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The AC conduction of epitaxially-grown SmB6 thin films and superconducting heterostructures
of SmB6/YB6 are investigated via time domain terahertz spectroscopy. A two-channel model of
thickness-dependent bulk states and thickness-independent surface states accurately describes the
measured conductance of bare SmB6 thin films, demonstrating the presence of surface states in
SmB6. While the observed reductions in the simultaneously-measured superconducting gap, tran-
sition temperature, and superfluid density of SmB6/YB6 heterostructures relative to bare YB6

indicate the penetration of proximity-induced superconductivity into the SmB6 overlayer; the cor-
responding SmB6-thickness independence between different heterostructures indicates that the in-
duced superconductivity is predominantly confined to the interface surface state of the SmB6. This
study demonstrates the ability of terahertz spectroscopy to probe proximity-induced superconduc-
tivity at an interface buried within a heterostructure, and our results show that SmB6 behaves as
a predominantly insulating bulk surrounded by conducting surface states in both the normal and
induced-superconducting states in both terahertz and DC responses, which is consistent with the
topological Kondo insulator picture.

Introduction
SmB6 has long been identified as a mixed-valence

Kondo insulator with an anomalous low-temperature re-
sistance plateau that eluded explanation [1–4]. Following
the discovery of topological insulators [5–8], it was pro-
posed that this anomalous resistance plateau is due to
topologically protected surface states, making SmB6 the
first topological Kondo insultator (TKI) [9–12]. Follow-
ing this prediction, a flurry of experiments have investi-
gated the basic features of such a TKI [13–29], yet despite
the evidence in support of the TKI prediction, contro-
versy has continued to surround SmB6 [30–42]. Much
recent work has therefore been dedicated to understand-
ing experimental discrepancies and harmonizing results.
Numerous studies have now highlighted common extrin-
sic issues with studies of bulk crystals, including subsur-
face cracks in polished bulk samples [41], aluminum in-
clusions in crystals grown by the aluminum flux method
[43], residual bulk conduction attributed to one dimen-
sional crystalline dislocations [41, 44–46], and localized
metallic islands around sample impurities [47, 48]. Fur-
thermore, previous terahertz studies [49, 50] of SmB6

starkly diverged from DC transport by finding an anoma-
lously large AC conductivity without evidence for surface
states. These results created a confused picture of SmB6

with radically different AC and DC behaviors that has
been frequently invoked by both experimental and theo-
retical efforts [34, 36, 45, 48]. However, these terahertz
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studies were performed using polished bulk crystals that
may suffer from the confounding effects mentioned previ-
ously and may therefore be reporting extrinsic behaviors.

Whereas most experiments on SmB6 have employed
bulk crystals, it has recently become possible to grow
high-quality epitaxial thin films of SmB6 via sputtering
[21, 51, 52], thereby avoiding the myriad extrinsic con-
cerns with bulk crystals and circumventing issues [53] in
comparing previous results achieved via the different bulk
crystal growth methods. By forming thin film heterostuc-
tures of SmB6 with the isostructural BCS superconduc-
tor YB6, perfect Andreev reflection has been observed
at the surface of sufficiently-thin SmB6 overlayers via
point contact Andreev reflection (PCAR) spectroscopy
[51]. These results indicate the presence of metallic sur-
face states susceptible to the superconducting proxim-
ity effect in these epitaxially grown SmB6 samples and,
moreover, indicate that these surface states are indeed
topologically protected in accord with the TKI predic-
tion. Such heterostuctures are predicted to host topolog-
ical superconducting states at the buried interface [8, 54]
and could be engineered to generate and manipulate Ma-
jorana modes to perform topological quantum computa-
tions [8, 54]. However, such buried interface states are
not accessible by standard surface probes such as angle
resolved photoemission spectroscopy (ARPES), scanning
tunneling spectroscopy/microscopy (STS/M), or PCAR
spectroscopy.

Here, we perform time-domain terahertz spectroscopy
(TDTS) on epitaxially grown thin films of SmB6 and
SmB6/YB6 heterostructures. We find an AC conductiv-
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FIG. 1. a. The real part of the complex conductance of a 150 nm expitaxial thin film of SmB6 from 2.7 K to 280 K. Complete
data for all three samples is provided in Fig. S2 of the SI. b. The average conductance over 0.5-1.0 THz for each SmB6

sample fitted by the two channel conductance model across the temperature range. c. Thickness dependence of the average
conductance at various temperatures for each SmB6 sample. The thickness dependence of all temperatures is provided in Fig.
S4 of the SI.

ity in harmony with DC transport results, demonstrat-
ing strong evidence for the presence of surface states in
SmB6 at low temperatures and the confinement of the su-
perconducting proximity effect to the surface state at the
interface of the SmB6/YB6 heterostructures. Altogether,
we establish a straightforward and unified understanding
of the intrinsic low temperature conductance of SmB6:
in both the normal and induced-superconducting states,
SmB6 behaves as a predominantly insulating bulk sur-
rounded by conducting surface states in both AC and
DC, as expected under the TKI prediction.

