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Quantum computers promise to dramatically outperform their classical counterparts. However, the non-
classical resources enabling such computational advantages are challenging to pinpoint, as it is not a single
resource but the subtle interplay of many that can be held responsible for these potential advantages. In this
work, we show that every bosonic quantum computation can be recast into a continuous-variable sampling
computation where all computational resources are contained in the input state. Using this reduction, we derive
a general classical algorithm for the strong simulation of bosonic computations, whose complexity scales with
the non-Gaussian stellar rank of both the input state and the measurement setup. We further study the conditions
for an efficient classical simulation of the associated continuous-variable sampling computations and identify an
operational notion of non-Gaussian entanglement based on the lack of passive separability, thus clarifying the
interplay of bosonic quantum computational resources such as squeezing, non-Gaussianity and entanglement.

Introduction.—Ever since the earliest quantum algorithms
[1-3], it has been clear that quantum computing holds the
potential of reaching exponential speed-ups as compared to
classical computers—be it for very specific problems. The
computational advantage [4] of quantum computers was more
rigorously established by connecting the classical simulation
of certain quantum sampling problems to the collapse of the
polynomial hierarchy of complexity classes [5, 6]. Boson
Sampling, in particular, has drawn the attention of a part of
the physics community, because the protocol is naturally im-
plemented with indistinguishable photons and linear optics.
These sampling problems also lie at the basis of the random
circuit sampling protocol [7], which would lead to the first ex-
perimental claim of a quantum computational advantage [8].
However, in a game of constantly shifting goal posts, this
claim has already been challenged [9].

At the same time, the development of building blocks for
potential quantum computing hardware has drastically accel-
erated during the last decade. Even though platforms such as
superconducting circuits and trapped ions have booked great
successes, the present work mainly focuses on optical imple-
mentations. The Knill-Laflamme—-Milburn scheme [10] pro-
vided the first proposal for a universal photonic quantum com-
puter, which to this day remains extremely challenging to im-
plement. Even though Boson Sampling [6] renewed the inter-
est in photonic quantum computing, generating, controlling,
and detecting sufficiently many indistinguishable photons is
still very challenging.

To circumvent the difficulties of dealing with single pho-
tons and conserve the advantages that optics can provide for
quantum information processing, such as intrinsic resilience
against decoherence, several research groups have explored
continuous-variable (CV) quantum optics as an alternative.
Rather than detecting photons, this approach encodes infor-
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mation in the quadratures of the electromagnetic field, which
can be detected through either homodyne or double homodyne
(sometimes called heterodyne) measurements [11]. Equipped
with its own framework for quantum computing in infinite-
dimensional Hilbert spaces [12], the CV approach has the ad-
vantage of deterministic generation of large entangled states,
over millions of subsystems [13—17]. By now, CV quantum
optics is considered a promising platform for quantum com-
puting [18]. Several sampling problems have also been trans-
lated to an infinite-dimensional context [19-23]. Among these
proposals, Gaussian Boson Sampling in particular attracted
much attention, which led ultimately to experimental realisa-
tions beyond the reach of classical computers [24-26].

From a complexity-theoretic point of view, it is well under-
stood why some of these specific sampling problems cannot
be efficiently simulated by a classical computer [27]. From a
physical point of view, several groups have explored the re-
quired resources for reaching a quantum computational ad-
vantage. Such endeavours typically aim to identify a physical
property without which a setup can be efficiently simulated
classically. Phase-space descriptions of quantum computa-
tions, such as the Wigner function [28, 29], are particularly
useful in that respect. For example, it has been shown that
negativity of the Wigner function is one of such necessary
resources [30, 31], albeit not sufficient [32]. More recently,
it became clear that squeezing and entanglement also play an
important role in the hardness of some sampling problems, but
only when combined in the right way [33, 34]. In Gaussian
Boson Sampling, for example, the state at hand is an entan-
gled Gaussian state, which can be described using a positive
Wigner function, while negativity of the Wigner function is
provided by the non-Gaussian photon detectors. This poten-
tial resourcefulness of the measurements is one reason why
sampling problems are complicated to analyse.

