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Networks of semiflexible or stiff polymers such as most biopolymers are known to deform inho-
mogeneously when sheared. The effects of such non-affine deformation have been shown to be much
stronger than for flexible polymers. To date, our understanding of non-affinity in such systems is
limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium
theory (EMT) for non-affine deformation of semiflexible polymer and fiber networks, which is gen-
eral to both 2D and 3D and in both thermal and athermal limits. The predictions of this model
are in good agreement with both prior computational and experimental results for linear elasticity.
Moreover, the framework we introduce can be extended to address nonlinear elasticity and network
dynamics.

Networks of stiff or semiflexible polymers are vital for
the function of most living systems. Such networks con-
trol much of the elastic properties of biomaterials rang-
ing from the cell cytoskeleton to extracellular matrices
at the tissue scale [1–4]. Over the past few decades
there has been significant progress in our understand-
ing of the fundamental physical properties of semiflexible
networks [5–17]. Previous studies of 2D and 3D semi-
flexible networks have, among other things, revealed a
transition from bend-dominated, non-affine regime to a
stretch-dominated, affine regime [18–28] that is governed
by the average polymer length (or molecular weight), in
stark contrast with flexible polymer systems.

The classical theory of rubber elasticity [29–31] is very
successful in describing the elastic properties of flexible
polymers networks. Early approaches assumed defor-
mations to be affine, with uniform strain on all scales.
The phantom-network model relaxed this assumption
and showed that local network structure indeed affects
elastic properties, but in a way that does not change the
basic scaling with macroscopic quantities such as average
polymer length, system volume, temperature, etc. [32–
34]. By contrast, the strong bending rigidity of semiflex-
ible polymers invalidates the phantom model and leads
to much stronger non-affine effects [18, 19, 35], including
a surprising dependence on dimensionality [22]. Most
of the prior work accounting for non-affinity in semi-
flexible networks has been limited to numerical simula-
tion [20, 36–39], while a theory analogous to the phan-
tom network has been lacking, especially in 3D. Vari-
ous models based on effective medium theories (EMT)
introduced for rigidity percolation [40–42] have been
proposed for lattice-based or topologically similar net-
works [21, 24, 43–48], along with floppy mode models
for off-lattice networks [49, 50]. But, both of these ap-
proaches have been limited to 2D networks and have ne-
glected important thermal fluctuations.

Here, we develop an analytical model for the elastic-
ity of both thermal semiflexible polymer and athermal
fiber networks that accounts for the non-affine defor-
mations. Our model applies to both lattice-based and
random off-lattice networks that are isotropic and ho-
mogeneous on large scales. As we show, this model
can be applied to both thermal and athermal networks.
Our prediction of the bend-to-stretch transition quanti-
tatively agrees with previous athermal simulations of 3D
networks, while explaining the different scaling depen-
dences on filament length in 2D lattice and off-lattice
(e.g., Mikado) networks. Moreover, for thermal networks
where simulations are lacking, our model predicts a bend-
to-stretch transition that agrees with previous experi-
ments [26, 51]. Although we focus here on the linear elas-
tic limit, this model can also be extended to address the
role of non-affine fluctuations in the dynamics [52–55],
stress-stiffening [11, 12] and recently identified strain-
controlled criticality [56–59].

We begin by considering an athermal crosslinked semi-
flexible polymer network in 3D. The discussion on 2D and
thermal networks is postponed to later. The network is
formed by N filaments each with polymer length L and
point-like hinged crosslinks with average crosslinking dis-
tance `c. Its Hamiltonian is:

HO =

N∑
α=1

[
Hb [uα(s)] +Hs [uα(s)]

]
, (1)

where uα(s) = uα‖ (s) + uα⊥(s) is the microscopic dis-
placement of the α-th polymer at position s along its
contour (−L/2 < s < L/2), with uα‖ (s) and uα⊥(s) be-
ing its longitudinal and transverse components, respec-
tively. Hb [u(s)] = κ