Results and Discussion
Thin film samples of SmB6 are grown epitaxially on

Si (001) substrates via sputtering [51]. In order to form
a minimal-barrier interface with SmB6, the isostructural
BCS superconductor YB6 is selected for the proximity
effect heterostructures. As the superconducting transi-
tion temperature TC of YB6 is maximized in the case of
mild boron deficiency [51], 100 nm layers of YB5.6 are
grown on Si (001) substrates via sputtering, which for
convenience will be referred to as YB6 throughout. Het-
erostructures of SmB6/YB6 are fabricated by growing a
20 nm or 100 nm SmB6 overlayer sequentially atop 100
nm YB6 samples in situ without breaking vacuum in the
sputtering chamber [51].

Typical TDTS [55] data for the real conductance G1

is shown for the 150 nm SmB6 sample in Fig. 1.a (Raw
TDTS time trace data is provided in Fig. S1 of the sup-
plementary information (SI)). There are no pronounced
spectral features across the reliable frequency range of
∼0.5-2.3 THz, though there is a mild Drude-like con-
ductivity that decreases in prominence at lower temper-
atures. Notably, the conductance of the sample plateaus
below 5 K across the entire spectral range. In order to
compare the conductance between samples, the average
of the spectrum is taken from 0.5 THz to 1.0 THz and
shown in Fig. 1.c for select temperatures (See Fig. S4.a
of the SI for all temperatures.). At both 50 K and 280
K, the conductance increases linearly with sample thick-

ness, consistent with bulk-dominated behavior, whereas
the conductance is nearly independent of sample thick-
ness at 2.7 K, consistent with surface-dominated behav-
ior. The small amount of thickness dependence that re-
mains at low temperature may be due in part to the
limited number of samples available for study, but may
also result from a small residual bulk conductivity.

To assess the conductance across the temperature
range and available sample thicknesses, we apply a two-
channel model of the total conductance Gtot [15, 21].
One channel scales with thickness and is exponentially
activated as a function of temperature, consistent with a
bulk conductance Gbulk. The second is a temperature-
and thickness-independent channel consistent with a sur-
face conductance Gsurf resulting from both the upper
and lower surface states. The two-channel model is thus
given by

Gtot(T ) = Gsurf +Gbulk(T ) (1)

Gsurf = GLT (2)

Gbulk(T ) = σbulk,HT tbulkexp(
Ea

kBTHT
− Ea

kBT
) (3)

where GLT is the conductance at low temperature,
σbulk,HT is the bulk conductivity at high temperature,
tbulk is the thickness of the bulk conductance channel, Ea

is the characteristic activation energy of the bulk channel,
kB is the Boltzmann constant, and THT is the tempera-
ture at which the high temperature conductivity is calcu-
lated. Since the measured low temperature conductance
is reasonably consistent across the thin films, in contrast
to bulk samples where it can vary by orders of magnitude
[41, 46], Equations 1-3 can be fit to the data while ex-
tracting the conductance of each channel, the thickness
of each channel, and the bulk activation energy. As can
be seen in Fig. 1.b, the two channel conductance model



3

1.0

0.8

0.6

0.4

0.2

0.0

G
1/

G
N

1.61.20.80.4

Frequency (THz)

 2.7 K
 3.0 K
 4.0 K
 5.0 K

20nm SmB6 /
 100nm YB6

1.0

0.8

0.6

0.4

0.2

0.0

G
2/

G
N

1.61.20.80.4

Frequency (THz)

 2.7 K
 3.0 K
 4.0 K
 5.0 K

20nm SmB6 / 
100nm YB6

a c e

b d f

1.0

0.8

0.6

0.4

0.2

0.0

G
1/

G
N

1.61.20.80.4

Frequency (THz)

100nm SmB6 /
 100nm YB6

 2.7 K
 3.0 K
 4.0 K
 5.0 K

1.0

0.8

0.6

0.4

0.2

0.0

G
2/

G
N

1.61.20.80.4

Frequency (THz)

100nm SmB6 /
 100nm YB6

 2.7 K
 3.0 K
 4.0 K
 5.0 K

1.0

0.8

0.6

0.4

0.2

0.0

G
1/

G
N

1.61.20.80.4

Frequency (THz)

