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5Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, 11794-3800, USA

6Materials Science and Mechanical Engineering, University of California Riverside, CA 92521, USA
(Dated: January 23, 2023)

Conventional approaches for lattice dynamics based on static interatomic forces do not fully
account for the effects of time-reversal-symmetry breaking in magnetic systems. Recent approaches
to rectify this involve incorporating the first-order change in forces with atomic velocities under the
assumption of adiabatic separation of electronic and nuclear degrees of freedom. In this work, we
develop a first-principles method to calculate this velocity-force coupling in extended solids, and
show via the example of ferromagnetic CrI3 that, due to the slow dynamics of the spins in the
system, the assumption of adiabatic separation can result in large errors for splittings of zone-center
chiral modes. We demonstrate that an accurate description of the lattice dynamics requires treating
magnons and phonons on the same footing.

The atomic vibrations that are present in molecules
and solids play a crucial role in their thermodynamic
and transport properties. First-principles calculations
based on density-functional theory (DFT) have been es-
tablished as a powerful tool for understanding and pre-
dicting lattice-dynamical properties, including phonon
dispersion [1, 2] and electron-phonon coupling [3, 4]. The
key quantity underlying such calculations is the inter-
atomic force constant (IFC) matrix, which is constructed
by finding derivatives of the nuclear forces with respect to
nuclear positions, either directly via finite displacements
or through density functional perturbation theory [1, 2].

In presence of magnetic ordering, the change in the
electronic ground state compared to the nonmagnetic
case propagates to the IFCs [5–9]. However, since it is
defined and calculated as a static response function, the
IFC matrix is invariant under time reversal by construc-
tion. Thus, a description of the nuclear dynamics based
solely on the IFCs will not correctly reflect the vibra-
tion mode degeneracies in a magnetic system; instead,
the phonon frequency spectrum will be determined by
the nonmagnetic symmetry group.

There has been significant recent work on the explicit
inclusion of time-reversal symmetry (TRS) breaking in
the nuclear equations of motion via the velocity depen-
dence of the interatomic forces, applied to models [10–13]
and magnetic molecules [14]. This “velocity-force” cou-
pling can be obtained from the nuclear Berry curvature,
which describes the evolution of the phase of the elec-
tronic wavefunction with changes in nuclear coordinates
[10, 11, 14]. A key result of including this coupling is
that degenerate vibrational modes may split into non-
degenerate chiral modes [15] with a well-defined finite
angular momentum [14, 16], even at the Brillouin-zone
center. Thus, the correct treatment of magnetic symme-
try is crucial for elucidating the role of atomic vibrations
in thermal Hall [11, 17–20] and other effects involving

TRS-broken lattice dynamics [15, 21–27].

A key assumption underlying the velocity-force ap-
proach in previous works [10–14] is that the time scale for
electronic dynamics is fast compared to nuclear dynam-
ics. However, this may completely break down in some
systems [28], e.g., when the nuclear Berry curvature re-
sults from nuclei coupling to spins, whose dynamics are
not necessarily faster than the atomic vibrations. The
breakdown of the adiabatic picture could have a profound
effect on the predicted splitting of chiral phonon modes.

In this work, we illustrate such a situation using the
bulk-layered magnetic insulator CrI3 as an example sys-
tem. We first develop a DFT methodology amenable
to both molecules and solids for computing phonons in
the presence of velocity-force coupling. We apply this
method to calculate the zone-center phonons in CrI3, and
show that the velocity-force response is dominated by the
canting of the spins on the Cr sites caused by atomic dis-
placements. Such spin canting has relatively slow dynam-
ics (characterized by the zone-center magnons [29–36]).
With a minimal model, we show that treating spins and
atomic displacements on the same footing is necessary to
avoid large errors in the frequency splitting of the chiral
modes.

