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The emergence of correlated insulating phases in magic-angle twisted bilayer graphene exhibits
strong sample dependence. Here, we derive an Anderson theorem governing the robustness against
disorder of the Kramers intervalley coherent (K-IVC) state, a prime candidate for describing the
correlated insulators at even fillings of the moiré flat bands. We find that the K-IVC gap is robust
against local perturbations, which are odd under PT , where P and T denote particle-hole conju-
gation and time reversal, respectively. In contrast, PT -even perturbations will in general induce
subgap states and reduce or even eliminate the gap. We use this result to classify the stability of the
K-IVC state against various experimentally relevant perturbations. The existence of an Anderson
theorem singles out the K-IVC state from other possible insulating ground states.

Introduction.—Twisted bilayer graphene (TBG) is re-
cently attracting much attention as a highly tunable
platform of strongly correlated electrons. Twisting two
graphene sheets introduces a moiré lattice, which sup-
ports exceptionally flat bands for certain twist angles [1].
At these magic angles, the kinetic energy of the elec-
trons is effectively suppressed and the system is prone to
developing interaction-driven correlated phases. Corre-
sponding experiments exhibit signatures of correlated in-
sulators, superconductivity, nematicity, integer and frac-
tional Chern insulators, spontaneous flavor polarization,
as well as orbital ferromagnetism [2–17].

A prime candidate for understanding the correlated
insulating phases, which occur near even integer fillings
of the moiré flat bands are Kramers intervalley coherent
(K-IVC) states [18–24]. These states exhibit a pattern of
magnetization currents, which triple the graphene unit
cell, thereby breaking the lattice translation symmetry as
well as time reversal. The associated spontaneous coher-
ence between the two valleys of the TBG band structure
gaps out the moiré Dirac points and induces insulating
behavior. A recent work reports evidence for the K-IVC
state by measuring the magnetic-field dependence of the
thermodynamic gap [25]. In general, the appearance and
strength of insulating states tend to be device dependent
[8, 26]. A possible explanation for this sample-specific
behavior lies in residual disorder associated with random
strain or impurity potentials. Thus, it is important to
study and understand their effects.

Previous works [22, 27–31] predominantly considered
smooth disorder and twist-angle variations, for which the
associated long-range domain patterns can be directly
mapped in experiment [6, 7, 9, 10, 15, 32]. Here, we fo-
cus on local impurities. We show that for the K-IVC
state, one can systematically classify impurities accord-
ing to their ability to induce subgap excitations (Fig. 1),
which diminish or even eliminate the insulating gap. Our
discussion is strongly informed by a far-reaching analogy
with the familiar problem of classifying impurities in s-
wave superconductors [33].

Physically, these analogies can be understood by not-

ing that K-IVC states can be thought of as binding
holes in one valley to electrons in the other, akin to
excitonic insulators. Evidently, this is similar to bind-
ing time-reversed electrons into Cooper pairs. According
to Anderson’s theorem [33], the ability of impurities to
induce subgap excitations in s-wave superconductors is
controlled by whether or not they respect time-reversal
symmetry. We find that particle-hole symmetry plays a
similar role for the K-IVC state as time-reversal symme-
try does for superconductors. This is consistent with the
picture of bound electron-hole pairs.

In contrast to the K-IVC state, we find that there are
no corresponding Anderson theorems for other possible
insulating ground states such as the valley polarized and
valley Hall states.

