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We show that effectively cold metastable states in one-dimensional photo-doped Mott insulators
described by the extended Hubbard model exhibit spin, charge and n-spin separation. Namely,
their wave functions in the large on-site Coulomb interaction limit can be expressed as |¥) =
| W charge) | Wspin)| Un—spin), which is analogous to the Ogata-Shiba states of the doped Hubbard model
in equilibrium. Here, the 7-spin represents the type of photo-generated pseudoparticle (doublon
or holon). |Wcharge) is determined by spinless free fermions, |Uspin) by the isotropic Heisenberg
model in the squeezed spin space, and |¥,_spin) by the XXZ model in the squeezed n-spin space.
In particular, the metastable n-pairing and charge-density-wave (CDW) states correspond to the
gapless and gapful states of the XXZ model. The specific form of the wave function allows us to
accurately determine the exponents of correlation functions. The form also suggests that the central
charge of the n-pairing state is 3 and that of the CDW phase is 2, which we numerically confirm.
Our study provides analytic and intuitive insights into the correlations between active degrees of

freedom in photo-doped strongly correlated systems.

Introduction— Doping charge carriers into strongly cor-
related insulators provides a pathway to produce intrigu-
ing emergent phenomena such as high-T, superconduc-
tivity [1, 2]. In equilibrium, the doping concentration
can be chemically controlled. An alternative nonequilib-
rium way of introducing charge carriers is photo-doping,
where electrons are excited across the gap [3-7]. The
photo-doping of Mott insulators creates novel pseudopar-
ticle excitations such as doublons and holons (in the
single-band case), while the equilibrium system can host
only one type of charge carrier. Such additional de-
grees of freedom can lead to intriguing properties and
nonthermal phases. Important examples include photo-
induced insulator-metal transitions [8-13] and charge
density waves [14-16], and the control of magnetic [17, 18]
and superconducting orders [19-26].

In systems with a large Mott gap, the life-time of the
photo-doped pseudoparticles becomes exponentially en-
hanced [27-33]. In such a situation, an intraband cool-
ing of the photo-doped pseudoparticles may occur, while
their density remains approximately constant. This re-
sults in a metastable steady state (a pseudoequilibrium
state) [19, 34-41], analogous to the case of photo-doped
semiconductors [42-44], see Fig. 1(a). It has been shown
that such metastable states can host unique phases such
as n-pairing [38, 40], chiral superconducting phases [45],
and exotic spin/orbital orders [18, 39, 46]. Since different
types of charge carriers are present in photo-doped sys-
tems, it is crucial to understand the correlations between
the active degrees of freedoms. However, the metastable
states of photo-doped strongly correlated systems have
been mainly studied numerically so far [34—41, 47], and

analytical or intuitive insights are limited.

Here we reveal the nature of the metastable states and
the correlations between the active degrees of freedom in
photo-doped one-dimensional Mott insulators. We show
that the wave functions of the metastable states in the
limit of large on-site Coulomb interaction exhibit spin,
charge and 7-spin separation, see Fig. 1(b). The n-spin
represents the type of pseudoparticle: doubly occupied
site (doublon) or empty site (holon). Our results provide
a comprehensive understanding of the character of the
photo-induced metastable phases in one-dimensional sys-
tems and reveal the similarities and differences between
photo-doped and chemically-doped systems.

Results— We focus on the one-dimensional extended
Hubbard model,

H = —thop Z(é;r,aéi-‘rl,a +h.c)+ Hy + Hy, (1)

1,0

and assume that electrons are excited across the Mott
gap via photo-excitation. Similar setups can be consid-
ered with cold atoms [19]. Hy = U Y, (fip—3) (R —3) is
the on-site interaction and Hy =V 32, (f; — 1) (f1iy1 — 1)
is the nearest-neighbor interaction. el

. is the creation
operator of a fermion with spin o at site i, n;, = éZTUéw,
My = Mgy + Ny, and tyep is the hopping parameter. When
the Mott gap is large enough, the recombination time of
the created doublons and holons becomes exponentially
long [27-32]. Thus, intraband relaxation due to scatter-
ing events and coupling to the environment is expected to
bring the system into a (intraband thermalized) steady
state with a fixed number of doublons and holons, see
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FIG. 1. (a) Schematic picture of the photo-doing and in-
traband cooling processes that result in a metastable state
of the large-gap Mott insulator. UHB (LHB) stands for up-
per (lower) Hubbard band. (b) The wave function of the
metastable state in the limit of U — oo can be expressed as
a direct product of the charge wave function, the spin wave
function in the squeezed space and the n-spin wave function
in the squeezed space. The green shaded circles in the charge
wave function represent spinless fermions, while “h” and “d”
stand for a holon and a doublon, respectively.