We begin by reviewing the formalism of the velocity-
force coupling from previous works [10–14], which we will
refer to as the “Mead-Truhlar” (MT) approach. (In or-
der to simplify the discussion, we initially assume a finite
system.) The starting point of the derivation is the Born-
Oppenheimer approximation, where the system wave-
function is factored into nuclear and electronic parts such
that the ground-state electronic wavefunction |ψ(R)〉 de-
pends parametrically on the nuclear coordinates R [37].
Once the electronic degrees of freedom are integrated out,
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the effective nuclear Hamiltonian becomes [13]

Heff =
∑
iα

(piα − ~Aiα(R))2

2mi
+ Veff(R), (1)

where Roman indices (here i) run over nuclei, Greek
indices (here α) run over Cartesian directions, piα is
the momentum operator for nucleus i along direction
α, and mi is the mass of nucleus i. Using the no-
tation ∂iα = ∂/∂Riα, Aiα(R) = i 〈ψ(R) | ∂iαψ(R)〉
is a nuclear Berry potential, and Veff(R) = ε(R) +∑
iα

~2

2mi

(
〈∂iαψ(R) | ∂iαψ(R)〉−Aiα(R)2

)
is an effective

scalar potential, where ε(R) is the ground-state energy
for a given fixed nuclear configuration. As first pointed
out by Mead and Truhlar [13], the nuclear Berry poten-
tial Aiα cannot always be made to vanish by changing
the gauge of |ψ(R)〉 via the choice of an R-dependent
phase factor.

The resulting vibrational modes are then found by
solving the equations of motion which, to harmonic order
in nuclear displacements, are given by [10–13]

ω2
nM ηn = (C + iωnG)ηn. (2)

Here M is a diagonal nuclear mass matrix Miα,jβ =
miδi,jδα,β , ωn is the frequency of mode n, and ηn(jα)
is the component of the eigendisplacement of nucleus j
along direction α normalized so that η†nMηm = δnm. G is
the “velocity-force matrix,” whose elements Giα,jβ relate
the force on nucleus i along direction α to the velocity of
nucleus j along direction β, and is expressed as

Giα,jβ = −2~Im 〈∂iαψ(R) | ∂jβψ(R)〉 , (3)

which is just ~ times the nuclear Berry curvature. The
matrix C is the IFC matrix, which we define to be
Ciα,jβ = ∂iα∂jβε(R). Note that following Eq. (1) one
could alternatively define C in terms of the Hessian of
Veff, which includes additional terms compared to the
conventional IFC. However, the additional terms are
higher order in the inverse nuclear mass and do not in-
volve breaking of time-reversal symmetry, so we neglect
them in this work.

This formalism can be extended to the calculation
of phonons in infinite crystals within DFT. In Sec. S1
of the supplemental material (SM) [38] which includes
Ref. [39], we describe our approach, focusing on zone-
center phonon modes and utilizing finite-displacement
DFT calculations to obtain the Berry curvature in
Eq. (3). Additional computational details can be found
in Sec. S5 of the SM [38] which includes Refs. [40–45].

We now present results for zone-center phonons in
the ferromagnetic state of CrI3. As mentioned above,
the conventional calculation of phonons neglects G in
Eq. (2), resulting in an equation of motion with TRS
(ω̃2
nM η̃n = Cη̃n). The resulting zone-center phonon

modes with frequencies ω̃n can be represented with real
eigendisplacements η̃n. In CrI3 the representation of
these modes at the zone center can be decomposed
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FIG. 1. For selected zone-center phonon modes of bulk fer-
romagnetic CrI3: (a) norm of the row of the velocity-force
matrix Ḡ relevant to each phonon mode; (b) phonon fre-
quencies (labeled by irreducible representation) determined
from just the interatomic force-constant matrix on the left
of the panel (“IFC only”), and including the Mead-Truhlar
correction on the right side (“IFC + MT”), illustrating the
frequency splitting of degenerate modes; and (c) angular mo-
mentum values of each mode after the velocity force matrix
contributions have been included. In (b) the thickness of the
connection between modes corresponds to the magnitude of
the overlap between their respective eigenvectors (curvature
of lines is arbitrary).

into the real irreducible representations (irreps) of 3̄ as
4Ag ⊕ 4Au ⊕ 4Eg ⊕ 4Eu. The frequencies ω̃n range up
to 32 meV (see the SM [38] Table SIII). We can consider
the velocity-force coupling between phonon modes ob-
tained from the IFC alone by defining Ḡnm = η̃n

†Gη̃m;
Ḡ is block diagonal, with each block corresponding to a
real irrep. Once G is included in Eq. (2), TRS is broken
and the twofold-degenerate Eu and Eg modes split, as
the corresponding irreps further break up into complex
one-dimensional representations.