Anderson’s theorem for s-wave superconductors.— To
clearly bring out the analogies, as well as differences,
between TBG and superconductors, we begin our dis-
cussion with a review of Anderson’s theorem for s-
wave superconductors [33–36], using a formulation which
turns out to be adaptable to TBG. Starting from the
second-quantized BCS mean-field Hamiltonian H =
1
2

∫
drΨ†(r)HΨ(r), we write the Bogoliubov-de Gennes

(BdG) Hamiltonian

H =

(
He ∆
∆ Hh

)
, (1)
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The emergence of correlated insulating phases in magic-angle twisted bilayer graphene exhibits
strong sample dependence. Here, we derive an Anderson theorem governing the robustness against
disorder of the Kramers intervalley coherent (K-IVC) state, a prime candidate for describing the
correlated insulators at even fillings of the moiré flat bands. We find that the K-IVC gap is robust
against local perturbations, which are odd under PT , where P and T denote particle-hole conju-
gation and time reversal, respectively. In contrast, PT -even perturbations will in general induce
subgap states and reduce or even eliminate the gap. We use this result to classify the stability of the
K-IVC state against various experimentally relevant perturbations. The existence of an Anderson
theorem singles out the K-IVC state from other possible insulating ground states.

Introduction.—Twisted bilayer graphene (TBG) is re-
cently attracting much attention as a highly tunable
platform of strongly correlated electrons. Twisting two
graphene sheets introduces a moiré lattice, which sup-
ports exceptionally flat bands for certain twist angles [1].
At these magic angles, the kinetic energy of the elec-
trons is effectively suppressed and the system is prone to
developing interaction-driven correlated phases. Corre-
sponding experiments exhibit signatures of correlated in-
sulators, superconductivity, nematicity, integer and frac-
tional Chern insulators, spontaneous flavor polarization,
as well as orbital ferromagnetism [2–17].

A prime candidate for understanding the correlated
insulating phases, which occur near even integer fillings
of the moiré flat bands are Kramers intervalley coherent
(K-IVC) states [18–24]. These states exhibit a pattern of
magnetization currents, which triple the graphene unit
cell, thereby breaking the lattice translation symmetry as
well as time reversal. The associated spontaneous coher-
ence between the two valleys of the TBG band structure
gaps out the moiré Dirac points and induces insulating
behavior. A recent work reports evidence for the K-IVC
state by measuring the magnetic-field dependence of the
thermodynamic gap [25]. In general, the appearance and
strength of insulating states tend to be device dependent
[8, 26]. A possible explanation for this sample-specific
behavior lies in residual disorder associated with random
strain or impurity potentials. Thus, it is important to
study and understand their effects.

Previous works [22, 27–31] predominantly considered
smooth disorder and twist-angle variations, for which the
associated long-range domain patterns can be directly
mapped in experiment [6, 7, 9, 10, 15, 32]. Here, we fo-
cus on local impurities. We show that for the K-IVC
state, one can systematically classify impurities accord-
ing to their ability to induce subgap excitations (Fig. 1),
which diminish or even eliminate the insulating gap. Our
discussion is strongly informed by a far-reaching analogy
with the familiar problem of classifying impurities in s-
wave superconductors [33].

Physically, these analogies can be understood by not-

ing that K-IVC states can be thought of as binding
holes in one valley to electrons in the other, akin to
excitonic insulators. Evidently, this is similar to bind-
ing time-reversed electrons into Cooper pairs. According
to Anderson’s theorem [33], the ability of impurities to
induce subgap excitations in s-wave superconductors is
controlled by whether or not they respect time-reversal
symmetry. We find that particle-hole symmetry plays a
similar role for the K-IVC state as time-reversal symme-
try does for superconductors. This is consistent with the
picture of bound electron-hole pairs.

In contrast to the K-IVC state, we find that there are
no corresponding Anderson theorems for other possible
insulating ground states such as the valley polarized and
valley Hall states.
Anderson’s theorem for s-wave superconductors.— To

clearly bring out the analogies, as well as differences,
between TBG and superconductors, we begin our dis-
cussion with a review of Anderson’s theorem for s-
wave superconductors [33–36], using a formulation which
turns out to be adaptable to TBG. Starting from the
second-quantized BCS mean-field Hamiltonian H =
1
2

∫
drΨ†(r)HΨ(r), we write the Bogoliubov-de Gennes

(BdG) Hamiltonian

H =

(
He ∆
∆ Hh

)
, (1)

in a four-component Nambu formalism, using the basis

Figure 1. Examples of impurities in twisted bilayer graphene
(schematic), which are (a) even (charged impurities located
between the layers) and (b) odd (local change in interlayer
tunneling) under PT . PT -even impurities induce subgap
states in the K-IVC state of twisted bilayer graphene, while
PT -odd impurities do not due to an Anderson’s theorem.