∫
ds|∂2u⊥/∂s2|2/2 and Hs [u(s)] =

µ
∫

ds|∂u‖/∂s|2/2 are the bending and stretching energy,
respectively. If a crosslink exists between the α-th and
the β-th polymer, it leads to an additional constraint,
uα(sαβ) = uβ(sβα), with sαβ (sβα) being the position of
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Figure 1. (a) 2D sketch of a crosslinked semiflexible polymer
network in either 2D or 3D, with average crosslinking distance
`c. Each polymer has a contour length L. (b) Sketch of the
EMT, in which crosslinks are replaced by springs that con-
nects the polymers with a substrate which deforms affinely
(two polymers connected by one crosslink are connected to
the substrate via two different springs, see, e.g., the dashed
polymer). Spring constants for the parallel and transverse
directions of the connected polymer are K‖ and K⊥, respec-
tively.

the crosslink on the α-th (β-th) polymer.
We are interested in how this network deforms under

an external shear stress σO. For athermal networks the
deformation is found from the minimum-energy state,
in which the microscopic deformations of each polymer
are denoted by ũα(s) and the shear strain of the entire
network is γO. The linear shear modulus is defined as
GO = ∂σO/∂γO|γO=0. For simplicity we assume a stress
σO in the x− z plane. This causes (in the linear regime)
a simple shear of the x− z plane in the x direction, such
that γO corresponds to a single nonzero term Λxz = γO
in the deformation tensor Λ.

Although the network Hamiltonian has a quadratic
form (Eq. (1)), a direct analytical solution of the
minimum-energy state is challenging for two reasons:
the first is the existence of the crosslinking constraints,
which introduces correlations between different polymers.
Therefore, their deformations uα(s) can not be consid-
ered as independent variables; the other is the unclear
relation between the microscopic deformations (uα) and
the macroscopic deformation (γO) for non-affine deforma-
tions. Below we detail how we overcome these challenges.

To remove the crosslink constraints, we have devel-
oped an EMT, in which all the polymers in the orig-
inal network are preserved while all crosslinks are re-
moved (Fig. 1(b)). To mimic the restraining effect of
the crosslinks, each crosslink is replaced by a spring that
connects the polymer at the position of the crosslink with
a substrate. The substrate can only deform affinely, and
its deformation does not cost any energy. Each spring
has two spring constants, K‖ and K⊥, for the parallel
and transverse direction of its connected polymer, re-
spectively. The resulting EMT has an additional elastic
energy HK and the effective Hamiltonian is

H
EM

=

N∑
α=1

(
Hb [vα(s)] +Hs [vα(s)] +HK [vαNA(s)]

)
,

(2)

where the microscopic deformation in the EMT is de-
noted by vα(s) = vαA(s) + vαNA(s), with vαA(s) being the
affine displacement and vαNA(s) being the non-affine dis-
placement. Note that only non-affine displacements af-
fect HK , since forces are not induced between affinely
deforming polymers that simply stretch/compress uni-
formly. The microscopic affine displacements are given
by vαA(s) = sΛ · n̂α, with n̂α defining the polymer orien-
tation. The additional energy HK is the summation of
the elastic energy of all springs connected to each poly-
mer:

HK [vαNA(s)] =
K‖

2

∑
i

|vαNA‖(si)|
2

+
K⊥
2

∑
i

|vαNA⊥(si)|2, (3)

where si is the position of the i-th spring, and vαNA⊥
and vαNA‖ are the transverse and longitudinal compo-
nents of vαNA, respectively. Importantly, terms with the
same index α in Eq. (2) describe a single-polymer Hamil-
tonian in which the network structure is accounted for
through a harmonic energy. Such approach is conceptu-
ally similar to the effective spring constant introduced in
Refs. [60, 61] for entangled polymer solutions, as well as
tube models for flexible polymer networks [62].

Under an imposed shear stress σ
EM

, we define the mi-
croscopic deformations in the minimum-energy state of
the EMT as ṽα(s), with a shear strain γEM and an elas-
tic modulus G

EM
= ∂σ

EM
/∂γ

EM
|γ

EM=0
. Our goal is to

find an EMT that reproduces the elasticity of the orig-
inal network on average, i.e. G

EM
= GO, the inverse of

which can be rewritten using the chain rule:∑
αi

∂ũαi
∂σO

· ∂γO
∂ũαi

=
∑
αi

∂ṽαi
∂σEM

· ∂γEM

∂ṽαi
, (4)

where ũαi = ũα(si) and ṽαi = ṽα(si) are the displace-
ments on the crosslink positions (symbols without tilde
are arbitrary polymer displacements, while symbols with
tilde denote polymer displacements in the minimum-
energy state). To ensure that Eq. (4) is satisfied, we
look for an EMT that satisfies simultaneously〈