In Fig. 1(b), we show a selection of zone-center phonon
frequencies of bulk ferromagnetic CrI3 (see the SM [38]
Table SIII for a complete list of frequencies). On the
left side we plot the frequencies neglecting the velocity-
force contribution, and on the right the frequencies in-
cluding the velocity-force contribution via the MT ap-
proach. The splitting of the two-fold degenerate modes
due to the inclusion of the G matrix results in phonons
with well-defined angular momentum in the z direction
(due to the symmetry of CrI3), shown in Fig. 1 (c). (See
Sec. S4 of the SM [38] for a full analysis which includes
Refs. [46]). In Fig. 1(a) we plot the sum of the magni-
tudes of the velocity-force coupling terms relevant to each
phonon eigenvector, as a measure of the strength of the
coupling. We see that the Eg modes have the strongest
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coupling. We shall see why shortly.
We now analyze the mechanisms responsible for the

velocity-force coupling in CrI3. The magnetic moments
reside on the Cr atoms and are initially oriented out of
plane along z. The modes with large Ḡ matrix elements
in Fig. 1 are those mostly involving displacements of the
I sublattices, which carry strong spin-orbit coupling. Un-
der such displacements, it is natural that the Cr moments
may cant, reflecting a local change in magnetic easy axis.
This canting will result in a spin Berry curvature, and
thus a contribution to G.

In fact, we find that for CrI3, the spin Berry curvature
is the dominant mechanism of velocity-force coupling.
We demonstrate this by calculating the matrix elements
of G under the assumption that only the spin-Berry-
curvature mechanism is present. In this “spin-Berry ap-
proximation,” G is given by (see Sec. S1 B of the SM
[38])

Ḡnm = −S
∑
Iab

εabBIa,nBIb,m. (4)

where we take S = 3/2~, εab is the two dimensional Levi-
Civita symbol, and BIa,n = ∂sIa/∂ũn is a “spin canting
matrix” describing the static change in the equilibrium
spin unit vector on magnetic Cr site I in direction a re-
sulting from phonon perturbation n (ũn is the amplitude
of mode n).

A comparison between this spin-Berry approximation
and the full Berry-phase calculation of the G matrix is
presented in Table SII of the SM [38]. Across all phonon
modes the error in the frequency splitting predicted by
the spin-Berry approximation is less than 0.016 meV.
For the Eg modes this error is under 0.006 meV. For
the modes where splitting is significant (greater than 0.1
meV) the splittings in the spin-Berry approximation dif-
fer from the full MT approach by less than 1%.

This is a remarkable result and is one of the main find-
ings of the present work. By adopting the spin-Berry
approximation, only information about the spin canting
in response to phonon distortions is needed to compute
G. It is now clear why the G tensor elements are so much
smaller for the Eu modes; these are the ones that cou-
ple to the optical magnons, whose much larger stiffness
strongly suppresses the spin canting.

A critical implication of the fact that the velocity-force
coupling in CrI3 results from spin canting is that the
assumption underlying the MT approach of Eqs. (1-3),
namely, that all electronic dynamics are fast compared
to that of the phonons, is clearly unfounded. This is be-
cause the relevant time scale for spin dynamics is that
of the magnon frequencies in the system. The experi-
mentally measured zone-center magnons of CrI3 have fre-
quencies of 0.3 meV for the acoustic branch, and 17 meV
for the optical branch [36], while the relevant phonons
with the largest velocity-force coupling have frequencies
in the range of 6-14 meV [see Fig. 1(b)].