(a) (b)

Figure 1. Examples of impurities in twisted bilayer graphene
(schematically shown as black lines), which are (a) even
(charged impurity located between the layers; schematically
shown in red) and (b) odd (local change in interlayer tun-
neling) under PT (P and T denote particle-hole and time-
reversal conjugation, respectively). PT -even impurities in-
duce subgap states in the K-IVC phase of TBG, while PT -
odd impurities do not due to an Anderson’s theorem.
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in a four-component Nambu formalism, using the basis

Ψ = [ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑]. The normal-state Hamiltonians

He/h for electrons (e) and holes (h) as well as the pairing
∆ are matrices in spin space. For s-wave pairing, ∆
is proportional to the unit matrix. In the following, we
assume that ∆ is spatially uniform and chosen to be real.

The BdG Hamiltonian is constrained by antisymmetry
under particle-hole conjugation, PHP−1 = −H. As a
consequence, the normal-state Hamiltonians of electrons
and holes in Eq. (1) are related by time reversal T ,

Hh = −T HeT −1. (2)

This can be deduced by defining Pauli matrices τα
and sα in particle-hole and spin space, respectively.
Then, particle-hole conjugation is implemented by P =
−iτyT = τysyK and squares to unity, P2 = 1, while
time reversal takes the form T = isyK with T 2 = −1 (K
implements complex conjugation).

We separate the normal-state Hamiltonian He = H0 +
U into a spatially homogeneous part H0 and a (local)
perturbation U . While we assume H0 = T H0T −1 to
be time-reversal symmetric, a general perturbation U =
U+ + U− can have components U± = ±T U±T −1, which
are even (+) or odd (−) under time reversal. Combin-
ing these symmetry properties under time reversal with
Eq. (2), the BdG Hamiltonian in Eq. (1) can be written
compactly as

H = H0τz + ∆τx + U+τz + U−τ0. (3)

Importantly, one observes that time-reversal-symmetric
perturbations anticommute with the order-parameter
term, {∆τx, U+τz} = 0, while the time-reversal break-
ing term, U−, commutes.

It can now be seen quite generally that time-reversal-
even perturbations do not reduce the BdG gap (Ander-
son’s theorem). Given that antisymmetry under particle-
hole conjugation P enforces the eigenenergies to be sym-
metric about zero energy, the spectrum can be deduced
from the square of H,

H2 = (H0 + U+)2 + ∆2, (4)

implying that the magnitude of the eigenvalues of H is
bounded from below by ∆. This argument uses the as-
sumption that the gap remains uniform in the presence
of the perturbation, but holds regardless of the particular
spatial structure of the impurity potential.

Conversely, perturbations, which are odd under time
reversal generally reduce the gap. A uniform Zeeman
field described by U− = B · s reduces the gap to ∆− |B|,
provided the normal-state Hamiltonian is spin-rotation
invariant. Local magnetic impurities with U− = JS ·
sδ(r) are well-known to induce Yu-Shiba-Rusinov states
at subgap energies [37–40].

