT),
where central (peripheral) collisions correspond to incom-
ing nuclei most (least) overlapping with each other.

Subsystems of the STAR experiment [29] relevant
for this analysis are the Time Projection Cham-
ber (TPC) [30], the Barrel Electromagnetic Calorime-
ter (BEMC) [31] and the Muon Telescope Detector
(MTD) [32, 33]. The TPC is used for track reconstruc-
tion and particle identification (PID), while the BEMC
and MTD are used for triggering on and identifying elec-
trons and muons, respectively. The TPC and the BEMC
have a full azimuthal coverage within the pseudorapidity
range of |η| < 1. The MTD covers about 45% in azimuth
within |η| < 0.5. The Υ → e+e− analysis is performed
on a data set of Au+Au collisions corresponding to an
integrated luminosity of 2.3 nb−1, which was collected in
2011 with the BEMC trigger requiring the presence of a
single tower with transverse energy deposition above 3.5
GeV. Electrons with pT > 3.5 GeV/c are selected based
on their ionization energy loss (dE/dx) measured in the
TPC. Cuts on the ratio of energy deposition in BEMC
over associated track momentum (E/p), and on the posi-
tion differences along beam and azimuthal directions be-
tween matched BEMC tower and TPC track are applied
to further reject hadrons. For the Υ → µ+µ− analysis,
a sample of Au+Au collisions, recorded with the MTD
dimuon trigger in 2014 and 2016 and corresponding to
an integrated luminosity of 27 nb−1, is utilized. The
dimuon trigger requires the presence of two muon can-
didates, identified based on the particles’ flight time, in
the MTD. The leading muon is required to have pT above
4 GeV/c and the sub-leading above 1.5 GeV/c. Besides
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dE/dx, muon candidates are identified utilizing position
and timing information measured by the MTD [33, 34].

A Glauber model simulation is used for centrality clas-
sification [35]. The charged-particle multiplicity distri-
bution within |η| < 0.5 obtained from the simulation
is matched to the measured one at large multiplicity
values. The average number of participating nucleons
(Npart) and Ncoll are calculated for each centrality class,
and their uncertainties are evaluated by varying differ-
ent components of the Glauber model. Data are divided
into three centrality bins: 0-10%, 10-30%, and 30-60%,
as well as three Υ pT bins: 0-2 GeV/c, 2-5 GeV/c, and
5-10 GeV/c.
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FIG. 1. Invariant mass distributions of Υ candidates for 0 <
pT < 10 GeV/c reconstructed via the dimuon decay channel
within |y| < 0.5 (top) and the dielectron decay channel within
|y| < 1 (bottom). Unlike-sign and like-sign distributions are
shown as full and open circles, respectively. Solid lines are
fits to the unlike-sign distributions, while lines of other styles
represent individual components included in the fit. See more
details in the text.

The invariant mass spectra of the Υ candidates are
reconstructed via the dimuon decay channel within the
rapidity range of |y| < 0.5 and via the dielectron de-
cay channel within |y| < 1. Figure 1 shows the unlike-

sign lepton-pair distributions (full circles), along with
like-sign ones (open circles) which are used for deter-
mining the shape and magnitude of the combinatorial
background. An unbinned maximum-likelihood fit is per-
formed simultaneously on the unlike-sign and like-sign
distributions to obtain the raw yields for the three Υ
states. The lineshapes of the Υ mass peaks are deter-
mined from GEANT3 simulations [36] of the STAR de-
tector, in which the Υ → µ+µ− or Υ → e+e− decays
are embedded into Au+Au collision events, and recon-
structed in the same way as real data. The track mo-
mentum resolution in the simulation is further tuned to
match the J/ψ width as a function of pT reconstructed
using the same Au+Au data. The Υ(1S) peak widths
are 221 MeV/c2 and 129 MeV/c2 for the dimuon and
dielectron decay channels, respectively. The shape of
the correlated background from bb̄ decays and Drell-Yan
processes is determined with PYTHIA6 simulations [37]
incorporating realistic detector response, while its yield
is left as a free fit parameter. With current statistics,
no Υ(3S) signal is observed in either decay channel, and
therefore only the upper limits of Υ(3S) yields are esti-
mated with the Feldman-Cousins method [38] at a 95%
confidence level.

The TPC acceptance and tracking efficiency are deter-
mined based on aforementioned embedding sample. In
the Υ → e+e− analysis, the BEMC trigger efficiency is
evaluated using the same embedding sample while the
electron PID efficiency is estimated using a pure elec-
tron sample from photon conversions in real data. In the
Υ → µ+µ− analysis, a pure muon sample from J/ψ de-
cays is used to evaluate the muon PID efficiencies based
on dE/dx and the MTD timing information. The em-
bedding sample is used to estimate the additional PID
efficiency related to using the MTD position informa-
tion, and the MTD acceptance. The MTD response effi-
ciency, referring to the probability for a muon to generate
a signal in the MTD when hitting its active volume, is
obtained from cosmic-ray data [33]. The MTD trigger
efficiency, i.e. the fraction of muons surviving the trigger
cut on the flight time, is evaluated based on the flight
time distribution extracted from the p+p data taken in
2015. Since the MTD occupancy is very low even in 0-
10% central Au+Au collisions, the multiplicity difference
between p+p and Au+Au collisions is irrelevant for this
purpose [33].