Thus, an appropriate description of the low-energy dy-
namics must treat spins and phonons in this system on

splitting (meV)
irrep ~ω̃ (meV) MT SP
Eg 6.9999 0.3820 0.0007

12.9287 0.5270 0.0003
13.4876 0.3368 0.0001
29.8521 0.0244 3× 10−6

Eu 10.7667 0.0043 0.0046
14.3259 0.0090 0.0311
27.8168 0.0349 0.0118

TABLE I. Frequency splitting of Eu and Eg zone-center
phonon modes in CrI3. Modes are labeled by their sym-
metry and frequency determined only from the interatomic
force constants (~ω̃). MT (“Mead-Truhlar”) refers to fre-
quency splittings obtained by solving the equation of motion
in Eq. (2), and SP (“spin-phonon”) corresponds to solving the
coupled equations of motion in Eq. (6).

the same footing. To illustrate how this can be done,
we focus on a single pair of Eg or Eu modes, which
couple, respectively, either to an effective acoustic spin
unit vector s = (s1 + s2)/

√
2 or its optical counterpart

s = (s1 − s2)/
√

2. Denoting the phonon mode ampli-
tudes and momenta as (x, y) and (px, py), the coupled
spin-phonon Hamiltonian takes the form

H =
1

2
(p2
x + p2

y) +
1

2
ω̃2(x2 + y2)

+
1

2
α(s2

x + s2
y) + γ(xsx + ysy).

(5)

Here ω̃ is the bare phonon frequency, α = ∂2E/∂2sx is
the spin anisotropy energy, and γ = ∂2E/∂x∂sx is the
coupling between the spin and the pair of phonons. Note
that the unperturbed magnon frequency is related to the
anisotropy by ωm = α/S, where S = 3~/2 is the Cr spin,
and that the B matrix introduced above reduces in this
minimal model to B = γ/α.

Going over to circularly polarized coordinates via x± =
(x ± iy)/

√
2 and s± = (sx ± isy)/

√
2, the equations of

motion become

(ω̃2 − ω2)x± = −γs±,
(±ωm − ω)s± = ∓S−1γx±,

(6)

which are easily solved numerically. Further details on
the spin-phonon model are presented in Sec. S6 of the
SM[38] which includes Ref. [47].

In Table I, we compare the frequency splittings of
doubly-degenerate modes determined by the adiabatic
Mead-Truhlar (MT) approach and spin-phonon (SP)
model. The last column in Table I presents the results
for the spin-phonon model; the Eg modes couple to the
acoustic magnon branch and the Eu modes to the op-
tical branch. Though ab initio methods for computing
magnon frequencies exist [30, 35, 48–50] we use experi-
mental magnon frequencies of 0.3 (acoustic) and 17 meV
(optical), from Ref. [36]. A more detailed comparison of



4

Mead-Truhlar approach and spin-phonon model is pre-
sented in Sec. S3 of the SM[38] which includes Ref. [51].
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FIG. 2. Frequencies of interacting magnons and phonons as
given by Eq. (6) as a function of uncoupled phonon frequency

(ω̃) for ωm = 17meV/~ and γ = 2 meV3/2/~ which corre-
sponds to a velocity-force matrix element of Ḡ = 0.01meV/~.
The color of the curve indicates the magnitude of the phonon
component of the mode eigenvector. The inset shows the
splitting of the modes as well as the heuristic for splitting
away from resonance, ~SB2F (ω̃), where F = |1−(ω̃/ωm)2|−1.

