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A Coulomb blockaded M -Majorana island coupled to normal metal leads realizes a novel type of Kondo
effect where the effective impurity “spin” transforms under the orthogonal group SO(M). The impurity spin
stems from the non-local topological ground state degeneracy of the island and thus the effect is known as the
topological Kondo effect. We introduce a physically motivated N -channel generalization of the topological
Kondo model. Starting from the simplest case N = 2, we conjecture a stable intermediate coupling fixed point
and evaluate the resulting low-temperature impurity entropy. The impurity entropy indicates that an emergent
Fibonacci anyon can be realized in the N = 2 model. We also map the case N = 2, M = 4 to the conventional
4-channel Kondo model and find the conductance at the intermediate fixed point. By using the perturbative
renormalization group, we also analyze the large-N limit, where the fixed point moves to weak coupling. In the
isotropic limit, we find an intermediate stable fixed point, which is stable to “exchange” coupling anisotropies,
but unstable to channel anisotropy. We evaluate the fixed point impurity entropy and conductance to obtain
experimentally observable signatures of our results. In the large-N limit we evaluate the full cross over function
describing the temperature-dependent conductance.

Introduction. Since the original Kondo model of a mag-
netic impurity screened by a single orbital in a metal [1], its
multichannel generalization [2], especially in mesoscopic de-
vices [3, 4], has proven to be a fruitful system exemplify-
ing exotic many-body phenomena [5–10] such as emergent
anyonic excitations [11–14] even in the simplest two-channel
Kondo (2CK) model [15, 16]. The key parameters that de-
termine the behavior of the system are the spin of the impu-
rity (S) and the largest possible total spin (N/2) for N chan-
nels of conduction electrons. When N > 2S, namely the
overscreened case [2], the low-temperature fixed point is at in-
termediate coupling strength, with both weak and strong cou-
pling fixed points unstable. Notably, in the limit of large N ,
the intermediate coupling fixed point moves toward weak cou-
pling and becomes perturbatively accessible in 1/N expan-
sion [2, 17].

The intermediate coupling fixed point cannot generically be
described by a Fermi liquid theory. For example, in a meso-
scopic 2CK device, the conductance correction near T = 0 is
proportional to T [7, 9], and not to T 2 expected of a Fermi liq-
uid [18]. Besides the conductance, the impurity entropy also
shows exotic non-integer quantum dimension, which can be
interpreted as a fractional ground state degeneracy. As shown
by Emery and Kivelson [15] (see also Refs. [16, 19, 20]), an
emergent Majorana will remain of the impurity spin after the
screening by conduction electrons. The low-temperature im-
purity entropy is given by ln

√
2 where

√
2 is the quantum di-

mension of a single Majorana (two uncoupled Majoranas have
a ground state degeneracy 2). For 3CK, the screened impurity
entropy is lnϕ, where ϕ = (1 +

√
5)/2 is the Golden ra-

tio [21, 22], exhibiting the quantum dimension of a Fibonacci
anyon. The conventional multichannel Kondo (MCK) models
based on the SU(2) symmetry group (which is natural in the
case of a magnetic impurity) have been extensively studied
by using conformal field theory (CFT) [5, 23–30] and various

other methods [17, 31–40].

It is natural to expect that the rich physics of the multi-
channel Kondo effect can be further expanded by considering
symmetry groups beyond the conventional SU(2). Recently,
Béri et al. [41, 42] showed that a Coulomb blockaded topo-
logical superconductor hosting M Majorana zero modes cou-
pled to M normal metal leads displays a Kondo interaction
with SO(M) symmetry [43]. Even though this “topological
Kondo” model has only one SO(M) channel [44], in certain
cases (such as M = 3, 4) it can be mapped to an SU(2) MCK
model and therefore has non-Fermi liquid (NFL) behavior at
low temperatures. For example, the conductance correction
near T = 0 is proportional to T 2(M−2)/M and the impurity
entropy generically indicates a fractional ground state degen-
eracy [45]. With the SO(M) symmetry group providing a
relatively stable NFL fixed point, the single-channel topologi-
cal Kondo model has attracted a wide range of detailed studies
and extensions [46–57]. However, the multichannel version of
it has not yet been studied.

