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We propose and study a two-dimensional (2D) phase of shifted charge density waves (CDW),
which is constructed from an array of weakly coupled 1D CDW wires whose phases shift from one
wire to the next. We show that the fully gapped bulk CDW has topological properties, characterized
by a nonzero Chern number, that imply edge modes within the bulk gap. Remarkably, these edge
modes exhibit spectral pseudo-flow as a function of position along the edge, and are thus dual to the
chiral edge modes of Chern insulators with their spectral flow in momentum space. Furthermore,
we show that the CDW edge modes are stable against inter-wire coupling. Our predictions can be
tested experimentally in quasi-1D CDW compounds such as Ta2Se8I.

An insightful way to think about quantum Hall phases
is in terms of an array of weakly coupled 1D sliding Lut-
tinger liquids (SLL) [1–4]. Each SLL consists of gapless
excitations around its Fermi points k0 ± kF, where the
origin in momentum space k0, is a priori a gauge choice.
When coupling identical wires that are displaced in x-
direction and extend along y-direction, the difference δk
between their respective k0 is an observable proportional
to the flux density (i.e., perpendicular magnetic field) be-
tween them [Fig. 1(a)]. A wire array built in this way is
then akin to a sequence of Luttinger liquids with disper-
sions displaced by k0(x) = xδk. Weak coupling between
the wires opens a spectral gap in the bulk and the system
enters a quantum Hall phase with chiral edge modes and
quantized Hall conductivity [Fig. 1(b,c)].

In this work, we contrast this construction of a topo-
logical phase from a SLL with a construction of a 2D
phase of shifted charge density waves (CDW). The CDW
modulation in a 1D wire can be characterized by a po-
tential such as cos(Qyy + φ0), where Qy is the CDW
wavevector and φ0 is a phase that, in the case of break-
ing a continuous translation symmetry, is associated with
the Goldstone mode of the CDW. In contrast to k0 in
the SLL, φ0 is not a gauge freedom of the 1D system,
but determines the real-space origin of the charge den-
sity pattern. Our objective is to study the properties of
an array of weakly coupled CDW wires whose phases are
shifted as φ0(x) = Qxx [Fig. 1(d)]. Remarkably, we find
a duality between the edge modes of the coupled SLL
and shifted CDW: On a ribbon geometry, the former has
edge modes with spectral flow as a function of momentum
along the edge, while the latter has edge modes with spec-
tral pseudo-flow [5] as a function of position [Fig. 1(e,f)].
Moreover, we show that the CDW edge modes are sub-
stantially robust against inter-wire coupling.

Our study is not purely theoretically motivated, but

aims to model the key aspects of the CDW compound
Ta2Se8I. In line with the shifted CDW picture, Ta2Se8I
consists of TaSe4 chains weakly coupled by van der Waals
interactions. It is known to undergo a CDW transi-
tion at TCDW ≈ 260 K [6–12, 15], developing a sizable
gap that experiments determined to be between 100 and
500 meV, with a small ordering wavevector that amounts
to (Qx, Qz) ≈ (0.054π/a, 0.098π/c), where c and a are
lattice constants [12, 13]. Recent studies highlighted a
multitude of Weyl nodes that are induced through spin-
orbit coupling in the low-energy electronic structure of
Ta2Se8I above TCDW and their implications for possible
axion physics in the CDW phase [11, 12]. However, ex-
perimental evidence for a 3D topological (axionic) nature
of the CDW state is lacking [13]. Here, we advocate a
much simpler model of a shifted CDW phase for Ta2Se8I,
for which spin-orbit coupling is unimportant. Our theory
makes the experimentally testable prediction of boundary
states at certain surfaces or step edges of this material.

We start by defining a minimal model on a 2D rect-
angular lattice in the presence of a CDW modulation,
H = H0 +HCDW with

H0 =
1

2

∑
r

(
tyΨ†r+ŷσzΨr + txΨ†r+x̂σzΨr + h.c.

)
, (1)

where Ψ†r = (c†α,r, c
†
β,r) with c†σ,r creating an electron at

orbital σ ∈ {α, β} and position r = (x, y). x̂ and ŷ
are primitive vectors in x- and y-directions, respectively,
(σx, σy, σz) are Pauli matrices for orbital, and h.c. stands
for Hermitian conjugate. We assume that the two or-
bitals have hopping amplitudes with opposite signs and
they do not couple via on-site or nearest-neighbor hop-
ping terms if x → −x and y → −y mirror symme-
tries above TCDW are imposed. This can be satisfied,
e.g., when the orbitals are of s and dxy types, respec-
tively. Alternatively, we can rotate the Pauli matrices as
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Fig. 1. Duality between the coupled SLLs (left) and shifted
CDWs (right). (a) Schematic of the coupled SLLs. It leads to
a Chern insulator. The dashed lines separate areas with unit
magnetic flux Φ0. (b) Chiral edge modes (red) with energies
in the bulk gap (black) of the Chern insulator, which exhibit
spectral flow as a function of momentum kx along the edge.
(c) Chiral edge modes in position space, which are translation
invariant along the edge. (d) Schematic of the shifted CDW.
The phases of the wires shift with x-position, as depicted by
the varying background color. (e) CDW edge modes with
energies inside the bulk CDW gap, which are dispersion-free
in kx. (f) CDW edge modes in position space, which exhibit
spectral pseudo-flow as a function of x along the edge.

