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Abstract 

Unlike bulk counterparts, two-dimensional (2D) superconductors are sensitive to 

disorder. Here, we investigated superconductivity of Pb atomic layers formed on vicinal 

substrates to reveal how surface steps with an interval shorter than the coherence length 

ξ affect it. Electrical transport showed reduced critical temperature and enhanced critical 

magnetic field. Scanning tunneling microscopy exhibited vortices elongated along the 

steps, that is, Abrikosov-Josephson vortices squeezed normal to the steps due to the 

reduced ξ. These results demonstrate that steps work as disorder and vicinal substrates 

provide a unique platform to manipulate the degree of disorder on 2D superconductors. 
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 Two-dimensional (2D) superconductors are sensitive to the presence of disorder 

because of induced electron localization and phase fluctuation [1-3]. The issue of 2D 

superconductivity with disorder has been investigated and unique phenomena such as 

superconducting-insulator transition (SIT) at zero temperature have been explored [4-7]. 

Recently highly crystalline atomic-layer superconductors have been fabricated in 

various methods; e.g. by molecular beam epitaxy [4, 8-15], mechanical exfoliation [16, 

17], and the gating through ion liquid [18-21]. On these samples, new scheme of 

disorder-related phenomena such as the emergence of Bose metal [22] and multifractal 

phases [13, 14] have been reported and discussed extensively. 

 In the present study, we focus on steps in monolayer superconductors, which work as 

disorder and behave as a Josephson junction [4, 11, 12, 23]. The role of a single step has 

been investigated on atomic-layer superconductors by scanning tunneling microscopy 

(STM) [9-12]. It has been known that the shape of vortex cores trapped at the steps 

depends on how strongly the step decouples the superconducting states of the 

neighboring terraces. When the decoupling is weak, round Abrikosov vortex (or Pearl 

vortex, in more precise description) is pinned at the step. With the intermediate 

decoupling, trapped vortices are elongated along the step with remaining the 

superconducting order parameter at the core, which is called a Abrikosov-Josephson 

vortex (AJV) [24]. In the case of the strongly decoupling step, a further elongated 

vortex with the order parameter almost same as that of surrounding superconducting 

areas, that is, Josephson vortex (JV), is formed along the step. 

Here we present a new way of introducing disorder into high-quality monolayer 
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superconductors by forming them on vicinal substrates, which have a normal direction 

slightly tilted from the nominal one, resulting in forming a lot of atomic steps separating 

(111) terraces. We fabricated the striped incommensurate (SIC) structure, one of the Pb 

monolayer superconducting phases, on vicinal Si(111) substrates tilted by 1.1° or 0.5° 

toward the [1̅1̅2] direction from the (111) plane, where steps with the atomic height 

(0.31 nm) are uniformly distributed without bunching. By just adjusting the miscut 

angle the step separation can be controlled to make it shorter than the Ginzburg-Landau 

(GL) coherence length ξ. Details on the sample preparation and experimental are found 

in Sec.1-3 in the supplemental materials (SM) [25]. Through the electron transport 

measurements and STM, we investigated how these high-density steps affect 

superconducting properties under magnetic fields through the observation of their 

influences in the transition and vortex shape, and demonstrated their significant roles 

both macroscopically and microscopically. 

First, for the investigation of the superconducting transition, we performed surface 

electron transport measurements through the SIC layer formed on flat and 1.1°-tilted 

vicinal substrates (Fig. 1). As is the case of other 2D superconductors, the sheet 

resistances R at zero magnetic field shown in Fig. 1(a, b) is reduced above Tc due to the 

thermal fluctuation in the amplitude of the superconducting order parameter. The 

enhanced conductance above Tc is described by the 2D Aslamazov-Larkin and Maki-

Thompson terms [32-34]. We obtained Tc,flat = 1.51 K and Tc,vicinal = 1.21 K from the 

fitting with the two terms [See Sec. 3, 4 and Figs. S3(b, c) in SM, 25]. Tc is reduced by 

the introduction of the steps since the disorder suppresses superconductivity through the 

Anderson localization and phase fluctuation [5, 15, 35-37]. 