∂ũαi
∂σO

〉
=

∂ṽαi
∂σ

EM

, (5a)

∂γO
∂ũαi

=
∂γ

EM

∂ṽαi
. (5b)

In Eq. (5a) we average the effects of random crosslink-
ing angles in the original network. These requirements
may not be the only appropriate ones and may appear
to be stronger than necessary. However, as we will show
later, this choice does lead to good agreement with the
expected macroscopic elasticity. Equation (5a) is essen-
tially a coherent potential approximation (CPA) as in
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Figure 2. Sketch of the test force approach. A particular node
on the purple polymer is deformed by a test force F . The
resulting displacement is δrO in the original network (a), and
δrEM in the EMT (b). For 3D networks the adjacent nodes are
assumed to be fixed, while for 2D networks the displacement
of adjacent nodes need to be considered, see Fig. 4(a).

the classic EMT of 2D lattice-based networks [42, 63].
Importantly, Eq. (5b) is different from what is usually
done in an EMT, in that it allows our EMT to deform
non-affinely.

We start with the first requirement. Equation (5a) de-
scribes the local displacement caused by the stress, which
can thus be considered as a local compliance. As the
stress can be decomposed to local forces on each node in
the network, we exert a test force F on a particular node
on the same polymer in both the original network and
the EMT, and measure the resulting displacements, δrO
and δr

EM
(see Fig. 2). By letting 〈δrO〉n̂ = δr

EM
, where

n̂ is the orientation of the other polymer crosslinked to
the node in the original network, we obtain the values
of the two spring constants, which for 3D networks read
(see Sec. I of [63]):

K⊥ = K‖ =
18κ

`3c
. (6)

The equality ofK⊥ andK‖ is consistent with an isotropic
effective medium. Importantly, however, the node com-
pliance is still highly anisotropic due to Hs. Note that in
deriving Eq. (6) we assumed for simplicity that all poly-
mers are straight in the undeformed state of the origi-
nal network. This assumption may not hold in real net-
works but is consistent with previous lattice-based sim-
ulations [15, 22]. We discuss this further in Sec. IC of
[63].

To solve Eq. (5b), one needs to find the relation be-
tween the macroscopic deformation Λ and the micro-
scopic deformations uα. This is simple in the affine limit,
as noted above. For non-affine deformations the situation
is more complex. To address this, instead of determining
uα from Λ, we do it inversely by determining Λ from
uα. Generally, Λ is a functional of all microscopic defor-
mations, Λ

[
u1(s),u2(s), ...,uN (s)

]
. In the small strain

limit, we can always perform a linear expansion,

Λ =
∑
α

∫ L/2

−L/2
dsuα(s) · T α(s), (7)
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Figure 3. Shear modulus for 3D athermal networks. Sim-
ulation results of phantom-fcc-lattice network is reproduced
from Ref. [22], with filament length corrected by the mini-
mum length of rigidity percolation, Lr = 2.85`c. Theoretical
prediction is plotted using Eq. (S41) in Ref. [63], which is sim-
ilar to Eq. (8) but calculated for networks with exponential
length distribution as in the simulation.

where T α(s) is a third-order coefficient tensor. We find
that T α(s) can be uniquely determined from three condi-
tions: (i) the affine deformation should satisfy Eq. (7), as
it is a special case of the non-affine deformation; (ii) we
assume the network is homogeneous on large scale, so all
polymers are identical to each other except for their dif-
ferent orientations, leading to T α(s) = T (n̂α, s); (iii) we
assume the network is isotropic [64]. The full derivation
of T is detailed in Sec. II of [63]. A similar macroscopic-
microscopic relation can be defined for the EMT as well
with a coefficient tensor T α

EM
(s), whose value is related

to T α(s) via Eq. (5b). For 3D networks T
EM

= T , while
for 2D networks T

EM
becomes more complicated due to

the floppy mode deformation [49], see discussion later.
By solving Eqs. (5a) and (5b), we have linked the EMT

to the original network. The EMT elasticity G
EM

can
be found by minimizing Eq. (2) under an applied stress,
which should be consistent with the elasticity of the orig-
inal network GO (see Sec. III A of Ref. [63] for details).
For 3D athermal monodispersed networks (all polymers
have the same length) we find that