(σx, σy, σz)→(σz, σy, σx) and reinterpret them in sublat-
tice space. In this case, the two sublattices are assumed
to be identical due to the mirror symmetries above TCDW.
For concreteness, we consider the orbital interpretation
in the following.

The model (1) can be viewed as an array of 1D parallel
wires that are displaced in x-direction and extend along
y-direction. Accordingly, ty and tx are hopping strengths
along and between the wires, respectively [Fig. 1(d)].
Without CDW, the model is gapless with band crossings
protected by the symmetries. The energy bands read
ε±(k) = ±(tx cos kx + ty cos ky), where k = (kx, ky) is
the 2D momentum. The lattice constants are taken to
be unity. We will focus on the regime 0 6 tx < ty,
such that the model approximates the relevant electronic
structure of Ta2Se8I. The bands cross around two points
(i.e., ky = ±π/2) along ky-axis and the Fermi surfaces
take ribbon shapes in kx-ky plane, in agreement with
those observed in Ta2Se8I [10, 14, 16]. We will consider
a more realistic model for Ta2Se8I later.

The CDW modulation can be described as a spatially

periodic local potential,

HCDW = V
∑
r

cos(Qyy +Qxx+ φ) Ψ†rM Ψr, (2)

where V is the strength, the CDW vector Qy along each
wire and the phase shift Qx in neighboring wires are re-
lated to the wavelengths λx(y) as Qx(y) = 2π/λx(y). We
assume a limit where the wavelengths are large integers
compared to the lattice constants λx(y) � 1 [17]. φ is the
global constant phase. We focus on inter-orbital CDW
modulations characterized by a matrix M ∈ {σx, σy}
which open bulk gaps at low energies, as we discuss be-
low [18]. For illustration, we take M = σx, λy = 21,
ty = 1.5 eV and V = 0.3 eV unless specified otherwise.

To elucidate the essential physics, we first consider the
limit of decoupled wires (tx = 0). In this limit, all wires
are identical except for their x-dependent CDW phases
φ0(x) = Qxx + φ. To explore the topological properties
of the system, we consider the wire at x = 0 and impose
periodic boundary conditions (PBC) in y-direction. Due
to the super-periodic potential with large period λy, the
spectrum of the wire is split into 2λy bands in the reduced
Brillouin zone [Fig. 2(a)]. Remarkably, two bulk gaps of
size V emerge at E ≈ ±ty sin(π/λy), respectively. The
bands disperse in ky, whereas are flat in φ [Fig. 2(a,b)].
Note that the spectrum is periodic in both ky and φ.
A topological characterization of the system can be ob-
tained in terms of Berry phase defined in the compact
ky and φ space [19]. Specifically, for each spectral gap, a
Chern number can be computed as [20]

ν =

∫ π/λy

−π/λy

dky

∫ π

−π
dφTr[∂kyAφ − ∂φAky ], (3)

where Aj = iΦ†∂jΦ with j ∈ {ky, φ} is non-Abelian
Berry connection based on the multiplet of eigen-
states with energy below the gap in question Φ =
(|ψ1〉, ..., |ψm〉). Explicitly, we find ν = −2 (+2) for the
lower (upper) gap. These Chern numbers are indepen-
dent of λy for λy > 3.

The nonzero Chern numbers imply the appearance of
midgap edge modes when open boundaries are imposed in
y-direction, at least for a certain range of φ. To illustrate
this, in Fig. 2(c) we consider Ly = 85 with open boundary
conditions (OBC), Fermi energy EF = ty sin(π/λy), and
calculate the local density of states (LDOS) as a function
of position y along the wire [21]. Clearly, away from
the boundary, the LDOS shows a bulk gap around EF
that varies periodically with y, which is consistent with
the experiments on Ta2Se8I [13–15]. More interestingly,
inside the gap, exponentially localized edge modes appear
for a wide range of φ. The energies of the edge modes at
opposite boundaries are generally different, and depend
strongly on φ, in contrast to the bulk gap that is constant
in φ.
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Fig. 2. (a) Band structure of a CDW wire with PBC. (b)
Band structure as a function of φ at ky = π/(4λy). There are
two CDW gaps of size V and characterized by Chern numbers
±2. (c) LDOS near the upper gap. Edge modes with energies
controllable by φ appear in the gap. Parameters: Ly = 85,
φ0 = 0.6π, EF = ty sin(π/λy) and kBT = 0.03V in (c).