In this paper, we generalize the topological Kondo model
to N ≥ 2 channels and propose a physical realization for
it. Already in the relatively simple N = 2, M = 8 case we
find a quantum dimension indicating an emergent Fibonacci
anyon which cannot be realized for any M in the single chan-
nel SO(M) model. In this simplest 2-channel generalization,
we also find a mapping between SO(4) and conventional 4CK
model, allowing us to find the exact fractional fixed point con-
ductance, Eq. (2). In order to study a more general case, we
then introduce large-N perturbation theory similar to what
has been done with the SU(2) case [36, 58, 59]. We fo-
cus on the experimentally relevant observables of the conduc-
tance [7, 9, 60] and impurity entropy [22, 61–65].

Two-channel topological Kondo model. The two-channel
generalization of the isotropic topological Kondo interaction
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FIG. 1. (a) N = 2 SO(4) topological Kondo model. The box at
the middle is the Majorana island and the wires (leads) at the left
and right hold conduction electrons. Each wire inside a channel is
connected to a Majorana zero mode (labeled by γ1,2,3,4) in the island.
(b)N -channel SO(M) topological Kondo. The number of Majorana
zero modes (flavors) is M and the number of layers (channels) is N .
The charging energy Eci (Ec1 is zero and all others are nonzero) is
essential for each channel to prevent channel mixing.

Hamiltonian is

HK = λ1S · J1(x0) + λ2S · J2(x0), (1)

where S(α,β) = −iγαγβ/2 and J
(α,β)
i = −i(ψ†i,αψi,β −

ψ†i,βψi,α) are, respectively, the impurity and conduction elec-
tron “spin” operators that satisfy the SO(M) algebra; the vec-
tors S and J are formed of M(M −1)/2 components labeled
by (α, β) with α 6= β taking values from 1 to M .

The interaction (1) arises from a tunneling Hamiltonian∑
i,α t

i
αγαψ

†
i,α(x0) + h.c. between the normal metal leads

(fermion operators ψi,α) and the Coulomb blockaded Majo-
rana island (Majorana operators γα) with tunneling ampli-
tudes tiα (which for simplicity we take to be real) and can be
realized in the setup depicted in Fig. 1a. We connect each Ma-
jorana of the island to two leads, labeled i = 1, 2, which we
call channels. The M sub-channels in each channel (which
is also the number of Majoranas) are dubbed different flavors,
labeled by α. In order to prevent tunneling from mixing dif-
ferent channels, we have added a charging energy Ec2 for the
second channel. Thus the i = 2 “lead” should be consid-
ered as a large quantum dot with small level spacing but sig-
nificant charging energy in full analogy with the proposal of
Ref. [60], used to implement the 2CK effect in quantum dots.
In the weak-tunneling limit, the effective exchange interaction
strength is then λi,αβ ∝ tiαtiβ/Ui where Ui is the charging en-
ergy.

We will first focus on 2-channel SO(4) topological Kondo
model which can be exactly mapped to 4CK. The reason is
that we can consider SO(M = 4) as two independent “spins”,
i.e. SO(4) ∼ SU(2) × SU(2) which allows us to unitarily
transform ψi,α (with channel index i = 1, 2 and flavor index
α = 1, 2, 3, 4) to ψn,σ (n = 1, 2, 3, 4; σ =↑, ↓) [66]. Like-
wise, with the total charge of the Majorana island fixed, one
can form a single SU(2) spin-1/2 out of the four Majorana
operators γα. Thus, we have an overscreened Kondo prob-
lem which makes the strong coupling fixed point unstable [2]
and we expect a stable intermediate coupling fixed point in the

isotropic case where we take λ1 = λ2 in Eq. (1).
Overscreening implies the NFL behavior. In order to probe