Twisted bilayer graphene.—We begin our discussion of
TBG by introducing its band Hamiltonian h(k), after
projection to the eight flat bands. It is conveniently writ-
ten in the Chern basis spanned by the spin, valley (Pauli

matrices τα), and band (Pauli matrices σα) degrees of
freedom [18],

h(k) = h0(k)τz + hx(k)σx + hy(k)σyτz. (5)

Time-reversal symmetry enforces h0(k) = −h0(−k) and
hx,y(k) = hx,y(−k). Due to the negligible spin-orbit cou-
pling of graphene, the Hamiltonian is a unit matrix in
spin space. The label σz is associated with the Chern
number C = σzτz and (partial) sublattice polarization.
While the Pauli matrices τα refer to different degrees
of freedom in our descriptions of superconductors and
TBG, we shall see that they actually play rather analo-
gous roles.

In addition to spatial and spin rotation symmetries as
well as charge conservation, the Hamiltonian h(k) con-
serves valley charge, obeys spinless time-reversal symme-
try, and has an (approximate) particle-hole antisymme-
try [18, 41–43]. The latter three symmetries are central
to our discussion. The conservation of valley charge is
associated with invariance under U(1) valley rotations
UV = eiθτz , spinless time reversal is implemented by
T = τxK with T 2 = 1, and particle-hole conjugation
takes the form P = iσyτzK with P2 = −1. The particle-
hole antisymmetry of TBG emerges when neglecting the
small relative twist of the Dirac Hamiltonians of the two
layers in the Bistrizer-MacDonald model [1].

Within the mean-field approximation for the K-IVC
state [18], the band Hamiltonian h(k) is complemented
by the order parameter hIVC = ∆σy(τx cos θ + τy sin θ),
where θ denotes an arbitrary phase. In view of the as-
sociated magnetization currents, the K-IVC state breaks
time reversal spontaneously, T hIVCT −1 = −hIVC. How-
ever, it preserves a modified time-reversal symmetry [18]

T ′ = iτyK, (6)

which concatenates T with a valley rotation, T ′ = τzT .
Both T and valley rotations are symmetries of the single-
particle Hamiltonian, so that the mean-field Hamiltonian
H(k) = h(k)+hIVC conserves the Kramers time reversal
T ′ (with T ′2 = −1) as a whole.

The Hamiltonian H(k) can be thought of as the analog
of the BdG Hamiltonian for the K-IVC state. We will
now make the analogies yet more explicit by a change of
basis H → UHU† with

U =

(
1 0
0 iσy

)
. (7)

In the new basis, which we refer to as the particle-hole
basis, the Chern number becomes C = σz. Transforming
the Hamiltonian in this manner, we find

H(k) = H0(k)τz + ∆(τx cos θ̃ + τy sin θ̃) (8)

(θ̃ = θ + π
2 ). Here, we make the dependence on the

valley Pauli matrices τα explicit, while H0 and ∆ are still
matrices in sublattice space. We find H0(k) = h0(k) +
hx(k)σx + hy(k)σy for the single-particle Hamiltonian of
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the K valley, while ∆ is simply proportional to the unit
matrix. The transformation (7) to the particle-hole basis
also changes the explicit forms of the time-reversal and
charge-conjugation operations, T → UT U† and P →
UPU†, which yields P = iσyK and T ′ = −τxP.

Equation (8) is closely analogous to the BdG Hamilto-
nian of s-wave superconductors, with particle-hole space
replaced by the valley degree of freedom and spin space
replaced by sublattice space. In Eq. (8), the band Hamil-
tonian H0(k) is analogous to the normal-state Hamilto-
nian. It multiplies τz as a consequence of the chiral anti-
symmetry PT = iτy of the TBG Hamiltonian. Moreover,
the term describing K-IVC order is analogous to the pair-
ing term in the BdG Hamiltonian, being offdiagonal in
valley and proportional to the unit matrix in sublattice
space.

Beyond the structural similarities of the Hamiltonians,
there is also a correspondence of symmetries. Interest-
ingly, the roles of time reversal and particle-hole con-
jugation are essentially reversed. For superconductors,
time reversal acts diagonally in particle-hole space, while
particle-hole conjugation is offdiagonal. In contrast, in
TBG it is time reversal which maps between the two
valleys, while particle-hole conjugation acts separately
within each valley.