Several sources of systematic uncertainty are consid-
ered. Variations in the signal extraction procedure, in-
cluding fit range, lineshapes of the mass peaks, combina-
torial and residual background shapes, are made and the
Root Mean Square (RMS) of these variations is taken as
the systematic uncertainty. For the dielectron (dimuon)
analysis, the resulting uncertainty ranges between 1.7-
4.2% (1.5-4.0%) and 2.1-8.3% (1.7-98%) for Υ(1S) and
Υ(2S) in different centrality and pT bins, and is 2.3 (4.9)
in absolute value for Υ(3S) yield integrated over pT in
0-60% centrality. Another major source of uncertainty
arises from efficiency corrections. For efficiencies evalu-
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ated based on the embedding sample, their uncertainties
are estimated by varying cuts in data analysis and simula-
tion simultaneously, correcting the raw yields, and taking
the RMS of the variations in the corrected yield as the
uncertainty. For efficiencies evaluated using data-driven
methods, statistical errors of the data samples are treated
as systematic uncertainties. Uncertainties in MTD re-
sponse and trigger efficiencies are estimated using the
same method as in [33]. The overall efficiency uncertain-
ties apply equally to all three Υ states, and they vary
from 3.7% to 19.8% (11.6% to 18.6%) depending on cen-
trality and pT for the dielectron (dimuon) analysis. Fi-
nally, the individual sources are added in quadrature to
obtain the total systematic uncertainties for the Υ yields.
When combining the dimuon and dielectron results, the
TPC tracking efficiency uncertainties are treated as fully
correlated while all other uncertainties are uncorrelated.

The reference Υ(1S+2S+3S) production cross section
in p+p collisions at the center-of-mass energy (

√
s) of

200 GeV is dσ
dy ||y|<0.5 = 75± 15 pb, obtained by combin-

ing STAR and PHENIX measurements [24, 39, 40]. The
cross sections of individual Υ states are calculated based
on the total cross section and their yield ratios from world
data [41]. To obtain the reference cross sections in dif-
ferent pT bins, the measured Υ pT spectra at different
collision energies [25, 42–44] are parameterized with the
functional form C × pT/(epT/T + 1) [28], where C is a
normalization factor and T is the shape parameter. The
dependence of T on log(

√
s) is fit with both a linear and

a power-law function, and the average interpolated T val-
ues at

√
s = 200 GeV from the two fits, i.e., 1.40± 0.06

GeV/c and 1.51± 0.10 GeV/c for Υ(1S) and Υ(2S), are
obtained. Systematic uncertainties arise from the uncer-
tainties on the measured Υ spectra and the functional
form used for interpolation.

The RAA of individual Υ states in Au+Au collisions at√
sNN = 200 GeV is obtained by combining results from

dimuon and dielectron decay channels using the inverse
of the quadratic sum of statistical errors and uncorrelated
systematic uncertainties as weights, since the results from
the two analyses are consistent despite the different ra-
pidity coverages. Similarly, no strong dependence of Υ
RAA on rapidity within |y| < 1 is observed at the LHC
[26].

Figure 2 shows the RAA of Υ(1S) and Υ(2S) as a func-
tion of Npart in three centrality intervals. The global un-
certainties, shown as bands at unity and fully correlated
among different Υ states, originate from the relative un-
certainties of the reference p+p yields. Both Υ(1S) and
Υ(2S) are suppressed in all three centrality intervals with
a hint of increasing suppression from the 30-60% to the
0-10% centrality bin, consistent with the expected in-
creasing hot medium effect towards central collisions. In
the 0-60% centrality class, the upper limit of the Υ(3S)
RAA with a 95% confidence level is estimated to be 0.17.
Υ(3S) is significantly more suppressed than Υ(1S), given
that even the upper limit of Υ(3S) RAA at a 99% confi-
dence level, i.e. 0.26, is still lower than the Υ(1S) RAA
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0-60%

FIG. 2. Left: Υ(1S) (circles) and Υ(2S) (squares) RAA as a
function of Npart for pT < 10 GeV/c. Data points for Υ(2S)
are displaced horizontally for better visibility. The vertical
bars on data points indicate statistical errors, while the sys-
tematic uncertainties are shown as boxes. Shadowed bands
around each marker depict the systematic uncertainties from
Ncoll. The bands at unity indicate the global uncertainties.
Right: RAA for various Υ states, including the 95% upper
limit for Υ(3S), in 0-60% Au+Au collisions.

of 0.40 ± 0.03 (stat.) ± 0.03 (sys.) ± 0.09 (norm.). Here,
the normalization uncertainty includes uncertainties in
p+p reference and Ncoll. A hint is seen that the level of
suppression for Υ(2S), whose RAA is 0.26±0.08 (stat.)±
0.02 (sys.) ± 0.06 (norm.), is between Υ(1S) and Υ(3S).
These results are consistent with a sequential suppression
pattern, similar to that observed at the LHC [26].

