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We report simultaneously acquired local and nonlocal transport spectroscopy in a phase-biased
planar Josephson junction based on an epitaxial InAs/Al hybrid two-dimensional heterostructure.
Quantum point contacts at the junction ends allow measurement of the 2×2 matrix of local and
nonlocal tunneling conductances as a function of magnetic field along the junction, phase difference
across the junction, and carrier density. A closing and reopening of a gap was observed in both
the local and nonlocal tunneling spectra as a function of magnetic field. For particular tunings of
junction density, gap reopenings were accompanied by zero-bias conductance peaks (ZBCPs) in local
conductances. End-to-end correlation of gap reopening was strong, while correlation of local ZBCPs
was weak. A model of the device, with disorder treated phenomenologically, shows comparable
conductance matrix behavior associated with a topological phase transition. Phase dependence
helps distinguish possible origins of the ZBCPs.

Topological materials obey a bulk-boundary corre-
spondence, establishing a connection between the topo-
logical index of the bulk and the number of boundary
modes [1, 2]. In one-dimensional topological supercon-
ductors (1D-TSCs) [3, 4], these considerations imply that
the bulk modes undergo a characteristic closing and re-
opening of the superconducting gap whenever the system
is driven through a topological phase transition. In this
situation, the gap reopening is connected to the appear-
ance of zero-energy Majorana modes at the two ends [5–
8]. Several experimental works have reported zero-bias
conductance peaks (ZBCPs) at the ends of wires or 1D
structures, identified as signatures of 1D-TSCs [9–15].
However, in most of these cases, though not all [16, 17],
an associated gap closing and reopening was not observed
in tunneling conductance.

An emerging method that allows simultaneous ob-
servation of end modes and bulk gap behavior is non-
local spectroscopy, where measurement of the tunnel-
ing current between the ends of a device provides in-
formation about the bulk [18], and forms the basis
for the identification and measurement of a topologi-
cal gap [19]. This technique requires a three-terminal
(3T) configuration [20–24], and has been theoretically
explored in the context of topological superconductiv-
ity for nanowires [18, 25–28]. Nonlocal transport experi-
ments, also in nanowires, were used to probe symmetries
of the conductance matrix arising from current conser-
vation and measure the local charge of Andreev bound
states [26, 29]. Experiments in short nanowire segments
identified end-to-end correlation between extended An-
dreev bound states [30]. In long nanowire segments,
local conductance showed ZBCPs while the gap in the

nonlocal spectrum remained closed [31], suggesting non-
topological ZBCPs arising from strong disorder [32–36].
These experiments demonstrated the importance of com-
bining local and nonlocal transport to differentiate trivial
and potentially topological ZBCPs.

Planar Josephson junctions (PJJs) of superconductor-
semiconductor hybrids have recently emerged as a
promising alternative platform for topological supercon-
ductivity, providing several knobs that can control a pos-
sible topological superconducting phase, including, no-
tably, the novel control parameter of the phase difference
across the junction [15, 38–44]. However an experimental
investigation of nonlocal conductance on this platform is
lacking. Challenges associated with the construction of a
three-terminal phase-biased SNS junction, together with
the small amplitude of the nonlocal conductance signal
(∼ 0.01× 2e2/h) makes this a significantly harder exper-
iment compared to previous local conductance studies.

