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Weakly collisional and collisionless plasmas are typically far from local thermodynamic equilibrium
(LTE), and understanding energy conversion in such systems is a forefront research problem. The
standard approach is to investigate changes in internal (thermal) energy and density, but this omits
energy conversion that changes any higher order moments of the phase space density. In this study,
we calculate from first principles the energy conversion associated with all higher moments of the
phase space density for systems not in LTE. Particle-in-cell simulations of collisionless magnetic
reconnection reveal that energy conversion associated with higher order moments can be locally
significant. The results may be useful in numerous plasma settings, such as reconnection, turbulence,
shocks, and wave-particle interactions in heliospheric, planetary, and astrophysical plasmas.

Energy conversion is largely well understood for sys-
tems with initial and final states in or near local ther-
modynamic equilibrium (LTE) [1, 2]. However, energy
conversion in systems far from LTE, such as weakly colli-
sional or collisionless plasmas endemic to many space and
astrophysical environments, remains a forefront research
area [3, 4].

For a species o not in LTE, internal moments of the
phase space density f, are defined as f, multiplied by
powers of components of v/ and integrated over all ve-
locity space. Here, the random velocity is v, = v — u,,
velocity space coordinate is v, bulk flow velocity is u,
(1/ns) [ fovd®v, and number density is n, = [ f,d%v.
A standard approach to study energy conversion in plas-
mas [5-27] centers on the first few internal moments.
Compressional work describes changes to n,, i.e., the
zeroth internal moment of f,, described by the conti-
nuity equation [5, 28]. The internal energy per particle
Eoint = (3/2)kpTs, i.e., the second internal moment of
f» divided by n,, can change due to compressional heat-
ing by work —P,(V-u, ), incompressional heating via the
remainder of the pressure-strain interaction (called Pi-D
[5]), heat flux, or collisions, according to [2, 5, 28]

3 a7, .
2nokBﬁ = —(PU'V)'UU—V'QU +nUQU,C011,iDteI" (1)
Here, the elements of the pressure tensor P, are

1o
Mo [ V05

Pa/no'kB7

Pa,jk
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kfgd%, temperature tensor is
effective pressure is P,
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(1/3)tr[P,], effective temperature is T, = P, /n.kp =
(me/3nokp) [v2frd®v, vector heat flux density is
Qo [(1/2)mev*v] fod®v, and volumetric heat-
ing rate per particle due to inter-species collisions is
Qa,coll,inter = (1/na) f(1/2)mavé2 ZJ/ Cinter[f07 fa’]d?)va
where the inter-species collision operator is Cipter[fo, for]s
kp is Boltzmann’s constant, m, is the constituent mass,
and d/dt = 0/0t + u,, - V is the convective derivative.

There is an energy conversion channel beyond those
discussed thus far. f, has an infinite number of internal
moments that are all treated on equal footing. While
Eq. (1) includes the impact of off-diagonal pressure ten-
sor elements and heat flux on &, jn¢, any energy conver-
sion associated with time evolution of all other internal
moments themselves is not contained in the continuity
equation or Eq. (1).

Studies have addressed time evolution of other mo-
ments and their contribution to energy conversion. The
evolution of non-isotropic pressures has been studied
[12, 14, 29-36]. Other approaches capture the effect of all
moments of f,. Linearizing f, around its equilibrium in
kinetic theory and gyrokinetics reveals the so-called free
energy [37-39], which quantifies non-LTE energy conver-
sion into mechanical or magnetic energy [37]. It is asso-
ciated with the phase space cascade of entropy which can
lead to dissipation [40]. The velocity space cascade has
been studied without linearizing f, [17, 41-43]. In an-
other approach, changes to bulk kinetic energy are quan-
tified kinetically using field-particle correlations [44-53].

In this study, we use a first-principles theory to quan-
tify energy conversion associated with all internal mo-
ments. We show this energy conversion is physically as-
sociated with changing the velocity space shape of f,.
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There are three important ingredients. First, the key
quantity is kinetic entropy [2, 54-57] rather than en-
ergy. Second, we employ the decomposition of kinetic
entropy into position and velocity space kinetic entropy
[58, 59]. Third, we employ the so-called relative en-
tropy [55, 56, 60]. Our analysis was performed indepen-
dently, but we found it is similar to treatments in chem-
ical physics of dilute gases [55] and quantum statistical
mechanics [86]. The novelty of our analysis stems from
using the decomposition of kinetic entropy and signifi-
cant differences in interpretation than in previous work.
We employ a particle-in-cell (PIC) simulation of collision-
less magnetic reconnection, revealing energy conversion
associated with higher order moments can be locally sig-
nificant.