In this work, we address this problem by introducing a
new paradigm for studying resources for bosonic computa-
tions. Our contribution is three-fold: Firstly, we show that
every bosonic sampling computation has a dual CV sampling
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setup where the measurement is performed using double ho-
modyne detection, which can be understood as quasi-classical
and thus non-resourceful. This means that, in this dual sam-
pling setup, all computational resources are ingrained in the
measured state. Secondly, using this construction, we obtain
a classical algorithm for strongly simulating bosonic compu-
tations, whose complexity scales with the stellar rank, a dis-
crete non-Gaussian measure [35], of both the input state and
the measurement setup of the original computation. Our algo-
rithm is a generalisation of that of [36]—which applies only
to a restricted set of bosonic computations—to essentially any
bosonic computation. Our result thus establishes the stel-
lar rank as a necessary non-Gaussian resource for reaching a
quantum computational advantage with bosonic information
processing. Thirdly, we further show that the associated CV
sampling setup can also be efficiently simulated classically
whenever its corresponding input state is passively separable.
We explain that states that are not passively separable pos-
sess non-Gaussian entanglement, thus showing that this type
of entanglement is necessary for reaching a quantum compu-
tational advantage. Our results allow us to clarify the role
played by different non-classical resources in enabling quan-
tum computational advantage, which we illustrate with the ex-
ample of Boson Sampling.

Sampling tasks.—Our starting point is that of a general sam-
pling setup, where a quantum state o over m subsystems, or
modes, is measured by a series of m local detectors. We as-
sume that the k™ detector measures an observable f/k with a
spectral decomposmon ¥ = fy yPk . dy, where Y is the
spectrum of ¥;. Here, we limit ourselves to projective mea-
surements, but our results can be extended to more general
positive operator-valued measures through Naimark’s dilation
theorem.

In a sampling setup, our goal is to sample detector out-
comes with respect to the probability distribution given by the
Born rule: P(yi,...,yul0) = Tr [,13 ®ka1 Pk;},k]. For simplic-
ity, we can assume that the projectors are rank-one, such that
Pk;yk = |yi){¥kl. The measurement can thus be resourceful if
[yr) has a negative Wigner function or if it contains squeezing.
A priori, the state p can be any multimode mixed state, but in
a typical sampling setup it would be generated by applying a
series of few-mode gates to a set of single-mode input states.

Stellar hierarchy.—Hereafter, we describe bosonic states
using the stellar hierarchy [35] (see the Supplemental Ma-
terial [37] for a concise review). This formalism associates
to each m-mode pure state [¢)) = an YU In) its stellar (or
Bargmann) function F (z) = Zn>0 z"™, for all z € C",
and classifies bosonic states accordlng to thelr stellar rank:
pure states of finite stellar rank r* are those states whose stel-
lar function is of the form F*(z) = P(z)G(z), where P is a
multivariate polynomial of degree r* and G is a multivariate
Gaussian. Such states can be decomposed as G |C), where
G is a Gaussian unitary and |C') is a core state, i.e. a finite
superposition of Fock states. The number of nonzero coeffi-
cients of |C) is called the core state support size. For mixed
states, the stellar rank is defined by a convex roof construc-

tion: r*(p) = inf), 4, sup r*(2);), where the infinimum is over
the decompositions p = ; p; [1;){1;|. The stellar rank is a
faithful and operational non-Gaussian measure [34], as it is in-
variant under Gaussian unitaries, non-increasing under Gaus-
sian maps, and it lower bounds the minimal number of non-
Gaussian operations (such as photon additions or photon sub-
tractions) necessary to prepare a bosonic state from the vac-
uum, together with Gaussian unitary operations. Moreover,
any state can be approximated arbitrarily well in trace distance
by states of finite stellar rank, and an optimal approximating
state of a given stellar rank can be found efficiently [38].

To establish the duality between sampling an outcome from
the distribution P(yy,...,y,;) and double homodyne sampling,
we must analyse the pure states |y;). It is convenient to use
the stellar hierarchy to describe them: we can represent any
single-mode state |y;) of finite stellar rank as [35]
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where r*(y;) € N denotes the stellar rank of the state |y;), |Gy)
is a Gaussian state, D(B;. )i 1s a displacement operator that acts
on mode k with g,; € C, ak is the creation operator in mode
k, and N, is a normalisation factor. In this case, we can in-
terpret |y;) as an r*(yg)-photon-added Gaussian state (when
r*(yx) = 0, the empty product is the identity operator by con-
vention). Furthermore, since we can approximate any state
[yk) by a finite-rank state to arbitrary precision in trace dis-
tance, we assume that all |y;) have a—possibly high—finite
stellar rank.