Next, we focus on out-of-plane magnetic field dependence of R. Under the magnetic 
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fields in a range of 25 to 100 mT, we found the finite resistance remaining near zero 

temperature, suggesting the emergence of the quantum metallic state reported on highly 

crystalline 2D superconductors [18, 19, 38]. By applying more than 300mT, R behaves 

in an insulating manner (dR/dT < 0) in the range of 0.4 K to 4 K (far above Tc), one of 

the characteristic features of the magnetic-field driven SIT, intrinsic to 2D 

superconductors. We applied the Ullah-Dorsey (UD) scaling theory [19] to analyse the 

data shown in Fig. 1(a, b) to evaluate Tc under magnetic fields, that is, temperature 

dependence of the upper critical field Bc2, as shown with squares in Fig. 1(c) [See Sect. 

5 of SM]. Bc2(T) can also be obtained by Wertharmer-Helfand-Hohenberg (WHH) 

theory [39], as shown in the dashed curves in Fig. 1(c) [See Sec. 6 in SM]. We found 

that Bc2,vicinal is higher than Bc2,flat below 1 K (See Sec. 7 in SM for more details). In fact, 

the WHH curves are consistent with Bc2 at T = 0.36 K measured by STM, as marked 

with stars in Fig. 1(c), which will be discussed in detail below. 
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Fig. 1. (a, b) temperature dependence of sheet resistance measured on the SIC samples 

formed (a) on a flat and (b) on a 1.1°-tilted vicinal substrates under out-of-plane 

magnetic fields. (c) temperature dependence of the upper critical magnetic field Bc2. 

Black and blue squares indicate Bc2 determined by the UD scaling theory (below 150 

mT) on the flat and vicinal samples, respectively. The dashed curves are the WHH 

fitting curves. The stars mark Bc2 measured by STM at 0.36 K. 
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For microscopic understanding of the enhanced Bc2, we investigated both flat and 

vicinal samples using STM at 0.36 K. Figure 2(a) shows an STM image taken on a flat 

SIC sample and Figs. 2(b-f) are a series of zero bias conductance (ZBC) maps taken on 

the same area under various magnetic fields. Under the magnetic fields, vortices are 

formed and the superconductivity is locally broken at their core, resulting in a round 

high-ZBC area, as shown in the ZBC map taken under 60 mT [Fig. 2(b)]. Raising the 

magnetic field to 120 mT [Fig. 2(c)] increases the number of vortices. The number of 

the vortices are consistent with that expected from the amount of applied magnetic field. 

Under 210 mT [Fig. 2(d)], vortices are hardly visible since most of the areas has high 

ZBC. At 300 mT [Fig. 2(e)], ZBC is nearly uniform and saturated since it does not 

change at 400 mT [Fig. 2(f)], indicating that the superconductivity is completely 

broken. 

Figure 3(a) shows the evolution of ZBC measured at sites apart from the vortex cores 

on the flat sample as marked with black triangles. Here the ZBC values are normalized 

by the conductance taken from the spatially averaged ZBC under 400 mT. In the plot, 

the normalized ZBC increases with the magnetic field linearly and then saturates. From 

an intersection of an upward line (the solid line) to the saturating ZBC (dash line) [8], 

we found Bc2,flat = 235 ± 42 mT, consistent with the transport measurements shown in 

Fig. 1(c). The GL coherence length ξflat = 37 ± 3 nm at 0.36 K is then obtained using an 

equation 

𝐵c2,flat =
Φ0

2𝜋𝜉flat
2  , (1) 

where Φ0 is magnetic flux quantum, represented as h/2e using the Planck constant h 

and the electron charge e.  