the NFL nature of this low-temperature fixed point, one can
measure the fixed point conductance at T = 0. Due to the
charging energy of other channels except the channel i = 1,
we define the conductance matrix [47] Gα,β in the first chan-
nel as the charge current in (flavor) lead α as a linear re-
sponse to weak voltage Vβ → 0 applied to lead β, i.e.,
Gα,β = 〈Iα〉/Vβ . We expect a nonzero fixed point conduc-
tance and the corresponding correction to conductance near
T = 0 will be T (M−2)/(M+2) based on our large-N results
and the scaling dimension of the leading irrelevant operator
in the CFT [21, 24–26], see discussion below Eq. (8). For
example, when N = 2 and M = 4, we expect

Gα6=β(T ) =
e2

4h

[
1 + cαβ

(
T

TK

)1/3
]
. (2)

The dimensionless coefficients cαβ (of order one) and the
Kondo temperature TK are not predicted by the CFT method.
We used the fact that the 2-channel SO(4) topological Kondo
model can be mapped to the 4CK model after fixing the par-
ity [66], see also Eq. (9). The nontrivial fractional power of
the temperature dependence signifies the NFL behavior at low
temperatures.

Another observable that also shows NFL behavior is the
impurity entropy at the fixed point. It is given by Simp = ln g
where g is usually interpreted as ground state degeneracy. The
N = 1 topological Kondo was shown to have g =

√
M for

odd M and g =
√
M/2 for even M by Altland et al. [45].

Even though the 1-channel impurity entropy shows nontrivial
result, the N = 2 case is even more complex:

g =

{
1
2

√
M + 2/ cos

[
πM

2(M+2)

]
, M is odd,

1
2

√
(M + 2)/2/ cos

[
πM

2(M+2)

]
, M is even.

(3)

Again, the impurity entropy of 2-channel SO(4) topological
Kondo from Eq. (3) is ln

√
3 which is the same as the impurity

entropy of 4CK [5, 21, 67] and exhibits the quantum dimen-
sion

√
3 of a Z3 parafermion [68]. Interestingly, 2-channel

SO(8) has g = 2 +ϕ, which indicates an emergent Fibonacci
anyon (similar to 3CK). Both of the above two observables
at this fixed point show fractional values, which are beyond
Fermi liquid description and indicate emergent anyonic exci-
tations. We point out that for a fixed M , the impurity entropy
and g are larger in the 2-channel case as compared to N = 1.
Indeed, g approaches monotonically the degeneracy ofM free
Majoranas in the large-N limit, see Eq. (10) below.

The charging energy Ec2 is essential for the multichannel
topological Kondo. Otherwise, when Ec2 = 0, the interac-
tion couples only to a single effective channel with a fermion
operator ψ̃α(x0) =

∑
i(t

i
α/
∣∣~tα∣∣)ψi,α(x0) and reduces to the

conventional N = 1 topological Kondo Hamiltonian; When
Ec2 6= 0 with fine-tuned λ1 = λ2, we will have an interme-
diate coupling fixed point. In the case λ1 6= λ2, based on
our large-N calculations discussed below, we expect that the
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weaker coupling renormalizes to zero and the single-channel
limit is recovered.
N � 1: layered construction. Next, we generalize the

Hamiltonian (1) to N channels. Without exchange isotropy,
the interaction becomes

HK =

N∑
i=1

M∑
α<β=2

λi,αβS
(α,β) · J (α,β)

i (x0). (4)

The coupling constant λi,αβ is real with symmetry λi,αβ =
λi,βα which makes Eq. (4) Hermitian. A physical realization
for this N -channel model can be implemented by using a lay-
ered structure depicted in Fig. 1b, where each layer with M
flavors encodes a single SO(M) channel. Here, channel mix-
ing is prevented by a charging energy Eci of each channel
(except i = 1) [60]. Therefore, Eci needs to be larger than the
temperature or bias voltage (however, large Eci will decrease
the bare Kondo couplings λi,αβ). When Eci 6= 0 with λ in-
dependent of both channel and flavor indices, we will have an
intermediate fixed point at weak coupling, which is found to
be stable in terms of anisotropy of flavors; Without fine-tuning
of channel couplings, the weaker channel couplings flow to
zero, considering large N .