In this Letter, we overcome these challenges and in-
vestigate nonlocal conductance spectroscopy, measured
simultaneously with local conductance spectroscopy in
3T PJJ devices with quantum point contacts (QPCs) at
both ends. The full conductance matrix is measured as
a function of in-plane magnetic field along the junction,
phase difference across the junction, and carrier density
within the junction. Our main observation is a closing
and reopening of the superconducting gap in nonlocal
conductance correlated with the appearance of ZBCPs
in local conductance. This goes beyond previous stud-
ies where only local conductance measurements were re-
ported [15, 17, 41–43]. We find that the gap closing and
reopening in both local and nonlocal conductance is ro-
bust against variations of the junction carrier density,
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FIG. 1. Device and measurement setup. False-color
micrograph of a representative device showing three-terminal
configuration. Meandering perforations etched onto the su-
perconducting leads allow partial depletion of the semicon-
ductor using gate voltage Vsc. Al loop allows phase biasing of
the junction with a small out-of-plane magnetic field, B⊥. An
in-plane magnetic field, B‖ is applied parallel to the S-N in-
terfaces. Voltage biases VT and VB are applied to the top and
bottom ohmic contacts through the current amplifiers (CA).
Gates Vtop(bot) and Vt(b)qpc form QPCs at the junction ends.
V1 controls carrier density in the junction. All connections
to the device are via ∼ 1 − 2 kΩ fridge wires and filters, see
Supplemental Material for details [37].

but the observation of ZBCPs at one or both ends re-
quire careful tuning of voltages on the junction and QPC
gates.

To help interpret these results, we investigate numer-
ically the conductance matrix behavior of a planar JJ
model reported in our previous work [17] including the
effect of disorder. Within the model, a gap reopening in
nonlocal conductance appears together with ZBCPs in lo-
cal conductances only in the cases of weak-intermediate
disorder strengths and is associated with a topological
phase transition. At large disorder strengths, a topologi-
cal phase transition fails to occur and is characterized by
the absence of a nonlocal gap-reopening, while ZBCPs
still appear in local conductances.

Figure 1 shows a micrograph of one of the devices,
along with a schematic electrical circuit. The PJJ can
be probed by a pair of integrated QPCs at the ends
of the junction, and phase-biased by applying a small
(∼ 0.1 mT scale) out-of-plane magnetic field through a
superconducting loop.

The device was fabricated on a molecular-beam-
epitaxy grown heterostructure stack with a shallow InAs
quantum well separated from a top Al layer by an
In0.75Ga0.25As barrier. A combination of wet etching of
the Al layer and deep wet etching of the semiconductor
stack was used to define the superconducting loop, the
Josephson junction and the mesa with a U-shaped trench.

A patch of the mesa (with Al removed) within the loop
was contacted by a layer of Ti/Au to form an internal
submicron ohmic contact to enable bottom-end tunnel-
ing spectroscopy. A layer of HfO2, grown by atomic layer
deposition (ALD) and patterned in a rectangular shape,
was used to isolate the Ti/Au layer from the supercon-
ducting loop and the conducting mesa. A second layer of
HfO2 was deposited globally followed by the deposition
of Ti/Au gates for electrostatic control of the junction
and the QPCs.

The carrier density in the normal barrier of the JJ
(width wn = 100 nm, length l = 1.6µm) was controlled
by gate voltage V1. Gate voltage Vsc controlled the carrier
density in the semiconductor underneath the supercon-
ducting leads. Split gates controlled by voltages Vtqpc
and Vbqpc define QPCs at the top and bottom of the
junction. Additional gate voltages Vtop and Vbot con-
trolled densities in the normal regions outside the QPCs,
and were typically fixed at ∼ +100 mV. Hall effect mea-
surements performed in Hall bar devices of the same ma-
terial, with Al etched away, indicated a peak electron
mobility peak µ = 43, 000 cm2/V-s at a carrier density
of n = 8 × 1011 cm−2, corresponding to a peak electron
mean free path of le ∼ 600 nm. This suggests that our
devices are quasiballistic along the length l ∼ 3le and
ballistic in the width direction wn ∼ le/6. We estimate
the Fermi wavelength as λF ' 30 nm, giving wn/λF ∼ 3
and l/λF ∼ 50, such that the junction may be treated
as quasi-one-dimensional. Other transport properties of
similar hybrid planar Josephson junction devices have
been reported in previous works [45–48]. We specifically
highlight the near unity S-N interface transparencies re-
ported in [46, 48].

