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We report evidence for nonlinear modes in the ringdown stage of the gravitational waveform
produced by the merger of two comparable-mass black holes. We consider both the coalescence of
black hole binaries in quasicircular orbits and high-energy, head-on black hole collisions. The presence
of nonlinear modes in the numerical simulations confirms that general-relativistic nonlinearities are
important and must be considered in gravitational-wave data analysis.

Introduction. The birth of gravitational-wave (GW)
astronomy [1] marks a new era in the exploration of
strong-field gravity [2, 3]. As the simplest macroscopic
objects cloaking curvature singularities, black holes (BHs)
play a special role as astrophysical laboratories to test
gravity and to search for new physics [4–9]. The structure
and dynamics of BHs in our Universe is well described
by the two parameters (mass M and angular momentum
J) characterizing the Kerr metric. In general relativity,
the perturbed BHs formed in a binary merger approach
a stationary state by emitting GWs in a discrete set of
characteristic quasinormal modes (QNMs) with complex
frequencies determined only by M and J . The “black
hole spectroscopy” program consists in observing these
“ringdown” waves, measuring the QNM frequencies, using
them to estimate mass and spin [10], and (if more than one
mode can be observed) test that the remnant is indeed
consistent with a Kerr BH [11–15]. The observability
of QNMs depends crucially on their excitation in the
merger process. Even within linear perturbation theory,
where one only considers linear metric perturbations to
Einstein’s equations in the Kerr background, determining
which modes are excited is a formidable problem [16–25].

General relativity is an intrinsically nonlinear theory.
The merger of two comparable-mass BHs leading to a
perturbed Kerr BH is one of the most violent processes
in the universe, where these nonlinearities should play
an important role. It is therefore surprising that merger
simulations in numerical relativity result in a very smooth
transition from inspiral to merger and ringdown [26, 27].
Where are the nonlinearities of general relativity?

This state of affairs has led many (including some of us)
to conjecture that nonlinear effects may be hidden behind
the horizon, suppressed by the presence of a photonsphere,
or even absent altogether: see e.g. [28–37] and references

therein. In this Letter we show that merger simulations of
BH binaries of comparable masses in quasicircular orbits
(as well as high-energy, head-on BH collisions) do, in fact,
excite nonlinear modes in the ringdown stage.
Second-order quasinormal modes. In BH perturba-
tion theory, the GW strain and the Newman-Penrose
scalar Ψ4 produced by a BH merger at late times can be
approximated by a linear combination of damped sinu-
soids (in addition to a subdominant power-law tail as well
as retrograde QNMs, which we disregard here) [14–17]:

rh(1)(t, θ, φ) =
∑
n`m

An`me
−i(ωn`mt+φn`m)S`m , (1)

where r is the (luminosity) distance from the source.
The spin-2 spin-weighted spheroidal harmonics S`m =
S`m(θ, φ, χωn`m) depend on the angular variables (θ, φ),
on the complex QNM frequencies ωn`m, and on the di-
mensionless spin χ = J/M2 of the remnant BH [38]. This
expression, found by solving the Teukolsky equation [39],
is valid when the GW amplitude is small enough that one
can linearize Einstein’s equations in the Kerr background.
At second order in the GW amplitude one finds sim-

ilar equations for the second-order perturbations h(2),
now sourced by first-order quantities [40–47]. Let k be
a generic mode, which can be either a first-order mode
(k = ki = `imini) or a higher-order mode. We will
denote a second-order mode sourced by the first-order
modes k1 = `1m1n1 and k2 = `2m2n2 as k = k1 × k2 =
`1m1n1 × `2m2n2. From a waveform modeling point
of view, the second-order modes are just damped sinu-
soids, like the first-order modes. Spin-weighted spherical
harmonics, rather than spheroidal harmonics, are com-
monly used for waveform extraction in numerical relativ-
ity [48]. In our analysis, the index k will belong to a set
I = {`1m1n1, `2m2n2, . . . `imini × `jmjnj . . . } contain-
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ing all the indices of the QNMs present in the `m spin-2
spin-weighted spherical harmonic component. Then a
ringdown waveform including both first- and second-order
modes can be schematically written as

rh(2)(t, θ, φ) =
∑
`m

∑
k∈I

Ak,`me
−i(ωkt+φk,`m)Y`m , (2)

where Ak,`m and φk,`m are the amplitude and phase of
the k-th (linear or nonlinear) mode found in the `m
spin-weighted spherical harmonic component. Note that
A`1mn,`2m could be nonzero even if `1 6= `2 because the
spheroidal harmonic S`1m is not necessarily orthogonal
to the spherical harmonic Y`2m, even if `1 6= `2 [48].
Because second-order QNM frequencies are sourced

by first-order modes, their frequencies, amplitudes and
phases are expected to obey the relationships [42–47]