We also note that gauge transformations for super-
conductors are structurally analogous to U(1) valley ro-
tations in TBG. For superconductors, the BdG Hamil-
tonian becomes explicitly symmetric under the conven-
tional time reversal operator T = isyK when choosing
a gauge, in which ∆ is real. In TBG, we can similarly
exploit the valley rotation symmetry to choose θ̃ = π

2 ,
so that H(k) = H0(k)τz + ∆τy. With this choice, the
mean-field K-IVC order is also odd under particle-hole
conjugation, so that PH(k)P−1 = −H(−k). In the fol-
lowing, we make this choice for definiteness. However,
just as Anderson’s theorem for s-wave superconductors
is not specific to a particular gauge, Anderson’s theorem
for TBG is not limited to this choice.

Impurities and K-IVC states.—Armed with this far-
reaching correspondence between the BdG Hamiltonian
of s-wave superconductors and the K-IVC state of TBG,
we now turn to discussing the effects of impurities on
the K-IVC state. We consider impurity potentials which
are sufficiently smooth on the scale of the atomic lattice,
so that they preserve the U(1) valley symmetry. Inter-
valley scattering can then be neglected and the impurity
potential is diagonal in valley space. With this assump-
tion, the low-energy Hamiltonian in the presence of an
impurity potential becomes

H = H0τz + ∆τy + U−τz + U+τ0. (9)

Just as for superconductors, the impurity potentials U±
(which are matrices in sublattice and spin space) are dis-
tinguished by their symmetry properties. For supercon-
ductors, antisymmetry under particle-hole conjugation is
built into the BdG formalism. For this reason, it was
sufficient to classify perturbations according to their be-

havior under time reversal. In contrast, for TBG, both
Kramers time reversal and particle-hole conjugation are
physical symmetries of the Hamiltonian. Consequently,
we now classify perturbations according to their transfor-
mation properties under the combined chiral symmetry
operation PT = iτy, namely (PT )U+τ0(PT )−1 = U+τ0
and (PT )U−τz(PT )−1 = −U−τz. (Notice that due to
valley rotation symmetry, the impurity terms transform
in the same way under PT and PT ′.) By comparing
with the discussion of Eq. (3), we can now formulate an
Anderson’s theorem for TBG, our central result: The
gap of K-IVC states is robust against valley-preserving
perturbations, which are odd under the combined chiral
symmetry operation PT . In fact, perturbations which
are odd under PT anticommute with the K-IVC order
∆τy and cannot reduce the gap. In contrast, similar
to time-reversal-breaking impurities in superconductors,
perturbations which are even under PT can induce sub-
gap states in TBG. For perturbations that are local on
the moiré scale, this follows as for time-reversal-breaking
impurities in s-wave superconductors. A finite density
of PT -even impurities can thus suppress or even destroy
the K-IVC gap.

So far, our discussion relied on a close structural anal-
ogy between the BdG Hamiltonian of s-wave supercon-
ductors and the low-energy Hamiltonian of TBG with
K-IVC order. More fundamentally, the appearance of
an Anderson’s theorem in both theories is rooted in the
fact that up to U(1) rotations which leave the normal-
state Hamiltonian invariant, their order parameters are
proportional to a natural antisymmetry of the model,
namely PT . For both superconductors and the K-
IVC state of TBG, we have ∆τy = −i∆PT . Up to a
gauge transformation (superconductors) or a U(1) val-
ley rotation (TBG), this is equivalent to the general
order-parameter term ∆(τx cos θ + τy sin θ). This form
of the order parameter has two important consequences.
First, the order-parameter and single-particle terms in
the Hamiltonian anticommute, so that the single-particle
energies and the order parameter add in quadrature in
the mean-field excitation spectrum. Second, this prop-
erty persists in the presence of disorder, as long as the
latter is odd under PT , which is Anderson’s theorem.