The single-mode Gaussian states |G¢) can always be ob-
tained from the vacuum with squeezing and displacement op-
erations. This allows us to write |Gx) = S |ax), where Sy is
a suitably chosen squeezing operation and |a;) = ﬁ(ak) [0 4c
is a coherent state. Combining this with Eq. (1) we can now
recast

PO, ...,yml0) =

® |ak><ak|} @)

where S ®kS ¢ and p~ is a non-normalised photon-
subtracted state, given by p := ApA' with a photon-
subtraction operator A= ®k | I (’k) DB DT (Bin).-
The normalisation factor N in Eq. (2) 1s directly related to
the detectors we use, thus we assume it to be known a priori.

Coherent state samplers.—Double homodyne measurement
corresponds to a (subnormalised) projection onto coherent
states [11]. Hence, the expression in Eq. (2) shows that
sampling measurement outcomes yi,...,Y,, can always be
connected to performing double homodyne measurements on
a state that is obtained by squeezing and subtracting pho-
tons from the initial state p. The implementation of pho-
ton subtraction generally requires measurements on auxiliary
modes. The most common implementation involves a photon-
counting measurement [39], but this is not compatible with
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Figure 1. To any bosonic computation (left, in blue) is associated a
coherent state sampling setup (right, in orange) which takes as input
the same state p, together with auxiliary single-photon Fock states,
and whose output probability density approximates to arbitrary pre-
cision the output probability of a given outcome up to normalisation,
ie. P(ay,...,a,,0,...,0) = A%P(yl, ...»¥Ym). The number of aux-
iliary Fock states n is the sum of the stellar ranks of the projectors
associated with the outcomes yy, ..., V.

our aim of not having any resources at the level of the mea-
surement, since these measurements are represented by neg-
ative Wigner functions. Thus, we introduce a more unusual
construction inspired by sum-frequency generation [40].

To subtract a photon in a mode k from a state p, we attach an
auxiliary mode to our system, containing exactly one photon.
This state is injected in a very weak two-mode squeezer, given
by a unitary U(¢) = exp[if(&,t&;ux + Qrdaux )] (acting as identity
on all except the k” and the auxiliary modes). After having ap-
plied U(&), we project the auxiliary mode on the vacuum state
to find Tra (0@ ® DNANT @ @ 10X} ~ Eanpal,
where the approximation becomes exact when the approxi-
mation parameter & goes to 0 (see Supplemental Material).
Replacing each photon subtraction in Eq. (2) by the above
construction, we show in the Supplemental Material that for
any € >0, one can pick approximation parameters &.; =

poly (e,%) forall k € {1,...,m}and all j € {1,...,r*"(v)},
such that:
Py, ymld)
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where we have set n := } ;" r*(yx), and where the state Pioa
is defined on the full Hilbert space, including all the auxiliary
modes, and is given by

pow = (ST @ L) U (p AP US @ 1), (4)

with U given by U=, ]_[r "0 DBy DO & ND By
We note that U (&x;j) is the two- mode squeezer that connects
the k”* detection mode to the auxiliary mode that implements
the j” photon-subtraction operation associated with it and
thus (87 ® 1)@ is a Gaussian unitary. In particular,
P (Pow) = (0 ® (P = r*(p) + T4, r* () since the
stellar rank is fully additive with respect to tensor products
with pure states [34].

The projection on the vacuum is consistent with double ho-
modyne detection since |0),,. is also a coherent state. The
expression in Eq. (3) thus shows that any setup where one
samples a given outcome from a bosonic state can be mapped
theoretically to a larger coherent state sampling setup, whose
output probability density matches to arbitrary precision the
output probability of that outcome, up to a normalising factor
(see Fig. 1). Furthermore, the stellar ranks of the projection
operators translate to the inclusion of additional single-photon
Fock states in auxiliary modes. A similar derivation, detailed
in the Supplemental Material, shows that the corresponding
marginal probabilities are also reproduced by the marginals
probability densities of coherent state samplers.