Fig. 1(a). As previously discussed, such a quasi-steady
state can be described with the effective Hamiltonian ob-
tained by a Schrieffer-Wolff transformation [48] from the
original Hamiltonian (1) [19, 34-40, 47], see also the Sup-
plemental Material (SM) [49]. This effective Hamiltonian
explicitly conserves the number of doublons and holons.
Up to O(ty,,/U), it takes the form

f{eff :I:IU + I:Ikin + ffv

+ Hspin,ex + Hdh,ex + HU,shift + H3—site; (2)
where f{kin = —thop Z(i,j),a ﬁiﬁ(éz)aéj’a + h.C.)ﬁjﬁ —
thop Z<i7j>7a m’&(éj’aéj,a + h.c.)f; 5 represents the hop-
ping of a doublon or a holon, & is the opposite spin of
o, and ﬁi’g = 1 — 7. The other terms are propor-

tional t0 Jox = 5. Hypinex = Jex 50 8 - 87 is the
—Jex 2243y T +
n{ny + nin7] is the exchange term for doublons and
holons on neighboring sites. Here the spin operators
are § = %Za,lﬁmi el oapés with o denoting the Pauli
matrices, and we introduced the n-spin operators as
i = (=)iel el iy = (=)ienéy and 7F = §(A; —1) [50-
52]. HU7shift describes the shift of the local interaction

spin exchange term, and Hgn.ex =

and Hj3_ e represents three-site terms such as correlated
doublon hoppings, see SM [49]. In equilibrium (without

doublons), the model corresponds to the ¢-J model when
Hj_ e is neglected [53]. In the following, we denote the
model without Hg_site by ﬁegg. When V = 0, H, Hog
and Hcf-}'Q host an SU(2) symmetry of the doublon-holon
sector [50, 54] that corresponds to the spin SU(2) sym-
metry via a particle-hole (Shiba) transformation [55].

We consider an effectively cold system with arbitrary
filling, whose state is described by the ground state of
the effective Hamiltonian for a given number of dou-
blons and holons, i.e., we assume that the system is ther-
malized into the lowest energy state for the given con-
straint. We show that the corresponding wave function
can be expressed as the direct product of the charge,
spin and 7-spin wave functions in the limit of Jex — 0
with V/Jex = const, similar to the Ogata-Shiba state of
the doped Hubbard model in equilibrium [56, 57]. To be
more specific, we set the system size to L and the number
of singly occupied sites to N, so that the number of dou-
blons and holons (the number of 7 spins) is N,, = L — N,.
Now we introduce the Hilbert space

H = {In)lo)m) = (] &) vachlo) m)

rer

. #r = #0 = N, and #n:Nn}. (3)

Here r, o and 1) are sets of space, spin and 7-spin indices,
¢l is a creation operator of a spin-less fermion (SF), and
# indicates the number of elements. 7 takes the values
torlandr = {rn., - ,m}with L >ry, >ry_1>

- > r; > 1. We identify this Hilbert space with the
original Hilbert space using the unitary transformation
U :H — H defined by

U (( ﬁ o) 1:[ it ) |vac>> = (TI &) lvac)ler) ).
(4)

i=1

Here, v = {771\[”,”'771} with L > FNT, > FN,,—l > e >
F > 1, rUF = {LL—1-,1} al . = (=)l el
and dl = 1. With this identification, |r) is the ba-
sis of SF and |o) (|n)) is the basis of the squeezed spin
(n-spin) space. Note that the n-spin configuration rep-
resents the sequence of doublons and holons. As shown
below, Hamiltonians ruling the ¢ and n spaces are not
fully symmetric due to the staggering of the doublons.