By using perturbative renormalization group in the large-N
limit [17, 36, 58, 69, 70], we derive the third order equation
for the coupling constant λi,αβ from Eq. (4),

dλi,αβ
dl

= ρ0(λ2
i )αβ (5)

−ρ2
0λi,αβ

∑
j

[
(λ2
j )αα + (λ2

j )ββ − 2(λj,αβ)2
]
,

where l = ln(D0/D) with D (D0) denoting the running
(bare) cutoff energy scale and ρ0 is the density of states per
length. The three terms at the second line in Eq. (5) cor-
respond to the three Feynman diagrams in Fig. 2a. On the
isotropic line λi,αβ = λ (for α 6= β) we have,

dλ

dl
= (M − 2)(1− 2Nρ0λ)ρ0λ

2 . (6)

Thus, the stable intermediate fixed point is λ∗ = 1/(2Nρ0)
and moves to weak coupling in the large-N limit. At λ ≈ λ∗,
dλ
dl ≡ β(λ) ≈ −(M−2)(λ−λ∗)/(2N). The slope of the beta
function is β′(λ∗) = −(M−2)/(2N) which means a large-N
scaling dimension 1 + (M − 2)/(2N) in the irrelevant direc-
tion. This agrees with the scaling dimension of the leading
irrelevant operator with N channels and M flavors ∆LIO =
1 + (M − 2)/(2N +M − 2) obtained from the CFT [21, 24–
26, 71] [72]. The forth and fifth order correction to Eq. (6)
are respectively of order NM2ρ3

0λ
4 and N2M2ρ4

0λ
5 and are

subleading by a factor M/N , which makes the large-N per-
turbation expansion convergent [41, 58].

The solution of Eq. (6) is

λ(D)

λ∗
= f−1

[
(D/TK)∆

e2

]
, f(x) = |1/x− 1|e1/x−1, (7)

FIG. 2. (a) The leading Feynman diagrams contributing to the third
order RG equation [Eq. (5)] in the large-N limit. The solid lines de-
note fermions and dashed lines denote Majorana operators. (b) Left:
RG flow of the isotropic Kondo exchange coupling with a stable fixed
point λ∗ (black point). Right: The conductance vs the tempera-
ture for two initial conditions λ0 ≶ λ∗ in the large-N limit. When
λ0 < λ∗, the conductance ratio G(T )/G∗ is given by the lower
black line with a high-temperature approximation 1/ ln2[(T/TK)∆]
(red line) while at low temperature G(T )/G∗ ≈ 1 − c(T/TK)∆

(lower blue line), with c = 2/e2 ≈ 0.27. Here, G∗ is the con-
ductance at the fixed point λ∗, see Eq. (8). When λ0 > λ∗,
we have G(T )/G∗ ≈ 1 + c(T/TK)∆ at low temperature (upper
blue line) while at high temperature G diverges as G(T )/G∗ ≈
1/[2 − 2(D/TK)∆/e] (green line) at (T/TK)∆ = e, signifying
breakdown of the weak coupling perturbation theory.

where we introduced the Kondo temperature TK =
D0[e2f(λ0/λ∗)]

−1/∆ and ∆ = (M − 2)/(2N). We will
have two solutions for Eq. (7) depending on whether the ini-
tial (bare) coupling constant λ0 = λ(D0) is larger or smaller
than the fixed point coupling λ∗ (see Fig. 2b). Since the low-
energy fixed point is at weak coupling in the large-N limit,
Eq. (7) gives the full cross over for the running coupling λ(D),
extending beyond the CFT prediction.