One should remember that the derivation of Ander-
son’s theorem relies on several assumptions. In par-
ticular, one assumes that the order parameter remains
spatially uniform and is momentum independent. Simi-
lar to anisotropic superconductors, the order parameter
of TBG exhibits some momentum dependence [18]. In
the presence of momentum dependence, there will be no
systematic anticommutation behavior between the order-
parameter term and the impurity potential. Then, An-
derson’s theorem no longer applies in the strict sense,
and implies only enhanced, but not full protection of the
gap.

Classifying physical perturbations.—So far, we have
phrased our discussion in rather general terms, largely re-
lying on symmetry properties of the TBG flat bands. We
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perturbation matrix structure Anderson

layer-even pot. 1 ×
layer-odd pot. µz X

layer-even sublattice pot. σz X

layer-odd sublattice pot. σzµz ×
layer-even vector pot. σx, σyτz ×
layer-odd vector pot. σxµz, σyτzµz X

tunneling disorder see text X

Table I. Table of time-reversal symmetric perturbations (left
column) and their effect on the K-IVC gap. The central col-
umn gives the matrix structure in the microscopic graphene
basis of TBG, where µα, σα and τα are Pauli matrices in
layer, sublattice and valley space, respectively. The right col-
umn indicates the validity of Anderson’s theorem. The K-IVC
gap is protected against perturbations, for which Anderson’s
theorem is valid. Notice that in this table, we only consider
strain-induced vector potentials.

now classify perturbations according to their symmetry
and tabulate the presence or absence of Anderson’s theo-
rem in Table I. For a given behavior under time reversal,
it is sufficient to consider their transformation properties
under P, which acts separately within each valley.

Usually, we do not know the form of perturbations
in the flat-band (i.e., Chern or particle-hole) bases, but
rather in the microscopic graphene basis. Within the
Bistrizer-MacDonald model [1], the Hamiltonian H0 is
valley diagonal and takes the form

H =

(
vDσ · ( 1

i∇ + At) + φt T (r)

T †(r) vDσ · ( 1
i∇ + Ab) + φb

)

(10)
for the K-valley. Here, the diagonal and off-diagonal
blocks are intra- and inter-layer terms, respectively, and
the σα refer explicitly to the graphene sublattice. Poten-
tial disorder introduces layer- and sublattice-dependent
potentials φt/b(r). Modulations in the interlayer distance
cause variations of the interlayer tunneling terms T (r).
Strain introduces vector potentials At/b(r) and modifies
T (r) [44–46]. In terms of the strain-induced displace-
ments ul(r) relative to the uniformly twisted bilayer, the
components of the vector potential take the form [45, 46]

(Al)µ = K · ∂µul + β
√
3

2a (ul,xx − ul,yy,−2ul,xy). Here, β
characterizes the sensitivity of the hopping amplitude to
strain-induced displacements and ul,ij is the strain tensor
of layer l. Time-reversal symmetry implies that strain-
induced vector potentials are odd in valley space, while
the scalar potentials are even.

In the microscopic graphene basis of the Bistritzer-
MacDonald Hamiltonian in Eq. (10), particle-hole con-
jugation takes the form [18]

P = iσxµyK, (11)

where the µα are Pauli matrices in layer space (PT =
iτxσxµy). The validity of Anderson’s theorem for various