The 3T measurement configuration is shown in
Fig. 1(a). The top ohmic contact is a region of InAs sep-
arated from the junction by the top QPC. The bottom
ohmic contact is formed by a Ti/Au electrode, separated
by the bottom QPC. The Al loop connecting the two
sides of the junction provides the third contact, held at
ground. Low-frequency AC plus DC voltage biases VT(B)

are applied through current amplifiers (denoted CA). The
measured currents IT(B) then yield the 2×2 conductance
matrix, Gij = dIi/dVj, with i, j = T,B via standard AC
lock-in measurements (see additional details in Supple-
mental Material [37]).

For measurements shown in Fig. 2, the conductance
matrix was measured as a function of in-plane magnetic
field, B‖, with Vsc = −3.6 V, giving a hard supercon-
ducting gap in the leads, V1 = +85 mV, giving ZBCPs in
both top and bottom local conductances at B‖ ∼ 0.3 T,
and QPCs set to Vtqpc = −0.37 V, Vbqpc = −0.34 V, to
yield sizable nonlocal conductances, ∼ 0.01× 2e2/h near
the gap edge, |VT,B| ∼ 150 µV. To compensate any cou-
pling of B‖ through the superconducting loop controlling
phase Φ across the junction, a sweep of B⊥ was made at
each value of B‖ and then sliced along cuts of constant Φ
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FIG. 2. Magnetic field dependence of the conductance
matrix. (a) Local differential conductance GTT and (e) Non-
local differential conductance GBT measured as a function of
VT and B‖. (c) Nonlocal differential conductance GTB and
(g) local differential conductance GBB measured as a function
of VB and B‖. The phase bias is set to Φ = 0. Line-cuts at
B‖ = 0.3 T where (b) GTT shows a ZBCP. (h) GBB shows
a ZBCP. (d) GTB and (h) GBT are strongly antisymmetric
at high DC biases, and zero in a finite range around zero
DC bias. Gate voltage settings used for this measurement
were Vtqpc = −0.37 V, Vbqpc = −0.34 V, V1 = 0.085 V and
Vsc = −3.6 V.

numerically by following Φ-dependent lobe features (see
Methods). This allowed us to obtain the B‖ dependence
of the conductance matrix at fixed flux, as shown, for
instance, in Fig. 2 for Φ = 0.

Local conductance spectra showed a finite supercon-
ducting gap around B‖ = 0 [Fig. 2(a, g)]. With increas-
ing B‖, a band of resolvable discrete states moved to-
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FIG. 3. Phase dependence of local and nonlocal con-
ductance spectra. Local differential conductance GTT (left
column) and nonlocal differential conductance GTB (right col-
umn) measured as a function of out-of-plane magnetic field
B⊥ and source-drain bias, VT and VB, respectively at three
values of the in-plane magnetic field. (a) and (b) B‖ = 0,
showing a periodic modulation of the superconducting gap in
both the local and nonlocal spectrum. The nonlocal spectrum
shows a larger amplitude of the superconducting gap than the
local conductance spectrum. (c) and (d) B‖ = 0.15 T, shows
sub-gap states that are lowered in energy. These states are
phase-asymmetric and appear in both GTT and GTB. (e) and
(f) B‖ = 0.3 T shows a phase-independent ZBCP in GBB, but
not in GTB. GTB displays a superconducting gap that is mod-
ulated periodically with B⊥. Gate voltage settings used for
this measurement were Vtqpc = −0.385 V, Vbqpc = −0.38 V,
V1 = 0.092 V and Vsc = −3.6 V.

wards zero bias, closing the gap at B‖ ∼ 0.2 T followed
by its reopening. Beyond the reopening (0.2 T < B‖ <
0.4 T), but not before, ZBCPs were observed in both
GTT and GBB [Fig. 2(b, h)]. In this data set, the ZBCP
at the top end splits as B‖ approaches 0.4 T, whereas the
bottom end ZBCP appears to remain at zero, but dimin-
ishes in amplitude. Additionally, the ZBCPs observed at
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FIG. 4. Numerical simulation of local and nonlocal
conductance. (a) Local conductance GBB evaluated at the
bottom end of the junction as a function of B‖, and Φ = 0
including thermal broadening equivalent to a temperature of
50 mK. At B‖ ∼ 0.2 T the junction undergoes a topological
phase transition reflected by the closing and reopening of the
superconducting gap, followed by the appearance of a ZBCP.
(b) Nonlocal conductance GBT shows a corresponding gap-
reopening transition at B‖ ∼ 0.2 T without the formation of
a ZBCP.