The normalization process enables us to extract features only related to the 
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superconducting gap. On atomic layer superconductors, not only superconducting gaps 

but dynamical Coulomb blockade (DCB) also reduces ZBC [5, 11, 40-42]. Since DCB 

does not depend on the magnetic field, reduced ZBC observed above Bc2 can be safely 

attributed to DCB. The effect of DCB can thus be eliminated by normalizing with the 

saturated ZBC (See more details in Sec. 9 and Fig. S7 of SM). 
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Fig. 2. (a, g) STM images taken on (a) flat and (g) 1.1°-tilted vicinal SIC samples, 

respectively. (b-f, h-l) ZBC maps under various magnetic fields taken on the same area 

as (a, g), respectively. The tip height was stabilized with VS = 10 mV, IT = 200 pA.  
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Fig. 3: (a) Evolution of ZBC as a function of the magnetic field taken on the flat (black 

triangle) and the vicinal (blue square) samples. The ZBC values are normalized by the 

spatially averaged ZBC taken under 400 mT. The solid line indicates a linear fit of ZBC 

before reaching the saturation and the dashed horizontal line indicates the saturated 

ZBC. (b) ZBC profiles across the vortex center taken on the flat substrate (black 

triangles) and the vicinal samples; red circles and blue squares indicate profiles taken 

along and perpendicular to the steps, respectively. Red (blue) lines are the profiles taken 

on the vortices of the flat sample multiplied by 0.78 ± 0.03 in height and by 1.56 ± 0.27 

(0.76 ± 0.08) along the horizontal axis. Insets show the averaged vortices taken on the 

flat and vicinal samples. 
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We performed the same measurements on the 1.1°-tilted vicinal SIC sample. Figures 

2(g-l) are an STM image and corresponding ZBC maps. Under 120 mT [Fig. 2(i)], 

vortices are also found, but they are more or less fuzzy compared with those observed 

on the flat SIC, indicating phase fluctuation by the steps. Moreover, they are elongated 

along the step direction, and ZBC at the core of the vortices is not large compared with 

the saturated ZBC at 400 mT [Fig. 2(l)], which will be discussed quantitatively later. 

Since both are characteristic features of AJV we tentatively attribute them to an AJV. 

Besides, ZBC keep increasing through 210 mT to 300 mT [Figs. 2(j, k)], which indicate 

that superconductivity remains above 210 mT, distinctly different from the case of the 

flat sample. From the ZBC evolution shown with blue squares in Fig. 3(a), we found 

that Bc2,vicinal = 331 ± 28 mT, larger than the flat substrate and again consistent with the 

transport measurements. The saturated ZBC at 400 mT [Fig. 2(l)] on the tilted sample is 

smaller than that of the flat sample [Fig. 2(f)]. This is due to enhanced DCB by the 

strong localization owing to the presence of the high-density steps. 

Considering Eq. (1), Bc2,vicinal larger than Bc2,flat may be related to reduced coherence 

length. The reduction in the coherence length ξ by the high-density steps is explained by 

the suppression of mean free path l as 𝜉 = √𝜉0𝑙, where ξ0 is the coherence length 

without disorder [43]. Since l in a 2D system is proportional to the conductivity, the 

high density steps, which work as a resistor, [4, 44-48] reduce the mean free path and 

then coherence length in the direction perpendicular to the steps. 

Since the size of vortex is closely related to the coherence length, we focus on the size 

and shape of the vortices. Figure 3(b) shows cross-sectional profiles of ZBC 

(normalized by the respective saturated ZBCs) taken on averaged vortices shown as 

insets (See Sec. 10 of SM) across their centers taken on the flat sample (black triangles) 
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and on the vicinal sample in the direction parallel (//, red circles) and perpendicular (⊥, 

blue squares) to the steps. From the profiles we found that these three profiles have a 

similar shape. First, on the vortices of the vicinal sample, ZBC at the center is 

suppressed by a factor of 0.78 ± 0.04. Then, the suppressed profile was laterally 

expanded by a factor of 1.56 ± 0.27 and shrunk by 0.76 ± 0.08 to find good agreements 

with the parallel and perpendicular profiles of the vicinal sample’s vortices, as shown 

with red and blue lines, respectively, in Fig. 3(b).  