GO
GA

=

[
1 +

4
√

2λNA

L
· coth

(
3L√
2λNA

)]−1
, (8)

where GA = ρµ/15 is the affine linear elastic modulus,
ρ is the polymer length density and λNA = `2c/

√
κ/µ

is a characteristic non-affine lengthscale. We compare
this theoretical prediction with previous simulations on
lattice-based 3D networks [22] and find good quantitative
agreement in both the scaling for small polymer length
L (GO ∼ L2) and in the transition to an affine deforma-
tion regime for larger L (Fig. 3). Interestingly, the non-
affinity in the EMT is dominated byK⊥. For comparison
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we also plot in Fig. 3 the predicted modulus withK‖ = 0,
showing a minor difference in the non-affine/affine tran-
sition region. This shows that the longitudinal deforma-
tion of the polymers is dominated by their own stretch-
ing rigidity, while K‖ has a minor effect, mainly in the
non-affine/affine transition where almost all longitudinal
deformation is achieved from bending surrounding poly-
mers. For simplicity we neglect K‖ hereafter.

Having verified our EMT using previous simulations
on athermal networks, we consider thermal networks for
which simulations are challenging computationally. Such
challenge is due to the thermal fluctuations of the net-
work state around its ground state, which are crucial to
the elasticity of cytoskeletal networks [11, 12]. The elas-
ticity can be found by calculating the average strain of
the Boltzmann distribution at finite temperature T (see
Sec. III B of Ref. [63]):

GO =
ρµph

15

(
1 + 266.7`c`p/L

2
)−1

, (9)

where `p = κ/(kBT ) is the persistence length, with kB
being the Boltzmann constant. Here µph = 100κ`p/`

3
c

is the effective stretch rigidity in the presence of ther-
mal fluctuations. Interestingly, the limit L → ∞ corre-
sponds to a high molecular-weight analog of a phantom
network, including node fluctuations. This slightly dif-
fers (∼ 10%) from the limit of affinely deforming nodes
with only transverse bending fluctuations [5, 12, 63]. For
finite L we predict a strong L-dependence of the network
elasticity that has not been identified by previous studies.
Moreover, the non-affinity leads to a crucial correction to
the non-linear stiffening effect [11, 12], as will be detailed
in future work [65].

Above we have focused on 3D networks, but our theory
is general to other dimensionalities. There is, however,
an essential difference between 3D and 2D networks, due
to the Maxwell isostatic condition for rigidity percola-
tion for coordination number z = Zc = 2d in d dimen-
sions [66]. For networks formed by long polymers the
connectivity approaches 4 from below. The local, near
isostatic connectivity in 2D leads to long-range floppy
modes [49, 50] that are absent in 3D, for which there is al-
ways a local floppy mode (see Fig. 4(a)). In 2D networks,
independent displacements of crosslinks are prohibited
without stretching. In the limit of large µ, when one
crosslink in a 2D network is displaced, all other crosslinks
on its connected polymer must deform in a particular way
to avoid stretching deformation (see Fig. 4(b)), leading
to displacements of L/`c crosslinks. This floppy-mode
deformation requires taking into account the coupled de-
formation of multiple crosslinks when calculating both
the medium rigidity (Eq. (6)) and the coefficient tensor
(Eq. (7)). We find that K⊥ ∼ L for a 2D lattice. For
Mikado networks, K⊥ is further enhanced by the broad
distribution of crosslink separations `c along the back-
bone [49], resulting in K⊥ ∼ L3. As shown in Sec. IV

2D phantom triangular latticeRef. [25]
Ref. [22]

2D Mikado

Ref. [31]

Ref. [18]

Ref. [26]

(a)

(b)2D kagome lattice

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

2

4

Figure 4. (a). Difference between 3D and 2D networks. In 3D
networks, a crosslink can deform in the direction perpendic-
ular to its two connected polymers, without deforming other
crosslinks. In 2D networks, an entire polymer has to move
together with the crosslink, leading to deformation of L/`c
crosslinks. (b). Scaling dependence in 2D Mikado and 2D
lattice-based networks. λNA = κ−1/4µ1/4`