each end do not exhibit strong correlation with respect to
variations of V1 (see Fig. S10). Both local conductances
show a final gap closure at B‖ ∼ 0.45 T.

The corresponding behavior of the nonlocal conduc-
tance spectra is shown in Figs. 2(c, e). A predominantly
antisymmetric signal is observed throughout the mea-
sured magnetic field range, with amplitude remaining
roughly uniform. The gap in the nonlocal spectrum un-
dergoes a closure at B‖ ∼ 0.2 T, at the same magnetic
field as the local conductance spectrum, and is visible in
both GTB and GBT. Both nonlocal conductances remain
strongly antisymmetric around zero bias. The nonlocal
gap then reopens obtaining a maximum at B‖ ∼ 0.3 T,
with line-cuts shown in Figs. 2(d, f). Notably, no ZBCP
is observed. Both nonlocal conductances disappear in a
finite window around zero bias before turning on sharply
at finite VT/B. The final closure of the nonlocal gap
at B‖ ∼ 0.45 T is more pronounced, in terms of signal
strength, than the closure at B‖ ∼ 0.2 T.

Local and nonlocal conductance spectra are modu-
lated by a small perpendicular magnetic field, B⊥, which
threads flux through the ∼ 12µm2 superconducting loop
(B⊥ ∼ 0.17 mT corresponds to Φ0 = h/2e through
the loop), showing the same period in B⊥ and in phase.
Around B‖ = 0 [Figs. 3(a, b)], the local gap in GTT

appears smaller than the nonlocal gap in GBT. At
B‖ ∼ 0.15 T [Figs. 3(c),(d)], flux-dependent states are
lowered in energy and fill the sub-gap spectrum in both
local and nonlocal conductances. Within each flux lobe,
states are asymmetric with respect to Φ. At B‖ =0.3 T, a
phase-independent ZBCP is measured in GTT [Fig. 3(e)]
but absent in GBT [Fig. 3(f)]. At this field, GBT remains
zero until a source-drain bias of VT ∼ 40 µeV at Φ = 0
and closes at Φ = Φ0/2. GTB and GBB, are qualitatively
similar to GBT and GTT respectively (see Fig. S9).

We also investigated nonlocal transport at gate set-
tings where a ZBCP was observed in the bottom lo-
cal conductance, but not the top local conductance (see
Fig. S4 and S5). In this case, a gap-reopening signature
was observed in nonlocal conductance and the nonlocal
gap remained finite in the reopened state. In other de-
vices where reasonably strong nonlocal conductance was
observed (∼ 0.01× 2e2/h), the nonlocal spectrum exhib-
ited a gap-reopening feature. In some cases, the sub-gap
nonlocal conductance in the reopened state remained fi-
nite, indicating a soft nonlocal gap (see Figs. S11 and
S12, [37]). Typically, we observed that ZBCPs appeared
at one or both ends of the device with more probability
at positive settings of the gate voltage V1 ∼ 0− 200 mV.
This may be attributed to strong screening of charge im-
purities due to larger channel carrier densities at these
voltage settings. Voltages larger than V1 ' 200 mV could
not be applied due to gate leakage. A systematic study
of this effect is left for future work.