We first derive an expression for the rate of energy con-
version associated with non-LTE internal moments of f,,
emphasizing departures from the treatment in Ref. [55].
We assume a classical (non-relativistic, non-quantum)
three-dimensional (3D) system of infinite volume or in
a thermally insulated domain with a fixed number N,
of monatomic particles. The kinetic entropy density s,
associated with f, is [62]

85 = —kB/fg In (erv> d®v,

(2)
where the integral is over all velocity space, and A3r,
and A3v, are position space and velocity space volume
elements in phase space, respectively [59, 63, 64]. In the
comoving (Lagrangian) frame, s, evolves according to
([65] and Supplemental Material A [65])

d So V. jo’,th _ éo’,coll
— (=) + = ;
dt Ng Ng Neg

where J ;¢ is thermal kinetic entropy density flux and
3¢,coll is local time rate of change of kinetic entropy den-
sity through collisions, defined in Egs. (S.4) and (S.3),
respectively. We note that Eq. (3) has no explicit depen-
dence on body forces including gravitational and elec-
tromagnetic forces, which implies they do not directly
change internal moments of f,. Eq. (1) exemplifies this
for the special case of internal energy.

3)

In a key departure from Ref. [55], we decompose kinetic
entropy density s, into a position space kinetic entropy
density s, and velocity space kinetic entropy density
Sov, With 5 = S4p + Sov, as [58, 59]

neA3r,

Sop = —ano- In (M) 5 (43.)
A3

So0 = —kp / £, In (f”“") & (4b)
N

A direct calculation (see Supplemental Material B-D) of
the terms on the left side of Eq. (3) using Eqgs. (4a) and
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(4b) gives
d (s0\ 1 dW,
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d Sow o 1 dga,int d Sow,rel
dt<ng>7} dt +dt<na )’ (5D)
A jo,th _ _i an (v : ja,th)rel (5(3)
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where dW, = P,d(1/n,) is the compressional work
per particle done by the system, d&yine = (3/2)kpdT,
is the increment in internal energy per particle, and
dQU/dt = [7v Qo — (PO‘ : V) c Uy + Pa(v . uo‘)]/na
is the (thermodynamic) heating rate per particle from
sources other than compression that can change the ef-
fective temperature [see Eq. (1)]. Lastly, Sy el is the
relative entropy density and (V - J 5 th)rel is the thermal
relative entropy density flux divergence, given by

= —kB/fgln(ffj/I)d?’v,
fo

o [ [t (4

oM

(6)
) d3o(7)

and the “Maxwellianized” phase space density f,s asso-
ciated with f, is [60]

Sowv,rel

(v . ja,th)rel

Mg

3/2 Xy
—me(v—uy,)*/2kpTs 8
- ) e C®)

faM:no'<

where n,, u,, and 7, are based on f,. (Ref. [55] used a
more general reference phase space density than f, s, so
our choice is a special case of theirs.)

Equations (5a)-(5¢) have important implications, and
our interpretation greatly departs from Ref. [55]. Ignor-
ing the relative terms in Eqgs. (5b) and (5¢), we see Eq. (3)
(scaled by the effective temperature) inherently contains
information about work, internal energy, and thermody-
namic heat as captured by the continuity equation and
Eq. (1). This suggests the relative terms describe energy
conversion associated with all internal moments beyond
the second moment.

We therefore define increments of relative energy per
particle d€; ;o1 and relative heat per particle dQy el by

dga,rel o d(sav,rel/no)

=T B ; (92)
derel _ (v ' J(Lth)rel

T 7}7710 . (9b)

Further defining energy increments per particle in all
internal moments at and above the second moment as
A€y gen = A€y int + dEs o1 and generalized heat per parti-
cle as dQg gen = dQs + dQy re1, Egs. (3) - (5¢), (9a) and
(9b) take on the simple form

dWJ + dgg’gen o an,gen
dt dt — dt

+ Qo’,coll~ (10)
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Initial f, Final f, Physics
Change of Density dWe
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Change of Shape of f, @Eo,el
(Relative Energy) dt

FIG. 1. Schematic showing energy conversion channels ac-
cording to their impact on the phase space density f,. The
initial f, is depicted as Maxwellian for illustrative purposes
on the left. The final f, is to their right. The descriptions of
the changes in f, are to their right.

Equation (10) generalizes Eq. (1), which contains energy
conversion associated with only density and effective tem-
perature, as opposed to all internal moments of f,. This
interpretation is a significant departure from Ref. [55].

We now provide a physical interpretation, which re-
quires understanding energy conversion via its impact on
fo. Work per particle dW, = P,d(1/n,) changes the ze-
roth moment of f,. This is depicted graphically in Fig. 1,
where two velocity space dimensions of f, are sketched.
The top row shows a process taking a Maxwellianized f,
from an initial to final state. The intensification of col-
ors denote a change in f,, and therefore n,. Similarly,
d&s int is associated with changes to the second internal
moment of f,, depicted in the second row of Fig. 1 for a
process that increases &, int, i-e., the Maxwellianized f,
spreads in velocity space.