Strong simulation of bosonic computations.—These results
highlight that coherent state samplers can be very generally
used to simulate other sampling setups using similar tech-
niques as in [36]. Strong simulation in particular refers to
the evaluation of any output probability of a computation, or
any of its marginals probabilities. Hereafter, we rely on the
following notion of approximate strong simulation: let P be
a probability distribution (density); for € > 0, approximate
strong simulation of P up to total variation distance € refers
to the computational task of strongly simulating a probability
distribution Q which is e-close to P in total variation distance
(see Supplemental Material for a formal definition).

The classical algorithm for strong simulation of Gaussian
circuits with non-Gaussian input states from [36, Theorem 2]
can be readily applied to coherent state samplers. Combining
this result with our construction, we obtain a general classical
algorithm for approximate strong simulation of bosonic quan-
tum computations whose complexity scales with the stellar
rank of both the input state and the measurement setup. We
state the result in the case of pure state input and projective
measurements and refer to Theorem 2 in the Supplemental
Material for the general theorem and its proof:

Theorem 1.—Let |1)) be an m-mode pure state of stellar rank
r* (1)) and core state support size s. For all k € {1,...,m}, let
¥, be an observable with eigenbasis {|yi)}yecy,, and let r,j =
supy, ey, (k). Let r := r;;) + 2y be the total stellar rank of
the setup. Then, the measurement of ¥y, ..., ¥,, on 1) over
an exponentially large outcome space can be approximately
strongly simulated up to total variation distance exp(—poly m)
in time O(s*r32" + poly m).

The total variation distance in the theorem results from
the approximation used in Eq. (3). This strong simula-
tion algorithm competes with state-of-the art classical algo-
rithms for certain bosonic architectures [36], but applies to a
much wider class of quantum computations—essentially any
bosonic computation. The time complexity in Theorem 1 is
a worst-case complexity, based on the fastest known classical
algorithm for computing the hafnian [41], and may be reduced
for particular instances. On the other hand, due to its broad
applicability, our simulation technique may be outperformed
by classical simulation algorithms targeting specific classes
of bosonic circuits [42-46]. Nonetheless, Theorem 1 may be
used primarily as a tool for identifying necessary resources for



bosonic quantum computational advantage: it establishes the
stellar rank as a necessary non-Gaussian property.

Non-Gaussian entanglement.—Now that we have shown
that any bosonic computation can be connected to a coher-
ent state sampler, we aim to identify physical resources that
are required to reach a quantum advantage with coherent state
sampling beyond the stellar rank. We resort to a basic model
of coherent state sampler, where we consider sampling from a
given N-mode state . The probability density corresponding
to a certain set of complex measurement outcomes «j, . .., @y
in the N output detectors is given by the Husimi Q-function of
the state & Q(d@|6) = v (@| & |@), where @ = (a1, ...,an)".
By having put all the quantum resources of the sampling pro-
tocol at the level of the state, the hardness of the sampling
problem can now be directly related to properties of the re-
sourceful state’s Q-function.

Under basic assumptions, we can efficiently sample classi-
cally from the Q-function of any separable mixed state (see
Supplemental Material for a discussion). Hence, quantum en-
tanglement of the input state is a necessary requirement in the
design of a coherent state sampler that is hard to simulate.
However, it turns out that not all forms of entanglement are
equally suitable. In previous works [34, 47], we have dis-
cussed the concept of passive separability: a quantum state is
said to be passively separable if at least one mode-basis exists
in which the state is separable. In other words, for a passively
separable state, any entanglement can be undone by an inter-
ferometer built with beam-splitters and phase-shifters.

The concept of passive separability becomes essential when
we combine it with the properties of coherent states. Let U
describe a passive N-mode linear optics interferometer in the
sense that (A]T&kf] = Zj Ujaj, where U is an N X N unitary
matrix. The action of U/ on an N-mode coherent state is given
by U |5Z> = |U @). This simple identity implies that for all pas-
sive linear optics transformations, Q(@|?) = Q(U@|U+UT). By
definition, for any state 7 which is passively separable, there
is at least one transformation U such that U7U" is separa-
ble. This, in turn, means that we can efficiently sample from
the distribution Q(@U%0%). Hence, we can sample a vec-
tor @ from Q(@?) by first sampling £ distributed according to
0(B|U207") and subsequently identifying @ = U'S. Thus, we
find that we can efficiently simulate the coherent state sam-
pling from any passively separable state.