perturbations is now readily established and tabulated in
Table I for time-reversal symmetric perturbations (also
including their structure in the microscopic basis). A
sublattice-symmetric potential will commute with P, if
it is layer symmetric, and anticommute with P, if it is
odd under layer exchange. According to our consider-
ations, we find that layer-symmetric potentials induce
subgap states within the K-IVC gap, but layer-odd po-
tentials leave the K-IVC gap intact. These conclusions
are reversed for sublattice-odd potentials. Tunneling dis-
order corresponds to a local variation in the strength of
the interlayer tunneling amplitudes and thus in the pa-
rameters entering T (r). Consequently, tunneling disor-
der inherits the P transformation properties of H0 and
Anderson’s theorem applies. Finally, a layer-even vector
potential (homostrain) is even under P, while a layer-
odd vector potential (heterostrain) is odd. We therefore
find that Anderson’s theorem applies to local heteros-
train only. We note that due to a self-consistency effect,
uniform heterostrain decreases the gap [45]. We neglect
self-consistency effects since for local perturbations, spa-
tial variations of the order parameter are suppressed by
its stiffness on the scale of the correlation length.
Other insulating ground states.—While it has been

argued that the K-IVC is the most favorable ground
state at even integer fillings of the flat bands of TBG
[18, 20, 21, 47], other competing symmetry-broken states
can also be considered [48–51]. We find that the K-IVC
is distinct from other possible ground states due to the
existence of Anderson’s theorem for PT -antisymmetric
disorder. It is thus conceivable that such kinds of disor-
der stabilize the K-IVC state relative to competing states.

First, consider an alternative, time-reversal-preserving
intervalley coherent state, termed T-IVC. In the
particle-hole basis, this state has the order parameter
∆σz(τx cos θ + τy sin θ). The T-IVC gap anticommutes
with only one of the three terms of the flat-band Hamil-
tonian, precluding the derivation of an Anderson’s theo-
rem.

The valley-polarized state with order parameter ∆τz
leads to the mean-field Hamiltonian

Hvp = H0τz + ∆τz + U−τz + U+τ0 (12)

in the particle-hole basis. The order-parameter term
commutes with the band Hamiltonian, so that a gap
emerges only when ∆ shifts the flat bands of the two val-
leys sufficiently far apart in energy. The impurity prob-
lem can be considered separately for the two valleys and
regardless of impurity type, there is no robustness due to
an Anderson’s theorem.

Finally, we consider the valley Hall state with mean
field Hamiltonian

Hvh = H0τz + ∆σzτz + U−τz + U+τ0 (13)

in the particle-hole basis. The order-parameter term an-
ticommutes with the flat-band Hamiltonian H0τz [see Eq.
(8)] only in the chiral limit, where h0(k) = 0 [52]. In this
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idealized (but experimentally remote) limit, the gap is ro-
bust against perturbations, which are purely offdiagonal
in sublattice space, e.g., strain disorder.

Conclusions.—We have shown that an Anderson-type
theorem protects the gap of the K-IVC state, a prime
candidate for the observed robust correlated insulators of
TBG, from certain types of disorder. Similar to s-wave
superconductivity, which is robust against time-reversal
preserving disorder, we find that the K-IVC gap is robust
against disorder, which is odd under PT . The robustness
against some types of disorder distinguishes the K-IVC
state from other candidate ground states for the corre-
lated insulators and arises due to the special nature of the
order parameter, which has the same matrix structure,
up to a U(1) valley rotation, as the PT chiral antisym-
metry.

This special structure of the order-parameter term also
underlies the close analogy of KIVC states with s-wave
superconductors. In both cases, this structure guarantees
that the band Hamiltonian as well as PT -odd disorder
potentials anticommute with a uniform and momentum-
independent order-parameter term. For superconduc-
tors, P is an inherent antisymmetry, so that Anderson’s
theorem applies to T -even perturbations. For TBG, both
P and T are physical symmetries, so that Anderson’s the-

orem applies to all perturbations which are odd under
PT , regardless of their behavior under P and T individ-
ually.

Our theoretical considerations can be tested by intro-
ducing impurity potentials with different behavior under
PT . Local PT -even perturbations will in general in-
duce subgap states, which can be probed directly using
scanning tunneling microscopy. One expects that a finite
density of impurities can reduce or even eliminate the K-
IVC gap. We leave a detailed study of this last situation
to a separate publication [53].
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