The Au+Au results are compared to similar measure-
ments in Pb+Pb collisions at

√
s
NN

= 5.02 TeV [26] in
Fig. 3. Υ(1S) exhibits a similar magnitude of suppres-
sion at the two collision energies that differ by about a
factor of 25, while there is a hint that the Υ(2S) might
be less suppressed at RHIC in peripheral collisions even
though the STAR and CMS measurements are consis-
tent within uncertainties. It is plausible that the sup-
pression of inclusive Υ(1S) arises mainly from the sup-
pression of excited states that feed down to Υ(1S) [45]
and the CNM effects [24, 46, 47], while the primordial
Υ(1S) are not significantly suppressed in the QGP in
both 200 GeV Au+Au and 5.02 TeV Pb+Pb collisions.
Figure 3 also shows the comparison between data and
two calculations based on Open Quantum System (OQS)
plus potential Non-Relativistic QCD (pNRQCD) [48–
50] and a transport model [20]. The OQS+pNRQCD
model solves a Lindblad equation for the evolution of
the quarkonium reduced density matrix using the pN-
RQCD effective field theory [50]. Correlated regenera-
tion and feed-down contributions from excited states are
included, but the CNM effects are not. Systematic uncer-
tainties stem from variations in the transport coefficients
suggested by lattice QCD calculations. The transport
model employs a temperature-dependent binding energy,
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FIG. 3. Υ(1S) (top) and Υ(2S) (bottom) RAA as a function of
Npart for pT < 10 GeV/c, compared to similar measurements
in Pb+Pb collisions at

√
sNN = 5.02 TeV (open symbols), as

well as model calculations (bands). The two bands at unity
indicate the global uncertainties with the left one for CMS
and the right one for STAR.

and uses a kinetic rate equation to simulate the time
evolution of bottomonium abundances including disso-
ciation and regeneration contributions. Both feed-down
and CNM effects are taken into account, and the model
uncertainties arise from the range of CNM effects guided
by data [24]. For the Υ(1S) RAA, both models are con-
sistent with the STAR and CMS measurements within
uncertainties even though the STAR data seem to be
systematically below the model calculations. For Υ(2S),
model calculations are also consistent with data.

Figure 4 shows the RAA for Υ(1S) and Υ(2S) as a
function of pT. No significant dependence on pT is ob-
served. The OQS+pNRQCD and transport model cal-
culations, which predict little pT dependence, are shown
for comparison. The measurements are also compared to
a model that uses a set of coupled Boltzmann equations
to simultaneously describe the in-medium evolution of
heavy quarks and quarkonia in the QGP [51]. It incor-
porates elastic and inelastic scatterings of heavy quarks
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FIG. 4. Υ(1S) (top) and Υ(2S) (bottom) RAA as a function of
pT in the 0-60% centrality class, compared to different model
calculations. The boxes and brackets around the data points
represent systematic uncertainties from Au+Au analysis and
p+p reference, respectively. The band at unity shows the
uncertainty in Ncoll.

with medium constituents, as well as quarkonium dissoci-
ation and regeneration. The dominant uncertainty arises
from the estimation of CNM effects. The model calcula-
tions are consistent with data within uncertainties. The
Heidelberg model [52], which includes a QCD-inspired
complex potential, an explicit treatment of gluon-induced
dissociation and reduced feed-down from higher states,
overshoots data, partly due to the lack of CNM effects.

In summary, we report the measurements of Υ
production in Au+Au collisions at

√
sNN = 200 GeV

via both the dielectron and dimuon decay channels with
the STAR experiment. The RAA for Υ(1S) and Υ(2S)
is measured as a function of collision centrality and
pT, while an upper limit is derived for the Υ(3S) RAA

integrated over centrality and pT. The results in the
0-60% centrality class are consistent with the sequential
suppression pattern, namely that the Υ(3S) is signifi-
cantly more suppressed than the Υ(1S) and the Υ(2S)
RAA lies between those of Υ(1S) and Υ(3S). No clear pT
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dependence of the suppression is observed for Υ(1S) and
Υ(2S). The magnitude of the Υ(1S) suppression at RHIC
is comparable to that measured at the LHC. Model
calculations are consistent with data within the uncer-
tainties, although a larger Υ suppression is predicted
at the LHC. Results presented in this paper can help
further constrain model calculations on bottomonium
suppression in heavy-ion collisions, and improve our
understanding of the in-medium heavy quark-antiquark
potential and thermodynamic properties of the QGP at
RHIC.
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