Intriguingly, the squeezing ratio in the perpendicular direction, 0.76 ± 0.08, 

corresponds well to the inverse of the Bc2 enhancement ratio (Bc2,flat/Bc2,vicinal = 0.71 ± 

0.14). According to the anisotropic 2D GL model [24,49-51], Bc2,vicinal is given by 

𝐵c2,vicinal =
Φ0

2𝜋𝜉⊥𝜉∥
, (2) 

where ξ⊥ and ξ// are the coherence length along the two principal axes of anisotropy, 

and in the directions perpendicular and parallel to the steps in the present case. Thereby 

the correspondence suggests us that the Bc2 enhancement is due to the reduced 

coherence length ξ⊥ by the presence of the steps. In order to confirm this speculation, 

we performed the same measurements on the SIC phase formed on a 0.5°-tilted vicinal 

substrate. As shown in Fig. S10 of SM, we found that Bc2 of the 0.5°-tilted vicinal 

sample is 288 ± 43 mT and the squeezing ratio is 0.85 ± 0.01, consistent with the 

inverse of the Bc2 enhancement (0.82 ± 0.19). It should be noted here that we presume 

the coherence length along the steps are same as that of the flat SIC phase. The 

elongation of the vortices along the steps is due to the formation of AJV, but the 

coherence length along the direction does not change since the steps do not work as 

disorder in the direction. 

 As already mentioned, the reduction in the coherence length ξ is explained by the 
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reduced mean free path l as 𝜉 = √𝜉0𝑙. According to the Drude theory, l is written as 

h/e2kFρ in a 2D system [18], where kF is the Fermi wavenumber and ρ is the resistivity. 

In the case of metallic monolayers formed on stepped surfaces, each step works as a 

resistor making the system anisotropic electrically [4, 44-48]. Here, in order to model 

the vicinal samples electrically, we consider a 2D metallic layer with an array of parallel 

linear resistors at equal interval w as shown in the inset of Fig. 4(a). The normal 2D 

resistivity perpendicular to the steps ρ⊥and parallel to the steps ρ// can be described [51] 

by 

𝜌⊥ = 𝜌terrace + 𝜌step

1

𝑤
, 𝜌∥ = 𝜌terrace , (3) 

where ρterrace is the 2D resistivity on terraces, ρstep is the resistivity of a single step, and 

w is the terrace width. Here please note that the dimensions of ρterrace and ρstep are 

different; they are Ω and Ω·m, respectively. By using Eq. (3) and l = h/e2kFρ, we can 

obtain mean free path perpendicular (l⊥) and parallel (l//) to steps, respectively. 

1

𝑙⊥
=

𝑒2𝑘F

ℎ
(𝜌terrace + 𝜌step

1

𝑤
) ,

1

𝑙∥
=

𝑒2𝑘F

ℎ
𝜌terrace . (4) 

Since the density of steps of the flat sample is sufficiently small, mean free path of the 

flat sample lflat is equal to l//, leading to ξflat = ξ// = √𝜉0𝑙∥. Then, from Eqs. (1), (2), and 

(4), Bc2.vicinal / Bc2.flat is written as follows:  

𝐵c2,vicinal

𝐵c2,flat
=

𝜉𝑓𝑙𝑎𝑡
2

𝜉∥𝜉⊥
 =

𝜉∥

𝜉⊥
= √

𝑙∥

𝑙⊥
= √1 +

𝛼

𝑤
 , (5) 