Bare YB6

 2.7 K
 3.0 K
 4.0 K
 5.0 K

1.0

0.8

0.6

0.4

0.2

0.0

G
2/

G
N

1.61.20.80.4

Frequency (THz)

Bare YB6  2.7 K
 3.0 K
 4.0 K
 5.0 K

FIG. 2. Normalized real and imaginary parts, respectively, of the complex conductance in the superconducting state for bare
100 nm YB6 (a,b), 20 nm SmB6 / 100 nm YB6 (c,d), and 100 nm SmB6 / 100 nm YB6 (c,d). The real and imaginary parts
of the data for each sample, given by the circles, are simultaneously fit to produce the solid lines. Unnormalized data for all
heterostructures is provided in Fig. S3 of the SI.

provides a strong fit to the data for the three samples (ex-
perimental data above 50 K for the 50 nm sample proved
unreliable possibly due to the substrates being from dif-
ferent batches). The average fitted value of the bulk acti-
vation energy Ea = 3.8 meV is consistent with the range
of results from previous DC transport measurements on
bulk SmB6 crystals [14, 15, 18, 21, 22, 44, 45, 47]. The
fitted values for the thickness of the bulk conductance
channel increase linearly with sample thickness in a near
one-to-one ratio, indicating the change in conductance
between samples is overwhelmingly due to the different
thickness of the bulk conducting channel. By consider-
ing the actual sample thickness d = tbulk + 2tsurf , the
effective thickness of the surface channel tsurf is deter-
mined to be consistent and non-negligible, with an av-
erage value of tsurf = 9.1 nm consistent with previous
reports [21, 52]. This provides strong evidence for sur-
face conducting states in bare SmB6 at low temperature
and resolves the previous discrepancy between AC and
DC conductance in SmB6.

Superconducting heterostructures of SmB6/YB6 are
probed via the same TDTS method and compared to
a thin film sample of YB6 (TC ≈ 6.1 K) with no over-
layer of SmB6. As all samples consist of 100 nm YB6

and some thickness of SmB6, each heterostructure is re-
ferred to by its SmB6 thickness for convenience. Typical
data for the bare YB6, the 20 nm heterostructure, and
the 100 nm heterostructure are shown in Fig. 2.a,b; Fig.
2.c,d; and Fig. 2.e,f; respectively, where the supercon-
ducting low temperature conductance G̃ = G1 + iG2 is

normalized by the normal state conductance GN of the
sample above TC at 10 K. Conductance data of this form
is modeled by the Mattis-Bardeen formalism for the op-
tical response of a BCS superconductor in the dirty limit
below TC as the superconducting gap opens [56, 57]. See
SI for extended fitting details.

By simultaneously fitting the real and imaginary parts
of the normalized conductance for a sample at a given
temperature T , the superconducting gap ∆(T ) at that
temperature can be extracted for a given guess value of
TC . By taking an initial estimate of TC from the dis-
appearance of superconducting behavior in the terahertz
spectrum and repeating the simultaneous fitting for each
temperature, as shown by the solid lines in Fig. 2, the
temperature evolution of ∆(T ) is extracted. For a BCS
superconductor, this temperature evolution is approxi-
mated by [58]

∆(T ) ≈ ∆0tanh(1.74
√

TC/T − 1) (4)

By fitting ∆0 and TC to the extracted values of ∆(T ),
the guess value of TC can be updated. Thus by itera-
tively performing the simultaneous Mattis-Bardeen fit-
ting and BCS gap fitting until convergence, values of ∆0

and TC for each sample are extracted from the data. As
∆0 varies on both sides of the interface of proximity-effect
heterostructures [59, 60], the measured values of ∆0 are
effective averages for the heterostructure.

This iterative method results in a high-quality fit, as
shown in Fig. 2 and Fig. 3.a, with all samples follow-
ing the BCS behavior. The clear reduction in both TC
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FIG. 3. a. BCS fitting of the temperature dependence of the superconducting gap data, ∆(T ), extracted from the Mattis-
Bardeen fitting for each superconducting sample. Error bars are determined by the Mattis-Bardeen fitting. b. The linear
portion of ωG2 shown for bare 100 nm YB6 is fitted to permit measurement of the superfluid spectral weight by extrapolation
of the fit down to zero frequency. c. The difference in G1 shown for bare 100 nm YB6 is integrated out to 2.0 THz, where
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and ∆0 from the bare YB6 to the heterostructures in-
dicates that superconductivity is being induced in some
portion of the SmB6 overlayer via the superconducting
proximity effect. For an ordinary metallic overlayer, the
reduction in TC and ∆0 due to the proximity effect de-
pends strongly on the thickness of the metallic layer for
thin films, where the sample thickness is on the order
of the normal coherence length, or less [59, 60]. How-
ever, the reductions observed in the heterostructures here
vary only slightly despite the thickness of the SmB6 con-
siderably spanning the normal coherence length, which
was previously determined to be ∼50 nm [52]. The weak
SmB6-thickness dependence of the measured TC and ∆0