To reach a quantum computational advantage with a coher-
ent state sampler, we thus have to use input states that are not
passively separable. This requirement immediately excludes
all Gaussian states, since these are always passively separable
[48]. The lack of passive separability can therefore be seen
as non-Gaussian entanglement in the sense that it is a form
of entanglement that persists in any mode-basis and cannot be
extracted based solely on the state’s covariance matrix. It thus
highlights the presence of non-Gaussian features in the state’s
correlations.

We emphasize that there are other intuitive notions of non-
Gaussian entanglement. When we call states that are sepa-

rable through general Gaussian operations (i.e. a combina-
tion of interferometers and squeezing operations) Gaussian-
separable, one could say that only states which are not
Gaussian-separable have non-Gaussian entanglement. To un-
derstand what notion of non-Gaussian entanglement is nec-
essary for reaching a quantum computational advantage with
coherent state sampling, we consider the seminal example of
Boson Sampling. Through Eq. (3), we find that ideal Boson
Sampling with n input photons and an m-mode interferome-
ter Ugs corresponds to coherent state sampling from a state
given by |¥) o (I:I(IA]BS ® ]laux) [Wiotal), Where U is a tensor
product of two-mode squeezers and where the state [Piory) is
a 2n-photon Fock state that combines the input state of the
boson sampler with n auxiliary photons, given by

Wou)=[|D)®--@)e|0)® - 20} |g[|H® - ®]1)]

n m—n n

aux*

4)
Boson Sampling is known to be a hard problem, so exact co-
herent state sampling from the state [¥) is also classically
hard [49]. The structure of this state nicely highlights the
three fundamental types of non-classicality that are required:
non-Gaussian resources in [WPi), large-scale entanglement
through Ugg, and squeezing through /. Furthermore, the
order of the elements is essential: the state [¥) is not pas-
sively separable because the squeezing operations in U and
the non-Gaussian features in Wiy, ) are local in a different
mode basis. However, U (UBS ® ]laux> is a Gaussian operation
and |Wyo) is separable. This means that the state [¥) is thus
Gaussian-separable but not passive-separable. Hence, there
are Gaussian-separable states leading to coherent state sam-
pling that cannot be efficiently simulated. We thus propose
to define non-Gaussian entanglement as the type of entangle-
ment that is present in states that are not passively separable.
This amounts to defining it operationally as a type of entan-
glement that is necessary to achieve computationally hard co-
herent state sampling.

Conclusion.—In this work, we argue that any bosonic sam-
pling computation can be mapped to a corresponding coher-
ent state sampling computation. Our construction allows us to
derive a general classical algorithm for strong simulation of
bosonic computations, whose time complexity scales with the
stellar rank of the input state and the measurement setup of
the computation.

We see our work in first instance as providing a useful
method to analyse the resources in sampling setups because all
resources in coherent state sampling are situated at the level of
the state. As such, we also find that coherent state sampling
with passively separable states can be simulated efficiently.
We therefore find that the lack of passive separability rather
than the lack of Gaussian separability is the operationally use-
ful type of non-Gaussian entanglement.

Our key reduction in Eq. (3) shows that any non-Gaussian
resource in the measurement is introduced in the coherent
state sampler through auxiliary photons. The total number of
auxiliary photons in the coherent state sampler ultimately cor-




responds to the total stellar rank of the measurement setup.
These photons must be entangled in a fundamentally non-
Gaussian way to achieve the necessary sampling complexity.
For pure states, this non-Gaussian entanglement also implies
one of the previous requirements for reaching a quantum com-
putational advantage: Wigner negativity [30]. Yet, for mixed
states it remains an open question how the necessity of Wigner
negativity translates to the coherent state sampler.

Typical sampling setups such as (Gaussian) Boson Sam-
pling correspond to reasonably simple coherent state samplers
that mix local non-Gaussian resources through a multimode
Gaussian transformation. However, in the multimode bosonic
state space much more exotic states can be conceived.
Preparing such states would require multimode non-Gaussian
unitary transformations, and it would be interesting to
understand whether they have any additional computational
resourcefulness.
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