ωki×kj = ωki + ωkj , (3a)
Aki×kj ,`1m1 ∝ Aki,`2m2Akj ,`3m3 , (3b)
φki×kj ,`1m1 = φki,`2m2 + φkj ,`3m3 + constant . (3c)

Second-order modes are a robust prediction of the per-
turbative expansion in general relativity. Other nonlin-
earities in the ringdown, such as the memory effect [49] or
absorption-induced mode excitation [50], have previously
been observed in simulations. However nonlinear QNMs
have never been confidently identified until recently [51],
with the exception of pioneering work by London et al. [45]
using greedy fitting algorithms.
Second-order modes in merger simulations. We
have looked for the second-order modes in two sets of
binary BH merger simulations. The first set consists of
ultrarelativistic head-on collisions of equal-mass, nonspin-
ning BHs with different boosts γ, similar to the sequences
considered in Refs. [52, 53]. In this one-parameter family
of solutions the amplitude of the linear mode increases
with the boost parameter γ, so the amplitude of the
second-order modes is also a monotonic function of γ.
Axial symmetry allows us to simulate this problem in
two dimensions with GRChombo [54, 55] by applying
dimensional reduction [56–58], thus saving computational
time and allowing for better accuracy relative to pre-
vious work [59]. As the quadratic modes are sourced
by a product of two first-order modes, and quadratic
contributions (proportional to Y`imi

Y`jmj
) overlap with

Y`i+`jmi+mj
, we will look for the `imini × `jmjnj mode

in the `i+ `jmi+mj ringdown waveform [43, 45, 47]. For
head-on collisions, we will be fitting rΨ4 = rḧ instead
of h, and all of the reported amplitudes refer to rΨ4.
In this case the 200 mode dominates the ringdown of
the nonspinning remnant [52], so we focus mainly on the
200× 200 mode in the `m = 40 waveform.

The second set of simulations consists of quasicircular
mergers of binary BHs with different mass ratios from
the publicly available SXS waveform catalog, simulated
in (3 + 1)-dimensions with the spectral code SpEC [60].
Recent waveforms produced using Cauchy Characteristic

Extraction [61–63] may improve the quality of our fits,
but the relatively small set of publicly available waveforms
does not adequately cover the relevant parameter space
for our study. For quasicircular mergers the 220 and
330 modes are typically dominant (with their amplitudes
depending on the mass ratio and spins of the binary),
and we focus our search on (i) the 220× 220 mode in the
`m = 44 waveform, and (ii) the 220 × 330 mode in the
`m = 55 waveform.
Identifying QNMs in a waveform can be challenging,

partly because of their rapid decay: for nonspinning BHs,
their quality factor is of order ∼ 3 [14]. The search for
subdominant modes, which decay faster, requires some
care. Even if their inclusion yields smaller fit residuals,
consistency checks are crucial to avoid overfitting. In
this work we fit the waveforms by a linear combination
of damped sinusoids, as in Eq. (2), using a least-squares
fitting algorithm. The amplitude and phase of each mode
are always free fitting parameters, while the complex
QNM frequencies are either free or fixed depending on
the mode, as shown in Fig. 1 and explained below.
We first try to find the second-order modes without

assuming knowledge of their QNM frequencies, as follows.
We consider the QNM frequencies as free fitting param-
eters, and we fit the waveform with a different number
of QNMs as we vary the starting time of the fit tstart.
If a fitted QNM returns a frequency that is consistent
with a linear mode expected to exist in the waveform
over a wide range of tstart, we assume that the mode
is there. We then fix the frequency of that QNM (as
calculated in BH perturbation theory) in our fit and we
add more QNMs with free frequencies to search for ad-
ditional modes. We iterate until we do not see returned
frequencies that are consistent with any linear modes. For
head-on high-energy mergers, we find a combination of
the modes 200, 400 . . . 1000 in the `m = 40 waveform due
to numerical contamination between modes. For the SXS
waveforms, we only confidently identify the 440 mode in
the `m = 44 multipole, and the 550 mode in the `m = 55
multipole (out of all possible linear modes). With these
first-order modes identified, we use a fitting model that
consists of all such modes (with fixed frequencies) to search
for additional higher-order modes by adding one more
damped exponential with free frequency. As shown in the
top-row panels of Fig. 1, when we vary tstart relative to a
reference time t0 (defined to be the time of peak luminos-
ity of the dominant `m = 22 multipole), the free mode
hovers around the expected second-order mode frequency
(from left to right: ω200×200, ω220×220, or ω220×330, re-
spectively). We do not expect the free mode frequency to
converge exactly to the expected frequency due to numer-
ical noise and contamination from other effects (such as
additional nonlinearities) in the waveform, especially for
modes that decay significantly faster than the dominant
mode. In Supplemental Material, we show through a con-
trolled experiment that a free frequency hovering near the
target mode is the expected behavior in the presence of
(small) unaccounted additional modes. We also searched