Here α ≡ ρstep/ρterrace is a system-specific parameter with a dimension of length 

related to the decoupling strength. Figure 4(a) shows dependence of Bc2 on the terrace 

width w estimated from the miscut angle. The data taken on 0.5°-tilted vicinal sample is 

also included in the plot. A solid curve is a fitted one with Eq. (5), showing good 
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agreement when α = 15.9±1.7 nm. This result leads us to conclude that increasing step 

density effectively reduces coherence length and enhances Bc2. Since kF is estimated to 

be ~ 1.44 Å -1 in the previous report [2] and ρterrace is ~ 550 Ω/□ from our transport 

measurements on the flat sample [Fig.1(a)], we obtain lflat = h/e2kFρterrace ~ 3.3 nm. 

Using α, we can also estimate l⊥ as lflat (1+α/w)-1. In the case of 1.1° (0.5°) -tilted 

vicinal SIC phases, since w = 15.3 (38.0) nm, l⊥ is 1.6 (2.3) nm, respectively. The 

anisotropic ratio of resistivity 𝜌⊥ 𝜌∥⁄  = 1+α/w given by Eq. (3) is estimated 2.04 ± 0.11 

for the 1.1°-tilted SIC sample. This anisotropic ratio is consistent with that obtained by 

transport measurement performed in the van der Pauw configuration (See Sec. 12 in 

SM). 

We then discuss the identification of AJV. One of the characteristic features of AJV is 

the suppression of the density of states (DOS) within the gap at the vortex core [10]. 

According to the calculations of AJV [10], the DOS suppression is described as t2, 

where t is the ratio of hopping strength across the step to that within the terrace. Since 

the width of the elongated vortex core is given by 2ξ⊥, vortices on the vicinal SIC 

phases cross the steps 2ξ⊥/w times. The effective hopping strength ratio across the steps 

is therefore given as t2ξ
⊥

/w. Figure 4(b) shows the terrace width dependence of the 

suppression factor. A solid green curve is a fitting one with t4ξ⊥/w, where ξ⊥ = ξflat 

(1+α/w)-1/2 with α estimated in the Bc2 analysis, showing a good agreement when t = 

0.96. Considering an almost round shape of vortices trapped at a single step of the same 

SIC phase [12], which indicates weak decoupling, the estimated value close to 1 is 

reasonable. We thus conclude that the elongated vortices observed on the vicinal 

samples are due to the formation of AJV. They are, however, different from vortices 
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formed on a single step that have the width of the coherence length, same as the radius 

of standard round vortices, as mentioned in previous reports [10-12]. In the vicinal SIC 

phases, AJV are squeezed in the direction perpendicular to the steps because of the 

limited mean free path in the direction. 

  



15 

 

 

FIG. 4. (a) terrace width dependence of the critical magnetic field. The solid curve is a 

fitting with Eq. (5) in the main text. The inset shows a schematic of the arrayed resistors 

to model the vicinal SIC samples. (b) terrace width dependence of the suppressed DOS 

at the vortex center. The solid curve is a fitting given as t4ξ⊥/w. 
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 In conclusion, using both macroscopic (electrical transport) and microscopic (STM) 

methods we investigated superconductivity of the atomically-thin Pb SIC phases formed 

on the vicinal Si(111) substrates. Using STM we observed elongated vortices along the 

steps and identified them as a squeezed AJV. Compared with AJV trapped at a single 

step, their width is narrowed because of the shortened coherence length due to the 

limited mean free path perpendicular to the steps. The reduced coherence length also 

explains the enhanced Bc2, measured in both transport and STM measurements. These 

observations tell us that estimating anisotropic coherence lengths from the shape of AJV 

and the critical field using them, which has been occasionally reported [50, 52], is not 

appropriate. Through the investigation we found the relationship between the vortex 

shape and the critical field can be well controlled with the miscut angle of vicinal 

substrates. The monolayer superconductors formed on vicinal substrates are thus an 

ideal platform for the investigation of disorder-induced 2D superconductivity and its 

phase transition. 
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