To interpret d&, vel, Eq. (6) shows s,y e vanishes if
fo is a Maxwellian (fo = foa) [60]. Thus, d&; e
describes non-LTE physics.  Since a Maxwellian is
the highest kinetic entropy state for a fixed N, and
Eoint [94], d(Sovrel/ns)/dt > 0 implies f, evolves to-
wards Maxwellianity in the comoving frame, associated
with d€yre1 > 0, while d(sypre1/Ns)/dt < 0 implies f,
evolves away from Maxwellianity and d&, o1 < 0. A pro-
cess changing the shape of f, is depicted in the third row
of Fig. 1, where f, is initially Maxwellian and finally it
is not.

A concrete example showing that d&, e is associated
with f, changing shape is provided in Supplemental
Material E. d&€, el is calculated analytically for a bi-
Maxwellian distribution with converging flow. It is shown
that the evolution of f, is consistent with the interpre-
tation in the previous paragraph.

Collisions directly change the shape of f,, so d€s re1 in-
cludes irreversible contributions if collisions are present.
However, since f, can change shape even in the perfectly
collisionless limit, d&, e also contains reversible effects.
Thus, the term is not purely irreversible as previously
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suggested [55].

dQ, describes non-Maxwellian features of f, that
cause a flux of energy per particle that changes 7, [see
Eq. (1)]. dQs rel is analogous: non-Maxwellian features in
higher order internal moments produce a flux that modi-
fies internal moments of f, other than n, and 7. Qs conl
describes both intra- and inter-species collisions, as op-
posed to solely inter-species arising in Eq. (1). This is
because both collision types can change higher order in-
ternal moments of f,, while elastic intra-species collisions
conserve energy.

We demonstrate key results of the theory using sim-
ulations of reconnection. Data are from the simulation
in Ref. [27]. The code and numerical aspects are dis-
cussed there and in Supplemental Material F. The out-
of-plane current density J, around a reconnection X-line
at (xo,yo) is in Fig. 2(a), with reversing magnetic field
lines in black and electron streamline segments in orange,
revealing typical profiles.

We first confirm relative energy changes are related to
fo evolving towards or away from LTE. Figure 2(b) shows
the electron entropy-based Kaufmann and Paterson non-
Maxwellianity M. xp = (Senms — 5e)/[(3/2)kpne] [63, 90],
where s. comes from Eq. (2) based on f., while s
comes from Eq. (2) based on fep in Eq. (8). It is a
measure of the temporally and spatially local departure
from LTE. Figure 2(e) is the rate of relative energy per
particle d&ye1/dt. Figure 2(i)-(1) are reduced electron
phase space densities f.(v;,v.) at the four color-coded
x’s along a streamline in Fig. 2(b).

Me, xp and d&€ re1/dt together reveal whether f, is lo-
cally in LTE [panel (b)] and whether it is evolving to-
wards or away from LTE [(e)]. Just upstream of the
electron diffusion region (EDR) (Jz — 2| < 1,045 <
ly—yo| < 1), electrons get trapped by the upstream mag-
netic field [34], so fe becomes non-Maxwellian [dark red
in (b)], with f. elongated in the parallel direction [(i)].
Thus, in the comoving frame, as a fluid element convects
towards the X-line from upstream, f. evolves away from
Maxwellianity, consistent with (e) where d& re1/dt < 0.
Continuing towards the X-line, f. develops striations [(j)]
due to electrons becoming demagnetized in the reversed
magnetic field [91, 92]. This is associated with evolution
away from LTE [blue in (e)]. Downstream of the X-line,
there is a red patch in (e) at |z — zo| ~ 1.25, |y — yo| =~
0 where electrons thermalize (Maxwellianize) [93, 94],
which is seen in f. [(k)]. Just downstream from there
(|lx — zo| =~ 1.8), fe evolves away from LTE where elec-
trons begin to remagnetize at the downstream edge of
the EDR [93, 95] [(1)]. These results confirm the sign
of d€; re1 identifies whether f, changes shape towards or
away from LTE in the comoving frame.