3

0.0 0.5 1.0 1.5 2.0 2.5

Mωr

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−
M
ω
i

200 400 600 800 10 00

601 10 01

200×200

801
201

400×400

200×800

200×400 400×600

401

200×600

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Mωr

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−
M
ω
i

440

221

330

331

550

551

220

220×220

540

541

220×330

441

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Mωr

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−
M
ω
i

550
440

651

330

331
661551

220
660

541441221

650

220×220

540

220×330

6 8 10 12 14 16 18 20

(tstart − t0)/M

10−1

|δω
|

10 15 20 25 30 35

(tstart − t0)/M

10−2

10−1

|δω
|

10 15 20 25 30 35

(tstart − t0)/M

10−2

10−1

|δω
|

−8 −6 −4 −2 0 2 4 6 8

(tstart − topt)/M

10−2

10−1

A

−4 −2 0 2 4

(tstart − topt)/M

0.10

0.15

0.20

A

−4 −2 0 2 4

(tstart − topt)/M

0.00

0.05

0.10

A

−8 −6 −4 −2 0 2 4 6 8

(tstart − topt)/M

0

π

2π

φ

−4 −2 0 2 4

(tstart − topt)/M

0

π

2π

φ

−4 −2 0 2 4

(tstart − topt)/M

0

π

2π

φ

10 15 20 25 30 35
(tstart − t0)/M

10 15 20 25 30 35
(tstart − t0)/M

5 10 15 20
(tstart − t0)/M

Head-on mergers Quasicircular mergers

Target mode: 200×200 Target mode: 220×220 Target mode: 220×330lm = 40 lm = 44 lm = 55

FIG. 1. Evidence for nonlinear effects in the ringdown. Left: search for the 200 × 200 mode in the `m = 40 multipole of
ultrarelativistic head-on mergers; center: 220 × 220 mode in the `m = 44 harmonic of quasicircular mergers with low mass
ratio q ≤ 1.5; right: 220 × 330 mode in the `m = 55 harmonic of quasicircular mergers with 1.25 ≤ q ≤ 2. We highlight in
brighter colors the results for γ = 1.5 (left), q = 1.22 (the “SXS:BBH:0305” simulation, center) and q = 1.88 (“SXS:BBH:0403”
simulation, right), while we plot the results for all other simulations in grey. Top row: search for the second-order mode
frequency. We use a mode with a variable complex frequency in our fitting model to search for the expected second-order modes,
and we use modes with fixed frequencies (black solid circles) to remove the contribution from linear modes when they are
present. The color scale (top bar) represents different starting times of the fit. For quasicircular mergers, the labeled modes
correspond to those of the remnant BH in the highlighted simulation. The location of the target mode for other simulations
may be slightly different, because it depends on the remnant spin. Second row: fractional deviation |δω| of the fitted complex
frequency with respect to the expected second-order mode. Third row: amplitude of the second-order mode when tstart is varied
across a window of length T0 centered around the value of minimum |δω|, topt, and the second-order mode frequency is fixed to
its expected value in the fitting model. Bottom row: same as the third row, but for the phase of the second-order mode.

for the 200× 400 mode in the head-on simulations. The
results (which are not as clean as those for the 200× 200
mode, because 200× 400 is subdominant) are shown in
Supplemental Material. Having established the presence
of nonlinear modes in the simulations, we now perform
further checks to verify their physical nature.
Amplitude consistency check. We cannot exclude
a priori that the new mode we found is in accidental
agreement with the expected second-order QNM fre-
quency. A nontrivial consistency test requires that, in
addition to the frequency, the amplitude of the second-
order modes should be consistent across different fitting
ranges. To check this, we first look for the “optimal
starting time,” topt, for which the fractional deviation
between the fitted and expected complex frequencies, i.e.

|δω| =
√(

ωr−$r

$r

)2
+
(
ωi−$i

$i

)2
, has a minimum. In

the three cases of interest, $ = ω200×200, ω220×220 or
ω220×330, respectively. Then we assume that the mode

exists, we fix the frequency to the expected value in our
fitting model, and we check the consistency of the fitted
amplitude. More explicitly, we check whether the recov-
ered amplitude has an error smaller than 10% when tstart
varies within a window of length T0 centered around topt,
where T0 is the period of oscillation of the fundamental
mode across all `m multipoles (T0 = T200 for head-on
mergers, and T0 = T220 for inspirals). We choose this
value of T0 because it is at least two times larger than the
period of the second-order mode that we are searching
for. This threshold is further justified in Supplemental
Material by studying the impact of the numerical noise in
the simulations on the quantities of interest. Later times
are excluded because the second-order mode falls below
the numerical noise floor.