Conductance at large-N . In both N = 1, SO(M) topolog-
ical Kondo [41, 42, 46, 47, 49] andN = 2, SO(4) topological
Kondo [Eq. (2)], the fixed point (T = 0) conductance is given
by a universal fractional multiple of G0 = e2/h. Here, we
first evaluate the conductance perturbatively in λ0 by using
Kubo formula [66] and find Gαβ = G0(πλ0ρ0)2(1−Mδαβ)
to lowest order. By evaluating the next-order correction to
the conductance at finite frequency ω, we find a logarithmic
divergence ∼ λ3

0 ln(D/D0) where D = max{T, ω}. The di-
vergence results from renormalization of the coupling λ, de-
scribed by the RG equation (6). This indicates that for T � ω,
Gα 6=β(T ) = G0[πλ(T )ρ0]2, plotted as a function of temper-
ature in Fig. 2b. Remarkably, in the large-N limit λ(T ) re-
mains small and the full cross over function, Eq. (7), can be
found exactly as long as the bare coupling λ0 is small. At low
temperatures, T � TK , the conductance approaches its zero-
temperature value with a power-law characteristic of a NFL,

Gα6=β(T )/G0 =
π2

4N2

[
1 + cαβ

(
T

TK

)(M−2)/2N
]
, (8)
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where the dimensionless constant can be explicitly obtained
in the isotropic case, cαβ = ±δα,βc with c = 2

e2 ≈ 0.27,
based on the cross over function, Eq. (7). (The sign ± is de-
termined by the initial condition λ0 ≷ λ∗.) The temperature-
dependent correction ∼ T∆LIO−1, also obtained from Eq. (7),
matches with first-order correction from the leading irrelevant
operator, see below Eq. (6), somewhat similar to the case of
resistivity in SU(2) MCK [27]. This is notably different from
the single-channel topological Kondo effect where the first
order correction vanishes [41] and temperature correction is
∼ T 2(∆LIO−1).

The fixed point (T = 0) conductance above (i.e., the first
term) can be verified forM = 4, in which case we can map the
N -channel SO(4) topological Kondo to 2NCK by a unitary
transformation [66]. From the mapping, we find the conduc-
tance of the N -channel SO(4) model [66]:

Gα6=β(M = 4, T = 0)/G0 = sin2[π/(2N + 2)] , (9)

which bears resemblance to the 2NCK fixed point conduc-
tance [31, 32]. The N = 2 case gives the fixed point con-
ductance (first term) in Eq. (2). The N = 1 result agrees
with Ref. [42, 46, 47] while the large-N limit agrees with our
previous result, Eq. (8).

Impurity entropy at large-N . The NFL nature of the low-
temperature fixed point becomes apparent in the impurity en-
tropy Simp = ln g where g can take a non-integer value. As
mentioned in the introduction and displayed by Eq. (3), the
1 and 2-channel topological Kondo models generically show
a non-integer g. Also, g for the N -channel case can be cal-
culated by using modular S-matrix [21, 30]. The modular
S-matrix of SO(M) is given in Ref. [73] and the general in-
formation of it can also be found in Ref. [74]. We then find
Eq. (3) in the case N = 2. Above we saw that in the large-
N limit the fixed point coupling moves to weak coupling. In
this case the impurity is weakly screened and we find in the
large-N limit,

g =

{
2(M−1)/2

[
1− (M−2)(M−1)Mπ2

192N2

]
, M is odd

2(M−2)/2
[
1− (M−2)(M−1)Mπ2

192N2

]
, M is even.

(10)

This result indeed reflects the fact that the impurity is almost
free at large-N [same conclusion can be made from the con-
ductance (8)]. The impurity entropy is that of M free Ma-
joranas (with a fixed total parity) with a correction of order
1/N2 from the screening by the itinerant electrons. The val-
ues in Eq. (3) are the ground state degeneracy at the fixed
point λ∗ without taking large-N limit. They are smaller than
the above first term, giving the ground state degeneracy at
λ = 0. This agrees with the g-theorem in CFT, stating that
the ground state degeneracy becomes smaller along the RG
flow [23, 27, 67, 75] from λ = 0 to λ∗.