To help interpret characteristic features of the observed
conductance matrix, we investigate a model of a PJJ us-
ing the Kwant software package [49], as described previ-
ously [17]. Here, we extend the model by tunnel coupling
the system to metallic leads at the junction ends. We first
investigate the disorder-free case with results shown in
Fig. 4. Top-bottom symmetry of the model ensures that
GTT = GBB and GTB = GBT. Figure 4(a) shows the lo-
cal conductance spectrum undergoing a topological gap-
reopening transition at B‖ ∼ 0.2 T, followed by a ZBCP
arising from a Majorana zero mode. The corresponding
nonlocal conductance spectrum, shown in Fig. 4(b), also
shows a reopening of the gap, but no sub-gap structure
once the gap reopens.

We note that the phase difference φ does not have a
strong influence on the critical magnetic field Bc ' 0.2 T
required for gap-closing and reopening. This is unlike
the predictions of models reported in [38, 39] where Bc

is strongly modulated by φ and can reach zero in a per-
fectly transparent junction when φ ∼ π. Reduced phase-
modulation is expected in our model due to the orbital
effect from the in-plane magnetic field, as shown in B‖−φ
phase diagrams comparing the two models (see Fig. S17).
Experimental limitations arising from the finite induc-
tance of the phase biasing loop (∼2 nH, see [17]) and
normal backscattering at the S-N interfaces [39] may fur-
ther reduce the effect of φ.

These model results support the interpretation that
nonlocal conductance is mediated by a combination of
co-tunneling and crossed-Andreev reflection of quasipar-
ticles carried by extended Andreev bound states. These
states have a finite probability density throughout the
length of the junction, including the two ends, and there-
fore also appear in the local conductances. Within this
picture, Majorana zero-modes appear as zero-bias peaks
only in local conductance, not in nonlocal conductance
because of their localized probability density. This is in
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contrast to extended Andreev bound states, which are
expected to appear in both local and nonlocal conduc-
tances [27, 29].

Including disorder within the model, we find that con-
ductance matrix signatures are qualitatively similar to
the disorder-free case as long as the disorder strength
is limited within a weak-to-intermediate regime (see
Figs. S13 and S14, [37]). All these regimes show a non-
local gap reopening with ZBCPs in local conductances,
associated with a topological phase. On the other hand,
strong disorder destroys topology and produces a char-
acteristic closed-gap signature in nonlocal spectroscopy
(see Fig. S15). Non-topological ZBCPs are still possible
in local conductances.

Conductance matrix signatures obtained from our
model for the cases of weak-to-intermediate disorder are
consistent with experiment. However, as opposed to
the experiment, in the numerical simulations we find
a large symmetric component of the nonlocal conduc-
tance, comparable in strength to the antisymmetric com-
ponent. Their relative strength depends on details used
to model finite temperature, disorder, and tunneling bar-
riers [18, 28], and may explain this discrepancy. Finally,
local ZBCPs are fully correlated in the model, but lack
such correlation in experiment.

Within a non-topological interpretation of our data,
an inhomogeneous chemical potential profile produces
non-topological zero-energy Andreev bound states at the
two device ends. In the model these states are not sta-
ble at zero-energy with respect to variation of Φ, which
may provide a distinguishing signature. Another non-
topological scenario is the case of strong disorder, where
a proliferation of low-energy sub-gap states prevents a
topological phase transition. This scenario can pro-
duce ZBCPs in local conductance, but does not show a
gap-reopening in the nonlocal conductance as discussed
in Fig. S15, and consistent with previous nanowire re-
sults [25, 31].

Within a topological interpretation, the presence of a
finite nonlocal gap without strong end-to-end ZBCP cor-
relation may arise from charge impurity disorder [50]. In
the case of nanowires, it was shown that a low density
∼ 1015/cm3 of charge impurities may create disjointed
topological segments and reduce or even eliminate end-
to-end ZBCP correlation, while still preserving topology.
We speculate that similar physics is possible in planar
JJs, but our present model cannot capture this effect. In
addition, various sources of disorder including interface
and bulk charged impurities, surface roughness and edge
roughness at the S-N interfaces are likely to be important
and their effects on the topological phase in planar JJs
remains to be investigated. Theoretical studies of con-
ductance matrix behavior including such disorder effects
may be directly compared against our experimental data
to help further clarify the situation.
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