Crucially, in our 2D array system, the phases φ0(x) of
the wires shift in x-direction. The φ0 dependence of the
edge modes thus implies a spectral pseudo-flow as a func-
tion of x along the edge. The Chern number determines
the number of pseudo-flow modes within a wavelength
λx along the edge. We confirm these features numeri-
cally in Fig. 3(d). Moreover, in the decoupled limit, the
energy spectrum of the array is flat in the reduced kx
space [Fig. 3(a)]. This indicates that the edge modes are
immobile in x-direction, in stark contrast to the chiral
edge modes in Chern insulators that carry current. Due
to the shifted phases in the wires, at each boundary, up
to λx edge bands appear in kx space. Notably, the edge
modes at different bands are located at different posi-
tions in each period λx, which again reflects the spectral
pseudo-flow along the edge.

Now, we consider finite inter-wire coupling tx and show
that the shifted CDW phase with the features mentioned
above remain robust in the system. In Figs. 3(a–c),
we plot the energy spectra for increasing tx, with PBC
(OBC) in x(y)-direction. We find that as tx increases, the
CDW gap ∆CDW is reduced and closed completely after
a critical strength tc. Explicitly, ∆CDW decreases almost
linearly with increasing tx [thick lines in Fig. 3(f)]. For a
larger λx, the decrease of ∆CDW by tx is slower and thus
a larger tc is observed [Fig. 3(g)]. The critical strength
tc also increases with increasing V . Notably, for λx & 5,
tc is comparable and even larger than V . Due to the re-
duction of ∆CDW, some edge bands are merged with the
bulk continuum. Thus, the edge modes can be observed
at fewer sites along the edge [Fig. 3(b,e)]. However, the
remaining edge modes with energies close to EF are only

(c)(a) (b)

high (e)(d)

(g)(f)

Fig. 3. (a–c) Energy spectra for tx = 0, 0.3ty, and 0.8ty, re-
spectively. The bulk continuum and edge discrete spectra are
indicated by gray and red color, respectively. PBC (OBC) are
imposed in x(y)-direction. (d,e) LDOS for tx = 0 and 0.3ty,
respectively. (f) ∆CDW (thick lines) and one edge bandwidths
δEedge (circle lines) as functions of tx. We consider λx = 10
(blue), 15 (orange) and 21 (green) for illustration. (g) tc as a
function of λx for V = 0.2 eV, 0.3 eV and 0.5 eV, respectively.
Ly = 421 and φ = 0 in all panels, λx = 21 and Lx = 10λx in
(d,e), and other parameters are the same as Fig. 2.

slightly extended in x-direction. Therefore, for large λx
and V , sizable CDW gaps with edge modes persist up to
considerable inter-wire coupling in the system.

While ∆CDW are obviously reduced by tx, the energies
of edge modes remain almost dispersion-free in kx even
for considerable tx/ty as long as the edge modes persist
inside the bulk gap. In Fig. 3(f) we plot the width δEedge

of the edge band closest to EF as a function of tx. We
find that δEedge grows as a power-law function of tx.
However, it is always several orders of magnitude smaller
than ∆CDW (whose magnitude is of the same order of
V ). Overall, the flatness of edge bands against kx tends
to be more pronounced for an odd and larger value of λx.
These features can be attributed to the unique property
of the spectral pseudo-flow of edge modes and that, for
odd (even) λx, edge modes at the same energy level are
separated by a distance of λx (λx/2). The flatness of
edge bands further indicates that the edge modes are
immobile, even in the presence of hopping in x-direction.

It is important to note that the shifted CDW phase
with finite tx can be characterized by the same Chern
number as in the decoupled limit, since the two are adia-
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batically connected without a gap closure. We have also
verified that the results are qualitatively the same for
other forms of inter-wire coupling. Small deformations
of the model (1), such as a deviation of the band cross-
ing points and a difference between the hopping strengths
of the orbitals, do not alter the main results [22].