3/2
c for Mikado and

λNA = κ−1/2µ1/2`2c for lattice-based. Lr = 5.9`c (Mikado),
2.94`c (phantom triangular) and 2.53`c (Kagome) are the
minimum lengths for rigidity percolation. Simulation data re-
produced from Ref. [19, 28, 35] (Mikado), Ref. [24] (Kagome
lattice) and Ref. [27] (phantom triangular lattice). The slight
difference between Ref. [24] and Ref. [27] is due to their dif-
ferent lattice structures.

of [63], we predict the following scaling dependences in
the non-affine regime:

GO ∼


L2 (3D, any structure)

L2 (2D, lattice)

L4 (2D,Mikado)

. (10)

Equation (10) agrees with previous numerical studies for
3D lattices [22], 2D lattices [24, 27], and 2D Mikado net-
works [18, 19, 25, 28, 35], as shown in Fig. 4(b). While
various molecular weight scalings of 2D Mikado networks
have been reported, the previous numerical studies are
consistent with a common (L − Lr)

4 (see Sec. IV of
[63]). Interestingly, although the local network structure
strongly affects the scaling dependence of 2D networks
with different distributions of `c, our model predicts a
L2 scaling that is robust for any structure, including po-
tentially broad, randomly distributed `c in experimen-
tally relevant 3D networks. Previous experimental stud-
ies on hydrogels and numerical studies on 3D Mikado-
like networks are consistent with an L2 dependence in
3D [26, 39, 51].

In conclusion, the model presented above constitutes a
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basis for understanding the linear elasticity of both ther-
mal semiflexible polymer and athermal fiber networks in
2D and 3D, including non-affine effects. Such non-affine
effects are known to be more important for such systems
than for flexible polymer gels, although most prior work
addressing non-affinity in such systems has been limited
to simulation, particularly for 3D. As we have shown,
the Maxwell isostatic condition results in an important
difference between 2D and 3D networks, reinforcing the
demand for a 3D theory. Our EMT approach predictions
are in very good agreement with prior numerical simu-
lations for athermal networks. In addition, we predict
the elasticity of thermal networks and find an unexpect-
edly strong molecular weight dependence for which ther-
mal simulations have been lacking. Our thermal results
may aid ongoing experimental efforts to quantify non-
affine effects, which have proven inconclusive to date in
biopolymer networks.

An important feature of our theory is that the EMT
is allowed to deform non-affinely, allowing us to cap-
ture accurately non-affine deformations of real networks.
This also allows predictions of non-affine fluctuations
including thermal fluctuations, in contrast to prior ef-
fective medium approaches. Our model can be ex-
tended to predict nonlinear elastic effects such as stress-
stiffening [11, 12]. This is possible even with our as-
sumptions above of small displacements, in a way similar
to prior theories of nonlinear semiflexible chain stretch-
ing [5, 12, 67]. Our model can also be extended to
address strain-controlled criticality that has previously
been identified computationally [65]. However, an im-
portant limitation of our approach is that it is a mean-
field theory, and cannot be expected to predict anoma-
lous critical exponents. Moreover, with the Hamiltonian
of Eq. (2), the derivation of network dynamics is straight-
forward. Finally, our EMT approach is not limited to
permanently-crosslinked networks, and can be applied
also to transiently-crosslinked networks [68–70]. Interest-
ingly, in Refs. [60, 61] an effective spring constant, which
is conceptually similar to our effective medium rigidity,
is estimated for a solution of entangled polymers. When
combined with the present model, this suggests a possible
model for entangled solutions.

Acknowledgments: This work was supported in part
by the National Science Foundation Division of Mate-
rials Research (Grant No. DMR-2224030) and the Na-
tional Science Foundation Center for Theoretical Biolog-
ical Physics (Grant No. PHY-2019745). The authors ac-
knowledge fruitful discussion with T. Lubensky and M.
Rubinstein.

[1] D. Fletcher and R. Mullins, Nature 463, 485 (2010).
[2] J. L. Shivers, J. Feng, A. S. G. van Oosten, H. Levine,

P. A. Janmey, and F. C. MacKintosh, Proc. Natl. Acad.
Sci. U.S.A. 117, 21037 (2020).

[3] A. S. van Oosten, X. Chen, L. Chin, K. Cruz, A. E.
Patteson, K. Pogoda, V. B. Shenoy, and P. A. Janmey,
Nature 573, 96 (2019).