Next, we demonstrate the quantitative importance of
relative energy. Rates of work and internal energy per
particle are shown in Figs. 2(c) and (d), respectively.
Cuts of these quantities through the X-line in the hori-
zontal and vertical directions, along with d&. ye1/dt, are
plotted in Figs. 2(g) and (h), respectively. At the X-line,
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FIG. 2. Electron energy conversion in a PIC simulation of magnetic reconnection. (a) Out-of-plane current density J., with
projections of magnetic field lines and segments of electron velocity streamlines overplotted in black and orange, respectively.
(b) Electron entropy-based non-Maxwellianity Mk p,.. Time rates of change per particle of (c) work dW, /dt, (d) internal energy

dEe,int/dt, and (e) relative energy d€e rei/dt. (f) logo[|(d€e re1/dt)/(dEe int/dt)|]-

1D cuts of the terms in panels (c)-(e) in the

(g) « and (h) y directions. (i)-(1) Reduced electron phase space density fe(ve,v.) at locations denoted by the colored x’s at the
top left of the plots corresponding to the x’s in panel (b) along a streamline.

the values are 0.031, 0.027, and —0.016, respectively, in
normalized code units. Their sum, 0.042, is the total rate
of energy per particle going into internal moments of elec-
trons. To see that relative energy is important, the stan-
dard approach using Eq. (1) would say the energy rate
going into changing n. and 7. is 0.031 + 0.027 = 0.058,
38% higher than the total rate when relative energy is
included, which is a significant difference.

To assess its importance in other locations, Fig. 2(f)
shows logyo[|(d€e re1/dt)/(dEe int/dt)|], with a color bar
saturated at £2 to better reveal details. Where internal
and relative energy changes are comparable are white.
Locations where |d€ rel| exceeds |d€ ing| are red, espe-
cially just upstream of the EDR. In the deep blue regions,
|d€e vel] K |dE¢ int|- In the light blue regions, including
much of the EDR and island, |d& ve| is at least 20% of
the magnitude of |d&, int|. Thus, energy conversion asso-
ciated with non-LTE internal moments in reconnection
is broadly non-negligible, and can be locally significant
or even dominant.

We conclude with implications of the present results.
First, the theory applies for systems arbitrarily far from

LTE, so it could lead to significant advances compared to
manifestly perturbative theories [1, 2, 39]. An extensive
comparison to previous work is in Supplemental Mate-
rial G. For a physical process that changes both internal
energy and higher order moments, the theory captures
both and allows each to be calculated separately. Since
the theory contains all internal moments of f,, it over-
comes the closure problem.

It is important to note that internal energy per particle
Es,int 18 a state variable, meaning it is history indepen-
dent, but relative energy per particle £y re1 is not. Only
in special cases can relative energy per particle £, o1 be
calculated from f, at a particular time. Rather, only the
increment d&, o1 has an instantaneous physical meaning.
This was pointed out in Ref. [55], and used as motivation
to not employ relative entropy per particle because they
sought a thermodynamic theory of irreversible processes.
Our interpretation is distinctly different; we argue rela-
tive energy per particle not being a state variable reflects
the physical consequence that changing the shape of f,
is typically history dependent. Thus, a description re-
taining this history dependence is crucial for quantifying
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channels in black and relative channels in red. The light blue
dashed arrow signifies how the relative terms couple to ther-
modynamic terms.

energy conversion into non-LTE internal moments.

Our results reveal that the standard treatment of en-
ergy conversion in Eq. (1) needs to be expanded to ac-
curately describe energy conservation when not in LTE.
Since Eq. (1) is equivalent to the first law of thermody-
namics, we argue Eq. (10) is its kinetic theory general-
ization, which we dub “the first law of kinetic theory.”

A flow chart depicting energy conversion in non-LTE
systems is in Fig. 3. Black arrows denote energy con-
version contained in thermodynamics, namely conversion
between heat, work, and internal energy, plus collisions.
Red arrows are for relative energy and heat associated
with non-LTE internal moments of f,. The dashed light
blue arrow denotes coupling between relative energy and
thermodynamic heat through the vector heat flux density
and Pi-D.

We expect the results to be useful when f, is reliably
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measured, such as PIC and Vlasov/Boltzmann plasma
simulations and satellite observations [96, 97]. Satellites
measure f, with spatio-temporal resolution sufficient to
take gradients [98, 99] and compute kinetic entropy [64].
The theory may advance efforts using machine learning
to parametrize kinetic corrections to transport terms in
fluid models [100]. Generalizations of the present result
may be useful beyond plasma physics, such as many body
astrophysics [101], micro- and nano-fluidics [102, 103],
and quantum entanglement [86].

There are limitations of the present work. Each re-
striction to the theory before Eq. (2) could be relaxed.
Relative energy describes energy conversion associated
with all non-LTE internal moments, but does not iden-
tify which of the individual non-LTE internal moments
contribute; it would be interesting to address this in fu-
ture work, likely in context of recent theories of the ve-
locity space cascade [41] and/or Casimir invariants [104].
There are settings for which f, s is not the appropriate
reference for f, [105, 106]; Ref. [55] employs a more gen-
eral reference f, than we use here; it would be interesting
to generalize the results for more general plasma-relevant
forms.
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