The wave function in the limit of J,, — 0 can be
constructed by degenerate perturbation theory [57]. For
Jex = V =0, the eigenstates of fleff are degenerate with
respect to the configurations of spins and 7-spins. This
is because fIkin never exchanges the positions of spins or
those of doulons and holons. Specifically, one can show
that UHanUt = —tnop 355 (El¢; + hc) (= Hosp).
This means that in the representation of H’ the ground
state for Jox = V = 0 can be described as |[V$2)| ¥, ),



where |USS) is the ground state of Hy sr and |¥, ) is an
arbitrary spin and 7-spin wave function. The remaining
spin/n-spin degeneracy of 2™Vs - 27 is lifted by the terms
of O(Jex). Within lowest-order degenerate perturbation
theory, the wave function of the spin and 77 spin is ob-
tained by the O(Jex) terms projected to [WSS)|o)|n). 1

the resultant projected Hamiltonian, the squeezed spin
and 7-spin spaces are decoupled, and the corresponding
Hamiltonians become (SQ stands for squeezed space)

(S
spg) - ZS'LJrl Sz,
r(SQ AT AT ~ ~ ~ ~
Hr(] sp)nn = 7‘];7( Z nj-l—lnj + 77;!+1773y) + Jg an+177;7
J J
with J5, = (2 —3")Jex, Jy% = (§—§')Jex and J} = —(§—

7 )Jex+49V . Here &,%,§ and § are the renormalization
factors determined by |\IISFS> With ng = Ny/L and n,, =

N, /L and in the limit L — oo they can be expressed as

. sin?(mns) ., sin(27ng)  sin?(mng)
T=mns— 3 , T = — 5
TN, 2T T™ng
. sin®(7n,) ., sin(2mn,)  sin®(mn,)
= M, — = —_ .
Y="Tm w2n, Y 27 m2n,

Here & and g are the contributions from the 2-site terms
of O(Jex), while ' and ¢ are those from the 3-site terms.

Note that H ,(] (%I))Hl becomes the ferromagnetic Heisenberg
model (J% = —J} > 0) for V.= 0. Thus, the wave

function (in H') takes the form
|0) = [WER) W= [)®), (5)

where |UGS) is the ground state of 8V and (WES) s

spin
that of H 7(7822,111 For more details, see SM [49]. The form
of |U§R) and |¥S®) is independent of the ratio of dou-
blons and holons, and, in particular, these states are the
same as those in the equilibrium doped Hubbard model
at the doping level nnoles = nyy [56, 57]. This implies that
the effects of photo-doping and chemical doping on the
spins are essentially the same, which is consistent with
previous numerical analyses [40, 58, 59].

Now we focus on half filling and discuss the implica-
tions of the exact form of the wave function for the origin
of the different phases. The 5-spin sector hosts the phase
transition between the gapless and gapful phases of the
XXZ model, which is controlled by the ratio between
Jex and V. As seen below, these states are character-
ized by the behavior of the correlation functions of the
n-spins, i.e. Xpa(r) = (1*(r)7*(0)). Namely, the gapless
phase corresponds to the 7-pairing phase, where the pair
correlation X,_pair = Xp,« 1S dominant. On the other
hand, the gapful phase corresponds to the CDW phase,
where the charge correlation Xcharge = X7, is dominant.
True long-range order (LRO) is realized at V = 0 for
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FIG. 2. Phase diagram of the photo-doped one-dimensional
Mott insulator described by I:Ieff in the limit Jex — 0. The
phase boundary (black solid line) corresponds to an SU(2)
symmetric point of H(Scjg)m, ie. V/Jex = ;y The horizon-
tal dashed line indicates the phase boundary for the system

described by f]eﬁg .

the n-pairing phase [60], while a LRO CDW is realized
at n, =1 and V > % Apart from these limits, we
have quasi-long-range orders (power law decay of correla-
tions). Note that the appearance of n-pairing in nonther-
mal states has been recently discussed [22, 26, 38, 61-63]
in relation with the photo-induced superconducting-like
phases [20, 64—67]. Furthermore, we emphasize that LRO
is realized in the squeezed 7-spin space for the CDW
phase, which is reminiscent of the string order in the
Haldane phase [68]. The phase transition occurs at the
SU(2) point of HT(, Sl)jm (J% = J} > 0), see Fig. 2. For
Hegy (without Hs_ o), A(= J2/J%) and thus the phase
boundary are independent of the filling, which consis-
tently explains a previous numerical result [40]. On the
other hand, for Heg, the ratio A depends on the filling
due to the effects of the 3-site term ¢. In particular, the
3-site term is found to favor the n-pairing phase.