Flavor anisotropy. Since the NFL behavior in the con-
ventional single-channel topological Kondo model is stable to
flavor anisotropy [41], it is natural to expect the same to be
true for its multichannel generalization. Indeed, by consider-
ing the physically-motivated [66] flavor-anisotropic coupling

FIG. 3. RG flow of (a) flavor and (b) channel anisotropies. The
isotropic lines are denoted in orange with the black point showing
the isotropic intermediate fixed point. (a) Flavor anisotropy. The
isotropic fixed point (black point) is at λ = λ′ = 1/(2Nρ0) and
is stable. The red fixed point is the isotropic fixed point of the
SO(M − 1) model and is unstable and anisotropic in terms of M
flavors. (b) Channel anisotropy with the case N1 = N2 shown. The
isotropic fixed point (black point) is at λ1 = λ2 = 1/2[(N1+N2)ρ0]
which is unstable. Depending on which of λ1 and λ2 is larger, the
stable fixed point is the purple [λ1 = 1/(2N1ρ0), λ2 = 0] or the
pink [λ1 = 0, λ2 = 1/(2N2ρ0)] one.

λαβ = [λ+(λ′−λ)(δ1α+δ1β)] in Eq. (5), we find two nontriv-
ial fixed points with the majority coupling λ = 1/(2Nρ0) in
both, while the minority coupling is either λ′ = 1/(2Nρ0) or
λ′ = 0. The first one is isotropic and stable, while the second
fixed point is unstable, see Fig. 3a. Thus, flavor anisotropy
remains irrelevant in the multichannel generalization of the
topological Kondo model.

Channel anisotropy. Since the NFL fixed point of the con-
ventional SU(2) MCK is unstable to channel anisotropy [2,
71, 76], it is crucial to investigate channel anisotropy in the
multichannel topological Kondo model. We consider a fla-
vor isotropic but channel anisotropic version of Eq. (4) with
λi,αβ = λ1 for i = 1, . . . , N1 and λN1+i,αβ = λ2 for
i = 1, . . . , N2. If we consider large-N1 and large-N2 limit,
we will have (j = 1, 2)

dλj
dl

= (M − 2)λjρ0(λj − 2N1λ
2
1ρ0 − 2N2λ

2
2ρ0) . (11)

The RG flow is shown in Fig. 3b and has 2 stable anisotropic
fixed points. When λ1 6= λ2, the smaller coupling constant
flows to zero and the larger one, λi, flows to 1/(2Niρ0). The
isotropic fixed point λ1 = λ2 = 1/[2(N1+N2)ρ0] is unstable.

Conclusions. We generalized the topological Kondo inter-
action into its N ≥ 2-channel version by adding new sets of
floating leads connected to the Majorana island (see Fig. 1).
Consequently, we analyzed the two-channel case for its impu-
rity entropy [Eq. (3)] and conductance [Eq. (2)]. The former
indicates an emergent Fibonacci anyon, beyond the single-
channel model. Another departure from the single-channel
model is the NFL correction to conductance, which is of first
order in the irrelevant operator, see below Eq. (8). The in-
troduced multichannel generalization allowed us to develop a
convergent large-N perturbation theory. Under the large-N
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limit, we found that the multichannel topological Kondo has
a stable fixed point at weak coupling. By using perturbative
RG, we were able to solve for the running coupling constant,
giving us the full cross over from the free fixed point to the in-
termediate one, see Eq. (7) and Fig. 2. We also considered the
flavor and channel anisotropies in the large-N limit [see Fig.
3, Ref. [66] and Eqs. (11)], finding that the flavor anisotropy is
irrelevant, while the channel anisotropy is relevant. Our work
suggests further study into the exotic physics found in multi-
channel Kondo models that are beyond conventional, SU(2)-
symmetric, spin systems.
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