suggests that the effective thickness of the SmB6 that is
metallic and susceptible to the proximity effect is largely
independent of the actual thickness of the SmB6 over-
layer, contrary to the expectation for sample thicknesses
on the order of the normal coherence length. This result
therefore implies that the dominant contribution to the
conductivity is restricted to the surface state at the inter-
face, and that the bulk SmB6 is only weakly conducting
at best. Thus the observed weak SmB6-thickness depen-
dence of TC and ∆0 in the superconducting heterostruc-
tures concords with the model of SmB6 as consisting of
metallic surface states surrounding an insulating bulk.

The measurement of the complex conductance in the
superconducting heterostructures also affords a measure-

ment of the superfluid spectral weight, indicating the
temperature evolution of the superfluid density in the
samples. The superfluid spectral weight can be extracted
by two methods, which we will call the extrapolation and
integration methods. The extrapolation method makes
use of the fact that the superfluid spectral weight is given
by [61]

Sextr(T ) = lim
ω→0

ωGSC
2 (ω, T ) (5)

where GSC
2 is the imaginary conductivity in the super-

conducting state. Extracting values of Sextr for each tem-
perature is accomplished by fitting to the linear portion
of ωG2(ω, T ), as shown in Fig. 3.b, and extrapolating to
zero frequency. The integration method directly calcu-
lates the loss of spectral weight when passing below TC
according to [61]

Sint(T ) =

∫ ∞
0

dω(GN
1 (ω) −GSC

1 (ω, T )) (6)

where GN
1 (ω) and GSC

1 (ω, T ) are the real conductivity
in the normal state and superconducting states, respec-
tively. Given the convergence ofG1 at high frequency, the
upper limit of integration can be reasonably truncated
to the limit of reliable data, as shown in Fig. 3.c, intro-
ducing only minor error. Fig. 3.d shows that while the
integration method consistently yields a slightly larger
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value for the superfluid spectral weight, the two meth-
ods show reasonable agreement across the temperature
range for each sample. The temperature dependence of
the superfluid spectral weight is given by [58, 61]

S(T ) = S(0)
∆(T )

∆0
tanh(

∆(T)

2kBT
) (7)

Simultaneous fits of the data for both the extrapolation
and integration methods are shown in Fig. 3.d, showing
strong agreement across the temperature range. There
is a clear decrease in the superfluid spectral weight be-
tween each sample. The decrease from bare YB6 to the
heterostructure is expected as a result of the supercon-
ducting proximity effect. However, whereas ∆0 is quite
comparable between the heterostructures and shows a
difference of just 5 percent, S(0) shows a more signifi-
cant decrease of 12 percent. The minimal difference in
∆0 indicates that the proximity effect is predominantly
confined to the same volume in both heterostructures,
namely the surface states as identified above. The fur-
ther reduction in S(0) with increased SmB6 thickness,
however, may be attributable to very weak conducting
states existing in the bulk [41, 44–46]. As the super-
fluid spectral weight is not yet thoroughly explored in
the literature, further work is warranted to understand
the significance of this behavior.

To summarize, these results provide a simple and uni-
fied picture in concord with the TKI prediction: SmB6

behaves as a predominantly insulating bulk surrounded
by conducting surface states in both the normal and
induced-superconducting states in both AC and DC
conduction. Experimental explanations and theoretical
speculations that invoked the previous anomalous AC
response may need to be reconsidered in light of these
findings. While a topologically trivial explanation for this
behavior cannot be ruled out by measurements presented

here, the previous observation of perfect Andreev reflec-
tion [51] in similar SmB6/YB6 heterostructures supports
the topological origin.

Furthermore, the measurements presented here
demonstrate that TDTS can provide an effective probe
of superconducting states at the buried interface of
these important superconductor-topological insulator
heterostructures, providing a powerful new tool for the
investigation of engineered topological superconducting
systems. Looking forward, our methods can extend
to other topological superconducting heterostuctures
with bulk-insulating topological insulators such as
Bi2Se3[62–64] and Sb2Te3[65] where the proximity effect
does not reach the sample surface yet remains active in
the buried interface.
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