The exact form of the wave function allows us to
evaluate the asymptotic behavior of the correlation
functions analytically or numerically. Here we ex-
tend the analyses for spin correlations of the equilib-
rium Hubbard model [69, 70]. Since the spin corre-
lations of the metastable state are the same as those
for the equilibrium Hubbard model, i.e. (§%(r)§%(0))
cos(mngr)r=2(Inr)2, we focus on the 7-spin correlation
functions x; (). Note that despite the apparent simi-
larity between the squeezed spin and 7 space there are
crucial differences in the pairing correlations. Using ex-
pression (5), the correlation functions are expressed as

r4+1

Xn.al Z Qp(m)Xx SV (m —1). (6)

Here Q%p(m) = (noni,6(3.,_y 7 — m))sr, which is de-
termined by |P§S), is the probability that the sys-
tem has m doublons or holons in [0,r]. Xﬁ,sf?)( ) =

(N*(m)7*(0))n—spin,squeezed is the correlation function in
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FIG. 3. (a)(b) Asymptotic behavior analytically obtained
for (a) Xcharge and (b) Xyn—pair. The dashed line at A = 1
in (a) is the boundary of different expressions. The thick
green line corresponds to the SDW, the thick blue line to the
CDW with LRO and the thick red line to the n-pairing phase
with LRO. (c)(d) Numerically evaluated correlation functions
for (c) the m-pairing phase and (d) the CDW phase using
Eq. (6) and the iTEBD results for the XXZ model (blue cir-
cles). The corresponding points are indicated with crosses in
panels (a)(b). We also show the correlations estimated by
the conjecture xn—pair ~ n%xg,sw(rnn) as well as the fit with

_ _1la
Cir72 + Cor™2 " @ cos(mny,r).

the squeezed n-spin space. Numerically, Q%p(m) and
XS,?(?) (m) can be efficiently evaluated in the thermody-
namic limit. We use the expression for the Fourier com-
ponents and perform an inverse Fourier transformation to
obtain Q%p(m) [49, 70], while the infinite time-evolving

block decimation (iTEBD) [71] for the XXZ model can

be used to calculate X,(ﬁg)(m). Moreover, we can also
gain analytic insights using the knowledge of the asymp-
totic behavior of the correlation functions of the XXZ
model [72-74] and the moments of Q5x(m) up to the
second one [69]. The former can be expressed with
a=1- %arccos(A), which is a control parameter of
the Tomonaga-Luttinger liquid, and the latter indicates
that most of the weight of Q5 (m) is at rn,. From these
facts, if the asymptotic form of X%SQ) (m) is (=)™ f(m)
with f(m) being a smooth function, one can prove that

r+1 r+1
Y Qip(m) (=)™ f(m) = { > Qgp(m)()m}f(< )-

)
(7)

(SQ)

Here (m) = n,r + 1. If x5 % (m) ~ f(m), the equa-
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FIG. 4. Central charge of the ground state of Heg for Jox =
0.4 and the indicated values of n,. To evaluate the central
charge, we apply Eq. (8) to the iTEBD results with D €
[200, 1600]. The red shaded area indicates the stability region
of the n-pairing phase for Jex — 0, while the blue shaded area
shows that of the CDW phase. The inset plots the relation
between Sk and £p and the corresponding linear fits.

tion without (—)™ is satisfied. See SM for the detailed
meaning of the equality ~ and the derivation. Since

we have {327 Qrp(m) (=)™} « M [69, 75] and

Z:::lz QLp(m) = n? (in leading order in r), one can ob-
tain the asymptotic form of the correlation functions.
Equation (7) shows that the decay of n-spin correla-
tions in real space originates from that in the squeezed
space and the contribution from the intercalated singly-
occupied sites. The latter is determined by |USS), and
has a different impact depending on whether the corre-
lation functions in the squeezed space are staggered or
not. In particular, the pairing correlation is not affected
by the SF background, while the charge correlations can
be affected like the spin correlations.