Sa far, we have shown with the minimal model (1)
that the shifted CDW phase with midgap edge modes
emerges in a quasi-1D system with a small CDW vector.
To better connect the theory to experiment, we construct
a realistic model for Ta2Se8I as HTSI = Hz +Hxy, where
the terms describing intra- and inter-chain hoppings are
given respectively by

Hz =


εα Kα(kz) t1e

−ikzc/4 t1e
ikzc/4

Kα(kz) εα t1e
ikzc/4 t1e

−ikzc/4

t1e
ikzc/4 t1e

−ikzc/4 εβ Kβ(kz)
t1e
−ikzc/4 t1e

ikzc/4 Kβ(kz) εβ

 ,

Hxy = 4 cos
akx
2

cos
aky
2


0 t3α 0 0
t3α 0 0 0
0 0 0 t3β
0 0 t3β 0

 . (4)

The model is written on the basis formed by the dz2 -
orbitals of four Ta atoms (denoted as {ψα1, ψα2, ψβ1,
ψβ2}) in a unit cell. Kτ (kz) = 2Re(t2τeikzc/2), τ ∈
{α, β}. The parameters are given in the SM [22]. We
can check that the model respects time-reversal, C4z

and C2x symmetries in the absence of CDW. The low-
energy band structure is displayed in Fig. 4(a), in good
agreement with first-principle calculations [23]. Further-
more, considering spin-orbit coupling, the model exhibit
Weyl nodes enforced by C4z symmetry near E = 0. We
note that spin-orbit coupling consists of inter-chain cou-
pling and its energy scale (∼1 meV) is much smaller
than that of CDW. Thus, to study the physics associ-
ated with CDW, it suffices to consider one spin species
described by Eq. (4). Similar to Eq. (2), we model the
CDW modulation by a periodic local potential, HCDW =
V
∑

r,τ,ζ(−1)ζ cos(q ·r+φ)ψ†τζ(r)ψτζ(r), which takes op-
posite signs for atoms indexed by ζ = 1 and 2. We choose
q = (π/18ã, π/18ã, 2π/19c), ã ≡ a/

√
2 and V = 0.3 eV,

based on experimental observations [13–15]. More details
about the model can be found in the SM [22].

Having the realistic model, we now demonstrate that
Ta2Se8I hosts a shifted CDW phase similar to that dis-
cussed previously. To this end, we first calculate the en-
ergy spectrum of decoupled wires (for Hxy = 0) under
PBC in the presence of the CDW potential. As shown
in Fig. 4(b), two CDW gaps of size ∼0.2 eV appear at
low energies. Using Eq. (3), we find that the gaps are
characterized by Chen numbers ν = ±8. In Fig. 4(c) we
take into account Hxy and consider the system on a rib-
bon geometry in (110) plane, with PBC (OBC) in [110]
([001]) direction. The CDW gap is reduced to be ∼0.12
eV. Most strikingly, inside the gap, we clearly observe
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Fig. 4. (a) Low-energy band structure (orange) of the
model (4) without CDW. Gray curves are first-principle cal-
culations of Ta2Se8I. (b) Band structure with the CDW po-
tential. Two CDW gaps, characterized by Chern numbers ±8,
appear at low energies. (c) LDOS near the upper gap as a
function of x̄ (in units of ã) along the edge. Other parame-
ters: V = 0.3 eV, EF = 0.25 eV, kBT = 0.01V , Lx = 216ã
and Lz = 114c.

edge modes (purple) with eight spectral pseudo-flows in
each period (∼36ã).

Recently, large surface gaps with clear CDW modu-
lations on the (110) surface of Ta2Se8I have been ob-
served [13–15]. The CDW patterns have large wave-
lengths (∼17–25 nm) both along and perpendicular to
the chains. The CDW gaps (∼0.1–0.5 eV) are smaller
than the energy scale of intra-chain hopping (∼1 eV),
but stronger than van der Waals interaction (∼0.05
eV) [10, 12, 13, 15]. These observations are in good agree-
ment with the regime for our shifted CDW phase. Thus,
along the boundaries or step edges that are perpendicular
to the chains, we predict the existence of edge modes with
spectral pseudo-flow. Such crystal terminations could be
prepared with focused ion beam manipulation [24, 25].
We also expect our theory to be implementable in other
quasi-1D CDW materials [26–31] such as TaTe4 where
desired CDW patterns on specific surfaces have been re-
ported [32, 33].

Finally, we note that the edge modes can be observed
even when the edge is not exactly perpendicular to the
chains (but not parallel with the CDW vector). The edge
modes may be pushed into the bulk by particular discon-
tinuous potentials at the edge. However, we expect them
to be stable as long as the edge potential is smooth (i.e.,
the change over a lattice constant is much smaller than
∆CDW). Our theory can be generalized to the case with
multiple CDW vectors, which we detail in the SM [22].

In summary, we have proposed a 2D topological phase
of shifted CDW with midgap edge modes. These edge
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modes exhibit spectral pseudo-flow as a function of posi-
tion along the edge, thus constituting a duality compared
to the chiral edge modes of Chern insulators. We have
shown that this phase stays stable even under substan-
tial inter-wire coupling. We have constructed a realistic
effective model and applied the theory to Ta2Se8I.
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