[4] A. W. Hudnut, L. Lash-Rosenberg, A. Xin, J. A.
Leal Doblado, C. Zurita-Lopez, Q. Wang, and A. M.
Armani, ACS Biomater. Sci. Eng. 4, 1916 (2018).

[5] F. C. MacKintosh, J. Käs, and P. A. Janmey, Phys. Rev.
Lett. 75, 4425 (1995).

[6] H. Isambert and A. Maggs, Macromolecules 29, 1036
(1996).

[7] K. Kroy and E. Frey, Phys. Rev. Lett. 77, 306 (1996).
[8] F. Gittes and F. C. MacKintosh, Phys. Rev. E 58, R1241

(1998).
[9] B. Hinner, M. Tempel, E. Sackmann, K. Kroy, and

E. Frey, Phys. Rev. Lett. 81, 2614 (1998).
[10] D. C. Morse, Macromolecules 31, 7030 (1998).
[11] M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahade-

van, P. Matsudaira, and D. A. Weitz, Science 304, 1301
(2004).

[12] C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Luben-
sky, and P. A. Janmey, Nature 435, 191 (2005).

[13] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacK-
intosh, Science 315, 370 (2007).

[14] O. Chaudhuri, S. H. Parekh, and D. A. Fletcher, Nature
445, 295 (2007).

[15] O. Stenull and T. Lubensky, arXiv preprint
arXiv:1108.4328 (2011).

[16] C. P. Broedersz and F. C. MacKintosh, Rev. Mod. Phys.
86, 995 (2014).

[17] R. H. Pritchard, Y. Y. S. Huang, and E. M. Terentjev,
Soft matter 10, 1864 (2014).

[18] D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys.
Rev. Lett. 91, 108102 (2003).

[19] J. Wilhelm and E. Frey, Phys. Rev. Lett. 91, 108103
(2003).

[20] P. R. Onck, T. Koeman, T. Van Dillen, and E. van der
Giessen, Phys. Rev. Lett. 95, 178102 (2005).

[21] M. Das, F. C. MacKintosh, and A. J. Levine, Phys. Rev.
Lett. 99, 038101 (2007).

[22] C. P. Broedersz, M. Sheinman, and F. C. MacKintosh,
Phys. Rev. Lett. 108, 078102 (2012).

[23] A. Shahsavari and R. C. Picu, Phys. Rev. E 86, 011923
(2012).

[24] X. Mao, O. Stenull, and T. C. Lubensky, Phys. Rev. E
87, 042602 (2013).

[25] A. S. Shahsavari and R. C. Picu, Int. J. Solids Struct.
50, 3332 (2013).

[26] V. D. Nguyen, A. Pal, F. Snijkers, M. Colomb-Delsuc,
G. Leonetti, S. Otto, and J. van der Gucht, Soft Matter
12, 432 (2016).

[27] A. J. Licup, A. Sharma, and F. C. MacKintosh, Phys.
Rev. E 93, 012407 (2016).

[28] K. Baumgarten and B. P. Tighe, Soft Matter 17, 10286
(2021).

[29] M. Rubinstein and R. H. Colby, Polymer Physics, 1st ed.
(Oxford, New York, 2003).

[30] H. M. James, J. Chem. Phys. 15, 651 (1947).
[31] H. M. James and E. J. Guth, J. Chem. Phys. 11, 455

(1948).
[32] P. J. Flory, Br. Polym. J. 17, 96 (1985).
[33] C. Miehe, S. Göktepe, and F. Lulei, J. Mech. Phys. Solids

52, 2617 (2004).



6

[34] A. Raina and C. Linder, J. Mech. Phys. Solids 65, 12
(2014).

[35] D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys.
Rev. E 68, 061907 (2003).

[36] J. S. Palmer and M. C. Boyce, Acta Biomater. 4, 597
(2008).

[37] E. M. Huisman, C. Storm, and G. T. Barkema, Phys.
Rev. E 78, 051801 (2008).

[38] A. R. Cioroianu, E. M. Spiesz, and C. Storm, J. Mech.
Phys. Solids 89, 110 (2016).