We find that all the waveforms we considered satisfy this
requirement on the amplitude. We also checked that the
amplitudes obtained from a model with free frequency are
consistent with those where the frequency is fixed, albeit
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FIG. 2. Dependence of the second-order mode amplitude (left and middle columns) and phases (right column) on the amplitudes
of the first-order modes sourcing them. The crosses are the amplitudes or phases extracted from simulations with different boost
(left column) or mass ratio (center and right columns). The width and height of the crosses correspond to the errors. Blue
crosses represent simulations where the two BHs are initially nonspinning, while golden crosses represent those with at least
one spinning BH. The grey dotted line is the expected relationship between the first and second-order values with the slope
fixed to either 1 or 2; the deep gray dashed line is a fit to the data with the slope unfixed. The phase dependence for head-on
simulations is shown in Supplemental Material.

with larger fluctuations, as expected. Independently of the
chosen tstart, we use the convention Ak,`m ≡ Ak,`m(tpeak).
In other words, we take into account the known expo-
nential time decay by extrapolating the fitted amplitudes
back towards the peak of the dominant multipole.
Second-order amplitude dependence. As a more
stringent check, we can verify whether the recovered
second-order mode amplitudes follow the dependence pre-
dicted in Eq. (3b) across different simulations. For each
simulation, we extract the second-order mode amplitudes
by taking the mean of the amplitude within the T0 starting
time window mentioned above. We extract the first-order
mode amplitudes after tstart− t0 = 25M , when nonlinear-
ities and overtones have died out. We estimate the errors
on the amplitudes as detailed in Supplemental Material.
In Fig. 2 we plot the second-order mode amplitudes

versus their first-order counterparts on a log-log plot. The
data are consistent with a power-law dependence when
the errors are taken into account. The slope of the fitted
line for A200×200 vs. A200 (in the head-on waveforms)
and A220×220 vs. A220 (in the SXS waveforms) is found
to be consistent with 2 within 1σ, as expected. Similarly,

the slopes of the fitted lines for A200×400 vs A200A400 (for
head-ons) and A220×330 vs A220A330 (for SXS waveforms)
are consistent with 1. Unsurprisingly, the 200× 400 mode
search results in head-on mergers are not as clean as the
200× 200 results (see Supplemental Material).

Because of numerical errors in the simulations, we can
confidently identify the 220 × 220 mode only for SXS
waveforms with mass ratio q ≤ 1.5. Since q varies over
a small range, the amplitudes of the 220 mode inferred
from different simulations are similar to each other, and
the amplitude of the 220× 220 mode does not vary much
across different simulations. For this reason the data
points are relatively close to each other, and the error on
the slope is larger than in the other cases we considered.
Phase consistency. Similar to the amplitude tests, we
can check the consistency of our fits with the fitted phases
of the second-order modes. As shown in the bottom row
of Fig. 1, the fitted phases of the second-order modes vary
by less than 10%× 2π within the T0 window.
Moreover, as the second-order modes are sourced by

two linear QNMs, the relationship in Eq. (3c) between
the phases of the modes should hold, modulo (possibly)
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a constant phase difference that can only be computed
by a Green’s function calculation. In the right column
of Fig. 2 we show that the phases extracted from the
SXS simulations follow the expected relationship. In
Supplemental Material we show similar plots for head-on
mergers. The error bars are larger, but the results are
still consistent with expectations.
Conclusions. We have shown that nonlinear QNMs
are excited in simulations of comparable-mass BH binary
mergers in quasicircular orbits, as well as in high-energy
head-on BH collisions. The detectability of nonlinear
QNMs may require next-generation detectors, and it will
be addressed in future work. In any case, the presence of
nonlinear modes demonstrates that nonlinearities must
be taken into account in the modeling of GWs from bi-
nary BH mergers, and it suggests that they may play
an important role during the violent merger phase. This
has far-reaching consequences for our understanding of
strong-field BH dynamics and for the observational BH
spectroscopy program.
Note added. While preparing this Letter, we learned
that Mitman et al. conducted a similar study, whose
results agree with ours [63].
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