To understand the general features of the spin-phonon
mixing, we plot in Fig. 2 the solutions of Eq. (6) as a
function of phonon frequency ω̃, with the magnon fre-
quency set to optical branch ωm = 17 meV/~ [36], and γ
fixed at 2 meV3/2/~, a typical value for the Eu modes in
CrI3 (since those modes couple to the optical magnon).
The solid blue curve in the inset shows the splitting of the
modes with dominant phonon character also as a function
of ω̃. Outside of the small “resonant” regime ω̃ ' ωm,
where significant magnon-phonon hybridization occurs,
the mode splitting is well described by SB2F (see or-
ange dashed curve in inset of Fig. 2), where SB2 is the
relevant velocity-force term in the adiabatic spin-Berry
approximation [i.e., Eq. (4)] and F = |1 − (ω̃/ωm)2|−1.
At small ω̃, the magnon can be treated as a high-energy
degree of freedom which renormalizes the phonons, and
the splitting from the MT approach is recovered. Increas-
ing ω̃ toward ωm enhances the splitting of modes over the
value at the adiabatic (MT) limit, peaking at the point
where the magnon and phonon frequencies coincide and
the modes have maximum hybridization. Above ωm, the
splitting decreases from its peak value, but is still en-
hanced over that determined by the MT approach for a
range of ω̃. At ω̃ � ωm the splitting is suppressed, and
vanishes as ω̃ →∞.

This behavior is reflected in the splittings given in Ta-
ble I. Two of the three Eu modes which couple to the
optical magnon have frequencies below ωm = 17 meV/~,
but still in ranges where the splitting is enhanced above
the adiabatic MT limit, as the phonons are becoming
hybridized with the magnon instead of just having their
frequencies renormalized by it. However, since the split-
tings in the adiabatic limit (and thus the corresponding
G matrix elements) are proportional to ω−2

m , the split-

tings remain quite small. The largest frequency Eu mode
has ωm � ω̃, so that the splitting is reduced compared
to values obtained from the velocity-force approach.

The Eg modes couple to the acoustic magnon (ωm =
0.3 meV/~), so for all Eg modes ω̃ � ωm, which is pre-
cisely the opposite of the limit in which the adiabatic
velocity-force theory is applicable. This results in the
drastic reduction (F � 1) in the splitting of the Eg
modes in Table I compared to the MT description in
Eq. (2). The physical interpretation of this regime is
that the Cr spins cannot keep up with the phonons, and
thus the area swept out from the spin canting is greatly
reduced compared to the assumption that they follow the
nuclear motion adiabatically.

Clearly, these results have significant implications for
experimental measurements of chiral phonons in CrI3.
Optical techniques, possibly using circular polarization,
constitute a powerful tool for studying such properties
[21, 24, 52–54]. The strongly suppressed frequency split-
ting (SP column of Table I) of the Raman-active Eg
modes is likely to be difficult to detect. This is consis-
tent with recent work on CrBr3 which found signatures
of the chiral phonons but did not report a splitting of
these modes [24]. The larger, though still quite modest,
splitting of the Eu modes could in principle be measured
by peak shifts in infrared absorption [55], while direct
detection of chirality would require circularly polarized
infrared spectroscopy as in Refs 52 and 53.

More generally, our results also have several implica-
tions for finding other systems with a large splitting of
chiral phonon modes at Γ. In materials like CrI3, where
the spin-Berry mechanism is responsible for the majority
of the velocity-force coupling, it is most promising to look
for (or engineer via, e.g., strain or magnetic field) cases
where the relevant phonon and magnon frequencies coin-
cide. This avoids the suppression of the splitting in the
ω̃ � ωm regime, and the small spin canting likely when
ωm � ω̃. Systems with lower-frequency optical magnons
that maintain similar or larger spin-phonon coupling γ
are also strong candidates for observing larger effects. In
any case, we can see from Table I that correctly account-
ing for the relative dynamics of spins versus phonons is
necessary to avoid significantly overestimating the split-
ting of certain chiral modes.

In conclusion, we have developed a first-principles
methodology for capturing time-reversal-symmetry-
broken lattice dynamics in magnetic solids, and via the
example of ferromagnetic CrI3, demonstrated that the
previously-made assumption of fast electron dynamics
compared to the lattice may break down. Using a min-
imal model, we show that spins and phonons must be
treated on equal footing to avoid large qualitative errors
in the splitting of chiral modes.
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