[39] M. Islam and R. Picu, Journal of Applied Mechanics 85
(2018).

[40] J. C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).
[41] M. F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983).
[42] S. Feng, M. F. Thorpe, and E. Garboczi, Phys. Rev. B

31, 276 (1985).
[43] C. P. Broedersz, X. Mao, T. C. Lubensky, and F. C.

MacKintosh, Nat. Phys. 7, 983 (2011).
[44] M. Sheinman, C. P. Broedersz, and F. C. MacKintosh,

Phys. Rev. E 85, 021801 (2012).
[45] X. Mao, O. Stenull, and T. C. Lubensky, Phys. Rev. E

87, 042601 (2013).
[46] X. Mao, A. Souslov, C. I. Mendoza, and T. Lubensky,

Nature Communications 6, 1 (2015).
[47] J. Huang, J. O. Cochran, S. M. Fielding, M. C. Marchetti,

and D. Bi, Phys. Rev. Lett. 128, 178001 (2022).
[48] O. K. Damavandi, M. L. Manning, and J. M. Schwarz,

EPL 138, 27001 (2022).
[49] C. Heussinger and E. Frey, Phys. Rev. Lett. 97, 105501

(2006).
[50] D. Zhou, L. Zhang, and X. Mao, Phys. Rev. Lett. 120,

068003 (2018).
[51] M. Jaspers, M. Dennison, M. F. Mabesoone, F. C. MacK-

intosh, A. E. Rowan, and P. H. Kouwer, Nat. Commun.
5, 1 (2014).

[52] B. P. Tighe, Phys. Rev. Lett. 109, 168303 (2012).
[53] M. Yucht, M. Sheinman, and C. Broedersz, Soft Matter

9, 7000 (2013).
[54] R. Milkus and A. Zaccone, Phys. Rev. E 95, 023001

(2017).

[55] J. L. Shivers, A. Sharma, and F. C. MacKintosh, arXiv
preprint arXiv:2203.04891 (2022).

[56] A. Sharma, A. J. Licup, K. A. Jansen, R. Rens, M. Shein-
man, G. H. Koenderink, and F. C. MacKintosh, Nat.
Phys. 12, 584 (2016).

[57] M. F. J. Vermeulen, A. Bose, C. Storm, and W. G.
Ellenbroek, Phys. Rev. E 96, 053003 (2017).

[58] M. Merkel, K. Baumgarten, B. P. Tighe, and M. L.
Manning, Proc. Natl. Acad. Sci. U.S.A. 116, 6560 (2019).

[59] S. Arzash, J. L. Shivers, and F. C. MacKintosh, Soft
Matter 16, 6784 (2020).

[60] D. C. Morse, Phys. Rev. E 63, 031502 (2001).
[61] H. Hinsch, J. Wilhelm, and E. Frey, Eur. Phys. J. E 24,

35 (2007).
[62] M. Rubinstein and S. Panyukov, Macromolecules 35,

6670 (2002).
[63] See Supplemental Material [url] for detailed derivations,

which includes Refs. [71, 72].
[64] In principle the assumptions of homogeneity and isotropy

are not required for the model. Here they are adopted for
simplicity.

[65] S. Chen, T. Markovich, and F. C. MacKintosh, unpub-
lished.

[66] J. C. Maxwell, Lond. Edinb. Dublin philos. mag. 27, 294
(1864).

[67] J. F. Marko and E. D. Siggia, Macromolecules 28, 8759
(1995).

[68] O. Lieleg, M. M. A. E. Claessens, Y. Luan, and A. R.
Bausch, Phys. Rev. Lett. 101, 108101 (2008).

[69] C. P. Broedersz, M. Depken, N. Y. Yao, M. R. Pollak,
D. A. Weitz, and F. C. MacKintosh, Phys. Rev. Lett.
105, 238101 (2010).

[70] S. Chen, C. P. Broedersz, T. Markovich, and F. C.
MacKintosh, Phys. Rev. E 104, 034418 (2021).

[71] J. R. Klauder, Ann. Phys. 14, 43 (1961).
[72] K. A. Jansen, A. J. Licup, A. Sharma, R. Rens, F. C.

MacKintosh, and G. H. Koenderink, Biophys. J. 114,
2665 (2018).