The asymptotic forms obtained analytically for Xcharge
and Xp—pair are summarized in Figs. 3(a)(b). The magni-
tude relation of the exponents of these correlation func-
tions changes at the SU(2) point of fffls_cszl))in. Note that
this SU(2) symmetry is an emergent symmetry in the
squeezed space, which is absent in the original Hamilto-
nian. For 0 < n, < 1, Xcharge Shows an exponent of 1/2
in the CDW phase due to the contribution from the SF
part, although it shows LRO in the squeezed space. On
the other hand, the analytic argument based on Eq. (7)
does not allow to make exact statements for the com-
ponents decaying faster than O(I;‘—;) To analyze this
point, we numerically evaluate the correlation functions,
see Figs. 3(c)(d). Firstly, our results verify the con-
jecture Xy —pair(1) =~ n%xgﬁg)(rnn) and its applicability
even in the CDW regime, where X, _pair(r) decays expo-
nentially, see Fig. 3(c). Secondly, Fig. 3(d) shows that
Eq. (7) is practically applicable for the leading and the
sub-leading terms of Xcharge decaying faster than O(I;‘—{),
. 1 1
i.e. Xcharge(r) = C1772 + Cor™2~a cos(mn,r).



The expression (5) also provides valuable insights into
the physical nature of the metastable phases. One im-
portant quantity that characterizes one-dimensional sys-
tems is the central charge (¢), which counts to the num-
ber of gapless degrees of freedoms [72]. In equilibrium,
the doped Hubbard model exhibits ¢ = 2, because of
the massless modes both in the spin and charge sec-
tors [76, 77]. On the other hand, the exact form of the
wave-function (5) suggests that the metastable state pos-
sesses three degrees of freedoms. The wave functions of
the charge and spin sectors are those of gapless states
(i.e. doped free fermions and the isotropic Heisenberg
model), while that of the n-spin sector corresponds to
the gapless state or the gapful state of the n-XXZ model
for the n-pairing state and the CDW state, respectively.
Thus, one naturally expects that ¢ = 3 in the n-pairing
state and ¢ = 2 in the CDW state. To confirm this, we
perform iTEBD simulations on the effective model Heo
for various cut-off dimension (D) and extract ¢ from the
relation [78]

Sp = gln(fD) + so. (8)

Here Sg is the entanglement entropy, s¢ is a constant
and £p is the correlation length evaluated from the
second-largest eigenvalue of the transfer matrix, see SM.
In Fig. 4, we show the central charge for ﬁefo with
Jox = 0.4, which is extracted using Eq. (8) and the lin-
ear fit of the iTEBD results [see the inset of Fig. 4]. The
results indeed confirm the above expectation. We empha-
size that the emergence of a ¢ = 3 state in the Hubbard
model is hardly expected in equilibrium and reflects the
metastable nature of the state.

Conclusion— We showed that the additional degrees of
freedom activated by photo-doping lead to peculiar types
of quantum liquids absent in equilibrium. In particular,
we revealed the intriguing structure of the correlations
between active degrees of freedom in photo-doped one-
dimensional strongly correlated systems, i.e. the spin-
charge-n-spin separation. Our results open a new avenue
for studying metastable states in one-dimensional sys-
tems and raise interesting questions. Firstly, in contrast
to the equilibrium Hubbard model, the weak coupling
regime is not well-defined, and the relation between the
lattice model and the corresponding conformal field the-
ory is not clear. Construction of the field theory for the
metastable states is an important future task. Secondly,
we provide a rigorous basis for the future development
of a bosonization approach [79, 80]. With such an ap-
proach, one can better understand the spectral features
of the photo-doped systems and the implications of the
spin-charge-n-spin separation for dynamical properties.
Thirdly, various concepts developed for one-dimensional
systems in equilibrium can be extended to understand
the physics of metastable states. For example, extending
the spin incoherent Luttinger liquids [81] may be help-

ful for understanding effectively cold, but not ultracold
systems.

Finally but not least, our analytical and intuitive in-
sights provide a useful reference for the study of photo-
doped Mott insulators in higher dimensions, where the
separation of spin, charge and n-spin is not expected, but
a crossover from high-dimensional to one-dimensional be-
havior can occur in anisotropic systems.
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